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We report an ensemble machine-learning method capable of finding new su-

perhard materials by directly predicting the load-dependent Vickers hardness

based only on the chemical composition. A total of 1062 experimentally mea-

sured load-dependent Vickers hardness data were extracted from the litera-

ture and used to train a supervised machine-learning algorithm utilizing boost-

ing, achieving excellent accuracy (R2 = 0.97). This new model was then tested

by synthesizing and measuring the load-dependent hardness of several unre-

ported disilicides as well as analyzing the predicted hardness of several clas-

sic superhard materials. The trained ensemble method was then employed to

screen for superhard materials by examining more than 66,000 compounds in

crystal structure databases, which showed that only 68 known materials sur-

pass the superhard threshold. The hardness model was then combined with

our data-driven phase diagram generation tool to expand the limited num-
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ber of reported compounds. Eleven ternary borocarbide phase spaces were

studied, and more than ten thermodynamically favorable compositions with

superhard potential were identified, proving this ensemble model’s ability to

find previously unknown superhard materials.

Introduction

Superhard materials are essential in applications ranging from manufacturing to energy pro-

duction. They also have substantial use in the aerospace, military, and even health care indus-

tries. (1) Finding new superhard materials that have a Vickers hardness (HV ) greater than 40

GPa has traditionally been guided by empirical design rules derived from classically known

materials like diamond, c-BN, and more recently ReB2, among others. (2, 3) It is widely ac-

cepted that a three-dimensional network of short covalent bonds and a high valence electron

density, will likely lead to enhanced hardness. (4–6) However, these rules are all qualitative.

Researchers have also considered quantitative approaches using computational methods like

molecular dynamics (MD) simulations or density functional theory (DFT) for identifying and

understanding superhard materials. (7–11) Unfortunately, large scale MD simulations are com-

putationally expensive and generally impractical for multicomponent systems. (12) DFT is also

computationally expensive and cannot directly calculate hardness, although there has been some

success using DFT calculated proxies to estimate a material’s hardness based on the elastic

moduli. (13–16) For example, finding proportionality coefficients that relate HV to different

combinations of the elastic moduli have produced several semi-empirical hardness models with

varying accuracy. (17) Nevertheless, constructing simple mathematical models remains insuf-

ficient to distinguish the multidimensional relationship between chemical composition, crystal

structure, microstructure, and hardness. More recently, machine-learning methods, which can

capture such complex connections, have been created to identify new superhard materials based
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on the elastic moduli. (18) The speed of machine learning allows for rapid materials screen-

ing, but this method still relies on computationally-derived indirect proxies of hardness that are

subject to misinterpretation.

These approaches are all generally able to roughly approximate some version of a material’s

HV as a single value. However, they cannot predict a material’s real response to plastic defor-

mation that yields hardness. (19) A material’s Vickers hardness varies with the load applied

to the indenter tip, which is referred to as indentation size effect. (20) In every measurement,

the hardness decreases asymptotically as the load increases. This observation is unexpected

because hardness should be independent of the applied load. The origin and the mechanism of

the indentation size effect is not well understood, although possible explanations include mea-

surement error because of the small indentation imprint, sizeable elastic recovery, or changes

in the microstructure. (21, 22) As a result, even if a method can predict a material’s hardness

at a single load, it is not likely to capture load-dependent response. This remains a significant

barrier in superhard materials design.

In this study, we overcome this challenge by constructing a machine-learning model capable

of directly predicting load-dependent hardness based only on chemical composition. The num-

ber of unique data available in the literature is relatively limited (only ≈1000 examples); thus,

ensemble learning algorithms are employed to train the model. Ensemble learning methods are

effective at dealing with small and sparse data-sets. (23) Generally, these algorithms work by

running a base learner multiple times, and form a vote out of the resulting hypotheses. (24)

The outcome is an improved model with reduced variance and bias. Here, a Random Forest

(RF) machine-learning algorithm was employed as the starting point. (25) Boosting ensem-

ble algorithms, including Gradient Boosting (GB) trees (26) and XGBoost (XGB) (27), were

then demonstrated to considerably improve the model. The predictive power was subsequently

validated using two different hold-out test sets. Eight unmeasured metal disilicides were synthe-
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sized as a phase pure materials. Their Vickers hardness was then measured at different applied

loads. Moreover, a customized hold-out test set containing several classic superhard materi-

als was created. The results both showed a remarkable reproduction of the Vickers hardness,

including capturing the load-dependent hardness curves for all compounds. Once the ensem-

ble algorithms were trained and validated, this composition-only featurized model was used to

screen ≈66,000 known compounds in Pearson’s Crystal Data (PCD) set. Only 68 compounds

(0.1%) are suggested to be superhard, and many of these phases are derivatives of already re-

ported high hardness materials. The sparse number of possible superhard materials suggests

it is improbable to find entirely new superhard materials using this strategy. We address this

inadequacy by merging this hardness model with our recently developed formation energy and

convex hull prediction tool to identify more than ten previously unreported superhard com-

pounds. This work proves that using ensemble learning to predict load-dependent hardness can

potentially provide the next big step in the search for new superhard materials.

Methods

Construction of the Ensemble Learning Models The training set was composed of 1062

experimentally measured Vickers hardness (HV ,exp) data extracted from literature. Regression

models were constructed to predict the Vickers hardness using a random forest (RF) algorithm

(HV ,RF), gradient boosting (GB) trees (HV ,GB), and XGBoost (XGB) algorithms (HV ,XGB). The

data were represented by a feature-set containing 35 distinct compositional descriptors and four

mathematical expressions, including the difference, the average, the maximum value, and the

minimum value. In total, the initial feature-set contained 140 compositional features. Addi-

tionally, the applied load from each hardness measurement was included as a feature resulting

in 141 total features. The full list of features is provided in Table S1. Recursive feature elim-

ination (RFE) (28) was then used to reduce the 141 descriptors by pruning the least important
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feature and recursively considering a smaller set of features for each model. The two metrics

used to evaluate the model performance were the coefficient of determination (R2) and the mean

squared error (MSE), shown in Figure S1. The optimal features for each algorithm are provided

in Tables S2, S3, and S4, respectively. Hyperparameter settings were adjusted for each model

constructed using a 10-fold cross-validated grid search where exhaustive evaluations of all pa-

rameter combinations were performed. The searching space includes the maximum depth of

trees in the range of [3, 4, 5, 6, 7, 8], the learning rate in the range of [0.01, 0.03, 0.05, 0.07,

0.10, 0.15, 0.20], the subsample ratio of columns when constructing each tree in the range of

[0.6, 0.7, 0.8, 0.9, 1] and the subsample ratio of the training instances in the range of [0.6,

0.7, 0.8, 0.9, 1]. RF and GB were used through the Scikit-learn python implementation (29)

while XGB was also used within python environment. (27) All codes, training data, and pre-

diction sets associated with this work are provided in the open-source Github repository at

https://github.com/BrgochGroup.

Synthesis of MSi2 for Model Validation Pellets of the nominal compositions MSi2 (M =

Cr, V, Nb, Ta, Mo, W, La, and Ce) were prepared by starting from the high-purity metals:

chromium powder (99.995%, Alfa Aesar), vanadium powder (99.995%, Alfa Aesar), niobium

pieces (99.995%, Alfa Aesar), molybdenum powder (99.995%, Alfa Aesar), tungsten powder

(99.995% Alfa Aesar), La metal (99.9%, HEFA Rare Earth Canada Co. Ltd., Canada), Ce metal

(99.9% HEFA Rare Earth Canada C . Ltd., Canada), and silicon powder (99.999%, Alfa Aesar,

USA). The powders were weighed out in a 1:2 ratio and homogenized by manually blending

the samples using an agate mortar and pestle. The mixtures were then pressed into 6 mm pellets

using a Carver hydraulic press with an applied pressure of 1.5 metric tons. These pellets were

placed on a copper hearth in an arc melter (CenTorr Vacuum Industries, model 5SA) along with

an oxygen getter (titanium metal). The chamber was sealed and evacuated under vacuum for 1
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minute, followed by filling with argon; this process was repeated at least three times. The Ti

was melted first to ensure any residual oxygen was removed, and then samples were arc-melted

using a forward current of typically 30 A to 70 A for 1 to 2 min. The buttons were flipped

and re-melted at least two times to ensure homogeneity. The weight loss after arc-melting was

<1%.

The products were split in two, with half ground into a fine powder using a CerCo Diamonite

mortar and pestle for analysis by powder X-ray diffraction. The X-ray diffractograms were

collected using a PANalytical X’Pert powder diffractometer equipped with Cu Kα radiation (λ

= 1.54184 Å). The diffractograms were all analyzed by Le Bail refinement performed with the

General Structure Analysis System (GSAS) software and the EXPGUI interface. The data and

associated refinement details for each sample are provided in Figure S2 and Table S5. The other

half of each sample was mounted in an epoxy resin and polished to a mirror surface using SiC

polishing plates (600–1200 grit) followed by 7 µm, 3 µm, and 1 µm diamond paste. The Vickers

hardness was measured by making ten indentations on each sample using microindentation

(LECO AMH55, LM810AT) with applied loads of 0.49 N (0.049 kgf), 0.98 N (0.098 kgf), 2.94

N (0.294 kgf), 4.9 N (0.49 kgf) and averaging the results.

Result and Discussion

Feature Development and Ensemble Learning Model Construction Constructing a ma-

chine learning model to predict load-dependent hardness first requires gathering a sufficient

amount of training data. A total of 1062 experimentally measured Vickers hardness values

were manually extracted from literature, plus the applied load and chemical composition. The

data distribution of the 1062 training samples is provided in Figure S3, along with the element

population count among the training set. The training set is composed mostly of binary and

ternary systems and covers HV values spanning from low-load (<10 GPa) to high-load (>60
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GPa) with ≈80% of the data falling between 0 GPa and 40 GPa. It also covers a variety of

elements, except the alkali metals, halogens, and the noble gases, which are not frequently en-

countered in structural materials. The data were randomly split into ten separate training and

test sets with a 9:1 ratio. All model statistics were determined by averaging the different seeded

models. The initial hardness predictions were made using an RF algorithm with the 40 features

identified by RFE (Table S2).

As shown in Figure 1a, the predicted HV ,RF for 106 compounds in the test set (10% of

the entire training set) reproduces the experimentally measured hardness (HV ,exp) reasonably

well. The average R2 was 0.90, whereas MSE shows a more significant deviation of 18.6 GPa.

Although RF can capture the general trend and the lower hardness (<15 GPa) values, RF misses

the high hardness predictions resulting in an overall inferior model not particularly capable of

predicting superhard materials.

This model’s limited capability is likely because there is sparse hardness data available in the

literature, especially in the superhard region. Ensemble learning was thus investigated as a way

to assist in the prediction of load-dependent hardness. Numerous ensemble learning methods

have been developed with the most common being bagging (bootstrap aggregating) (30) and

boosting. (31) Bagging works by sampling uniformly with replacement from the original data-

set whereas boosting sequentially adds one weak leaner at a time to the ensemble focusing more

on the data points poorly handled by the previous model. (32) Only recently have ensemble

learning methods been used in materials science. (33)

Applying GB (Figure 1b) and XGB (Figure 1c) to predict Vickers hardness both show a dra-

matic improvement in their ability to reproduce compared to RF. The HV ,GB model delivers an

excellent R2 (0.96) and much a more agreeable MSE (6.6 GPa). The changes are particularly

noticeable >20 GPa where excellent agreement between HV ,exp and HV ,GB is obtained. Switch-

ing from GB to XGB further improves the model with HV ,XGB having an R2 = 0.97 and MSE
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Figure 1: The experimentally measured hardness (HV ,exp) for a representative test set is plot-
ted against the (a) random forest (RF) model (HV ,RF), (b) gradient boosting (GB) tree model
(HV ,GB), and the (c) XGBoost (XGB) model (HV ,XGB). The ideal fit (1:1) is shown as the dashed
line.

of only 5.7 GPa. The systematic optimization of XGB provides a significant improvement in

terms of the model performance compared to conventional gradient boosting, and XGB is also

faster to train . (27) Given the superb performance of XGB, this method was used for all future

hardness predictions.

Validating Vickers Hardness and the Load-Response Curve Predictions Model validation

requires a carefully controlled systematic study of relevant compounds. Metal disilicides, MSi2

(M = Cr, V, Nb, Ta, Mo, W, La, and Ce), have broad industrial applications as coating materi-

als and can be used as high hardness materials. (34) Surprisingly, their load-dependent Vickers

hardness is not widely published. (35–38) Given the diversity of compositions that make up

these important structural materials, they are an ideal original validation set. Therefore, eight

samples were synthesized as pure-phase products based on their refined powder X-ray diffrac-

tograms (Figure S2). The Vickers hardness of each compound was then experimentally obtained
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Figure 2: The machine learning predicted hardness (HV ,XGB) against the experimentally mea-
sured hardness (HV ,exp) of eight disilicides at (a) low applied load (0.5 N) and (b) high applied
load (5 N). (c) The load-dependent hardness is plotted for three selected disilicides along with
the predictedHV ,XGB. All load-dependent hardness data are available in Figure S4. The symbols
represent the different disilicides.

by microindentation. The load-dependent HV ,XGB was also predicted from 0.5 N to 5 N.

The HV ,XGB is shown for the eight compounds at low (0.5 N) load (Figure 2a) and at high

(5 N) load (Figure 2b). These are two of the commonly reported applied loads in the literature.

The HV ,XGB of all disilicides showed a striking reproduction of the HV ,exp. The low load HV ,exp

measured for the samples spans from ≈5 GPa (LaSi2) to ≈25 GPa (WSi2). The XGB model

captures each compound’s hardness across this entire range, with all of the predictions falling

near the 1:1 line. The R2 = 0.95 for the 0.5 N applied load and an MSE = 1.8 GPa, supporting

this model’s superior predictive power. The higher applied load (5 N) also shows the HV ,XGB

of all disilicides all shift to lower values, which is observed experimentally. There is a bit more

scatter in these predictions, presumably because the training set contains fewer high load data

(Figure S3c). The model still quantitatively captures Vickers hardness and, more importantly,

the trend of increasing the applied load producing a lower measured hardness.
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Figure 3: The hold-out test prediction of load-dependent hardness shows excellent agreemnt
with the experimentally measured hardness for (a) cubic-BN (39) (b) WB4 (40) (c) ReB2 (41).

The full load-dependent hardness curves were also predicted for the disilicides to further

demonstrate the power of the ensemble learning. Figure 2c shows that WSi2, MoSi2 and LaSi2

all achieve a striking agreement between HV ,exp and HV ,XGB at every load. The predicted load-

dependent hardness curves for the full set of disilicides are provided in Figure S4. The model

can quantitatively predict the hardness and reliably reproduce the different curves of the hard-

ness as a function of the applied load. These results prove that our XGB model can estimate the

Vickers hardness based solely on chemical composition, and it can also reproduce the details

and shape of load-dependent hardness measurements.

The XGB model can unquestionably predict the hardness of the disilicides, which have low

to moderate hardness. A customized hold-out test of superhard materials was also created to

ensure our model’s ability to find superhard materials. Three well known materials with an

HV ,exp ≥ 40 GPa, cubic-BN, (39), ReB2, (41, 42), and WB4, (40) were each removed from the

training set, and the model was retrained. This new model was then used to predict the load-

dependent hardness for each compound. These data were then compared to HV ,exp published in
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the literature, plotted in Figure 3. The ensemble learning model brilliantly captures the 0.5 N

hardness as well as the hardness loss with increasing load. Indeed, the predicted load-dependent

hardness for c-BN, ReB2, and WB4 all achieved an excellent quantitative agreement with their

reported values. Increasing the load causes a decrease in the measured hardness, captured by

the HV ,XGB model, with only a slight underestimation of the hardness predicted for all three

compounds. Most importantly, the model can reproduce the hardness of compounds containing

only light elements as well as transition metal borides. This is notable because these materi-

als have rather different chemistry, yet XGB can predict both with high accuracy suggesting

remarkable transferability of the model.

Evaluating Known Materials for Superhard Response This model showed high statisti-

cal accuracy and reliability for quickly generating HV ,XGB. Several disilicides and well-known

high hardness compounds were then used for further validation. Given the successful imple-

mentation of the approach, our model was consequently employed to predict the hardness of

inorganic compounds contained in Pearson’s Crystal Data (PCD) set. It is essential to remem-

ber that the training set only covered a limited number of elements frequently encountered in

structural materials (shown in Figure S4), and the model’s extrapolation power to elements not

present in the training set can not be guaranteed. Therefore, the prediction set was restricted to

compositions containing only elements present in the training set, resulting in the analysis of

66440 compounds.

Predicting the load-hardness curves for such a large number of compounds allows high-level

screening and can provide essential guidance before experimental synthesis. Of course, the

maximum hardness at low load is not the only vital property for structural materials. The high

load hardness is also essential for many applications. Ideally, materials should be minimally

influenced by the indentation size effect and shown a minimal change between the low-load
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Figure 4: (a) The machine learningHV ,XGB model at 0.5 N is plotted against the % hardness loss
when load increases from 0.5 N to 5 N for 66440 inorganic compounds in PCD. Darker regions
indicate data overlap. Specific classes of traditional structural materials are shown, including
(b) oxides, (c) carbides, (d) borides, and (e) borocarbides.

hardness and the high-load hardness, which we describe here as a hardness loss percentage

following: % hardness loss= ((HV,0.5N − HV,5N ) / HV,0.5N ))×100%. Thus, the Vickers hardness

was predicted at 0.5 N and 5.0 N for the compounds obtained from PCD, and these data were

used to calculate the % hardness loss.

The overallHV ,XGB at low load (0.5 N) of the PCD prediction set was then plotted against the

% hardness loss, shown in Figure 4a. The darker regions on this plot represent a higher density

of compounds, and the vertical dashed line shows the superhard cut-off (40 GPa). Ideal super-

hard materials should fall in the bottom right region of this plot, indicating a high low load hard-

ness and a minimal loss of hardness with increasing load. From this plot, it is clear that several

outstanding compositions occur well above 40 GPa and have a minimal (<15%) drop in their

hardness. Analyzing these points reveals these phases contain only light main group elements

with diamond-type structures such as borocarbonitrides with slightly varied stoichiometry and
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boron suboxide analogs. This outcome is somewhat expected given the superior superhard ma-

terials are diamond and c-BN. A larger number of compositions containing metals combined

with the light main group elements are present closer to the superhard threshold. Nevertheless,

only 68 compounds (0.1%) from our plot predicted to be superhard (HV ,XGB ≥ 40 GPa). All

compositions located in the superhard region are listed in Table S6. Superhard materials are

indeed exceedingly scarce. It is also noteworthy that even for moderately hard materials in the

range of 25 GPa to 35 GPa, some compounds still have a high loss (up to 50%), which is not

desirable. Almost all of the compounds (≈98%) analyzed from PCD are predicted to have a

hardness lower than 25 GPa.

Decomposing the results into the compositional metadata reveal several trends that may

prove critical for designing superhard materials. Plotting each compound-type shows the dis-

tribution of traditional structural materials: borides, carbides, oxides, and borocarbides. For

example, Figure 4b shows that oxides tend only to have a moderate hardness (≤30 GPa), but

when the applied load increases, they tend to have a small loss. Thus, these materials would

be valuable for applications where moderate hardness is required, and a range of applied loads

will be experienced. Carbides (Figure 4c) show similar hardness to oxides, although they have

a hardness loss that spans the entire range, meaning the material choice for each application is

delicate. Borides, shown in Figure 4d, are a crucial group containing several superhard materials

such as ReB2 and WB4. The plot shows that borides have a higher hardness than most mate-

rials, as expected, including several compounds borides that surpass 40 GPa at 0.5 N. Many

of these compounds are boron-rich phases, including Ir0.02B, Re0.01B, Ti0.05B, Mn0.05B, and

Sc1.61B103, among numerous others. To the best of our knowledge, these phases have not been

studied as superhard materials. There is still a clear opportunity to find new superhard borides.

Finally, borocarbides, shown in Figure 4e, appear to have several promising compounds that

have a HV ,XGB exceeding 40 GPa and a drop of only ≈30%, which makes these compounds
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competitive with borides. Examining the composition of the top candidates in the borocar-

bide group revealed that all of these promising compounds contain early transition metal (TM)

like Y, Ti, and V along with boron and carbon. This result is particularly exciting because the

metals are more earth-abundant and undoubtedly cheaper to prepare than the 5d transition metal

borides. Thus, borocarbides are of great interest and have significant potential to warrant further

investigation as superhard materials.

Discovering Novel Superhard Borocarbides by Screening Phase Diagrams Screening large

crystallographic databases using machine learning is one of the most common methods cur-

rently used for “materials discovery.” Although this approach allows a rapid assessment of

known compounds, this process does not tend to yield any transformative materials in most

instances. Fortunately, the machine learning approach developed here is based only on com-

position and the applied load. This allows the model to make general predictions of hardness

for any chemical composition without knowing the crystal structure. Merging this idea with

our recently developed convex-hull phase diagram analysis (43), we can identify regions of

composition space where new, unreported compounds with a hardness > 40 GPa are likely to

reside.

Owing to the promise of superhard response in borocarbides combined with the limited

number of reported phases, we investigated eleven TM-B-C ternary phase diagrams where the

TM is an early 3d, 4d, or 5d transition metal from groups III–VI on the periodic table. The

TM-B-C phase diagrams were constructed by first creating a composition grid that contains 253

compositions in each ternary system. The hardness of each composition was then predicted

using the XGB model (at 0.5 N). The resulting predictions for selected diagrams are shown in

Figure 5, where the hardness range is plotted as a contour map only for HV ,XGB ≥40 GPa. All

of the ternary diagrams created are provided in Figure S5. Analyzing these plots shows that
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the hardest compositions in each ternary plot occur for the boron and carbon-rich compositions.

Most of these compositions may be superhard, at least at 0.5 N. The hardest phases are pre-

dicted to form when the carbon content is quite high with a maximum HV ,XGB at 0.5 N of 64

GPa. Moving toward the boron corner of the composition plot indicates these phases remain

superhard, which is in agreement with the results from analyzing the PCD and previously devel-

oped empirical rules. The addition of a higher metal concentration reduces the hardness while a

metal content above ≈25 mol.% falls below 40 GPa. Regardless, the combinations of boron and

carbon with select early transition metals certainly show outstanding promise as high hardness

materials.

These diagrams indicate the regions where the compositions may yield superhard behav-

ior; however, there is no guarantee that any unknown compounds exist in the high hardness

areas. Thus, to provide information on the thermodynamic stability of compounds on these

ternary phase diagrams, the formation energy (Ef ) and the associated convex hull (Ehull = 0 eV)

was also determined using machine learning. Our previously built phase diagram model has

proven extremely useful for the discovery of intermetallic materials. (43) Applying the method

here produces multiple compounds on the convex hull, shown by the black squares on each

plot. These represent the most energetically favorable compositions that should be observed at

equilibrium (at 0 K). The high-temperature synthetic routes generally used for the synthesis of

superhard materials, such as arc melting, also allows the acquisition of near-equilibrium phases.

Thus, compositions with a 0 < Ehull < 50 meV (580 K) were also identified.

The reliability of both machine learning models (HV ,XGB and Ef ) was first confirmed by

placing any experimentally reported compounds in Figure 5, plotted as the red circles. There

are three reported Sc-B-C compounds in the PCD superhard region (ScB13C, ScB2C2 and

Sc3B51C0.75) and these are also predicted to fall within 50 meV of the convex hull. Addition-

ally, one Ti-B-C phase (Ti0.93B24C), plotted in Figure 5b, and one Y-B-C phase (Y0.6B14C0.6),

15



Figure 5: Possible superhard compounds can be identified by using machine learning to identify
compositions on convex hull (black squares), within 50 meV of the convex hull (gray squares).
Compounds experimentally reported in the PCD are shown by the red circles and the predicted
hardness (HV ,XGB) is the contour plot. The composition spaces examined include (a) Sc-B-C,
(b) Ti-V-C, (c) Y-B-C, (d) Zr-B-C, and (e) Hf-B-C.

16



plotted in Figure 5c, were also found to occur on the convex hull, while two additional Y-B-C

phases, YB28.5C4 and YB24C4.8, fall 57 meV and 64 meV, respectively, above the hull. They

also have a HV ,XGB above 40 GPa. The observation that all of these compositions are on (or

near) the convex hull supports the reliability of applying our convex hull analysis and hardness

model in combination to find new superhard materials.

Analyzing the plots for unknown compositions that fall on (or near) the convex hull (the

square points) shows plenty of opportunities to find new superhard materials. In Figure 5a,

there are two possible Sc-B-C superhard phases, Sc2B10C9 and Sc4B9C8, that both fall on the

convex hull and have a hardness of >40 GPa at 0.5 N. Similarly, there are multiple titanium-

containing compositions (Figure 5b), including TiB17C8 and TiB15C5 that reside on the convex

hull and show probable superhard behavior. The high hardness composition identified in the

Zr-B-C phase is ZrB5C15 with a HV ,XGB = 53 GPa at 0.5 N (Figure 5d). This composition is

only 12 meV above the convex hull and thus could feasibly be synthesized. Further analysis

of Figure 5 (and Figure S5) showcases many other reasonable superhard materials as well as

regions on the phase diagram that could yield a myriad of structural properties. The application

of machine learning and formation energy in tandem decidedly provides to be a vital approach

for the rapid identification of novel superhard materials.

Conclusion

Hardness is an essential mechanical property necessary for a myriad of modern applications.

The development of superhard materials has historically relied on experimentally derived em-

pirical rules or indirect computational proxies. This has mostly restricted the ability to quickly

identify new superhard materials to known structure types or derivative compositions. Here,

we presented a new ensemble learning model that can directly predict Vickers hardness, in-

cluding the anomalous load-dependent hardness with quantitative accuracy. The model was
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validated by studying eight metal disilicides as well as creating a customized hold-out test set

of superhard materials. Both provided impressive certainty in obtaining the hardness at all loads

for these materials. The model was then employed to predict the hardness of 66440 composi-

tions in Pearson’s crystal data set, which suggested possible superhard properties in only 68

previously unstudied materials. Moreover, analyzing these data indicated that transition metal

borocarbides are an underexplored yet promising space to find new superhard materials. Further

investigating the phase diagrams by predicting the formation energies along with the hardness

for numerous ternary borocarbide phase spaces suggested at least ten brand new superhard ma-

terials are waiting to be synthesized. This method of directed discovery is poised to modernize

the search for new superhard materials benefiting from the efficient, scalable, and transferable

nature of machine learning.
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Table S1: Complete descriptor set for predicting the load dependent hardness

descriptor number compositional variables
1−4 Atomic number
5−8 Atomic weight

9−12 Period
13−16 Group
17−20 Families
21−24 Mendeleev number
25−28 Atomic radii
29−32 Covalend radii
33−36 Zunger radii sum
37−40 Ionic radii
41−44 Crystal radii
45−48 Pauling EN
49−52 Martynov-Batsanov EN
53−56 Gordy EN
57−60 Mulliken EN
61−64 Allred-Rockow EN
65−68 Metallic valence
69−72 Number of valence electrons
73−76 Gilman number of valence electron
77−80 Valence s
81−84 Valence p
85−88 Valence d
89−92 Number of outer shell electrons
93−96 First ionization potential

97−100 Polarizability
101−104 Melting point
105−108 Boiling point
109−112 Density
113−116 Specific heat
117−120 Heat of fusion
121−124 Heat of vaporization
125−128 Thermal conductivity
129−132 Heat atomization
133−136 Cohesive energy
137−140 Electron affinity

141 Load
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Table S2: The optimal feature set for the random forest (RF) model determined by recursive
feature elimination.

descriptor number compositional variables
1 Avg. Families
2 Avg. Mendeleev Number
3 Avg. Atomic radii
4 Avg. Covalent radii
5 Avg. Zunger radii sum
6 Avg. Ionic radii
7 Avg. Crystal radii
8 Avg. Pauling EN
9 Avg. Martynov-Batsanov EN

10 Avg. Gordy EN
11 Avg. Mulliken EN
12 Avg. Allred-Rockow EN
13 Avg. Number of valence electrons
14 Avg. Gilman number of valence electrons
15 Avg. Valence d
16 Avg. First ionization potential
17 Avg. Polarizability
18 Avg. Melting point
19 Avg. Density
20 Avg. Heat of fusion
21 Avg. Heat of vaporization
22 Avg. Thermal conductivity
23 Avg. Heat atomization
24 Avg. Cohesive energy
25 Avg. Electron affinity
26 Diff. Covalend radii
27 Diff. Zunger radii sum
28 Diff. Boiling point
29 Diff. Density
30 Diff. Heat of vaporization
31 Max. Covalent radii
32 Max. Melting point
33 Max. Specific heat
34 Max. Heat of vaporization
35 Min. Mendeleev number
36 Min. Mulliken EN
37 Min. First ionization potential
38 Min. Heat of fusion
39 Min. Thermal conductivity
40 Load3



Table S3: The optimal feature set for the gradient boosting (GB) trees model determined by
recursive feature elimination.

descriptor number compositional variables
1 Avg. Mendeleev number
2 Avg. Covalent radii
3 Avg. Zunger radii sum
4 Avg. Ionic radii
5 Avg. Crystal radii
6 Avg. Martynov-Batsanov EN
7 Avg. Gordy EN
8 Avg. Mulliken EN
9 Avg. Gilman number of valence electrons

10 Avg. Valence d
11 Avg. First ionization potential
12 Avg. Polarizability
13 Avg. Melting point
14 Avg. Specific heat
15 Avg. Heat of fusion
16 Avg. Heat of vaporization
17 Avg. Thermal conductivity
18 Avg. Heat atomization
19 Avg. Cohesive energy
20 Avg. Electron affinity
21 Diff. Covalent radii
22 Diff. Martynov-Batsanov EN
23 Diff. Gordy EN
24 Diff. Heat of vaporization
25 Max. Melting point
26 Max. Specific heat
27 Min. Crystal radii
28 Min. First ionization potential
29 Min. Heat of fusion
30 Load
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Table S4: The optimal feature set for the XGBoost (XGB) model determined by recursive
feature elimination.

descriptor number compositional variables
1 Avg. Families
2 Avg. Atomic Radii
3 Avg. Covalend Radii
4 Avg. Zunger radii sum
5 Avg. Ionic radii
6 Avg. Crystal radii
7 Avg. Gordy EN
8 Avg. Mulliken EN
9 Avg. Number of valence electrons

10 Avg. Valence d
11 Avg. Number of outer shell electrons
12 Avg. Polarizability
13 Avg. Melting point
14 Avg. Specific heat
15 Avg. Heat of fusion
16 Avg. Heat atomization
17 Avg. Cohesive energy
18 Diff. Mendeleev number
19 Diff. Covalent radii
20 Diff. Martynov-Batsanov EN
21 Diff. Gordy EN
22 Diff. Mulliken EN
23 Diff. Gilman number of valence electron
24 Diff. Heat of fusion
25 Diff. Heat of vaporization
26 Max. Atomic radii
27 Max. Valence d
28 Max. Melting point
29 Max. Specific heat
30 Max. Heat of fusion
31 Max. Thermal conductivity
32 Min. Mendeleev number
33 Min. Crystal radii
34 Min. Martynov-Batsanov EN
35 Min. Gordy EN
36 Min. Mulliken EN
37 Min. First ionization potential
38 Min. Melting point
39 Min. Heat of fusion
40 Load5



Table S5: Refinement data of the disilicides MSi2 (M = Mo, Ta, V, Nb, La, Ce, Cr and W).

sample MoSi2 TaSi2 VSi2 NbSi2
space group I4/mmm P6222 P6222 P6222

a (Å) 3.20693 4.78260 4.57376 4.79882
b (Å) 3.20693 4.78260 4.57376 4.79882
c (Å) 7.85024 6.56704 6.3753 6.5939
α (◦) 90 90 90 90
β (◦) 90 90 90 90
γ (◦) 90 120 120 120

V (Å3) 80.7 130.1 115.5 131.5
molar mass (g/mol) 152.11 237.12 107.11 149.08

T (K) 296 296 296 296
radiation type; λ (Å) Cu Kα; 1.54184 Cu Kα; 1.54184 Cu Kα; 1.54184 Cu Kα; 1.54184

2θ (◦) 10.00-80.00 10.00-80.00 10.00-80.00 10.00-80.00
refinement Pawley Pawley Pawley Pawley

number of data points 4117 4117 4117 4117
sample LaSi2 CeSi2 CrSi2 WSi2

space group I41/amd Imma P6222 I4/mmm
a (Å) 4.3089 4.1994 4.424055 3.198119
b (Å) 4.3089 4.1947 4.424055 3.198119
c (Å) 13.8611 13.9419 6.358241 7.797669
α (◦) 90 90 90 90
β (◦) 90 90 90 90
γ (◦) 90 90 120 90

V (Å3) 80.7 130.1 115.5 131.5
molar mass (g/mol) 257.4 245.6 322.47 480.04

T (K) 296 296 296 296
radiation type; λ (Å) Cu Kα; 1.54184 Cu Kα; 1.54184 Cu Kα; 1.54184 Cu Kα; 1.54184

2θ (◦) 10.00-80.00 10.00-80.00 20.00-90.00 15.00-90.00
refinement Pawley Pawley LeBail LeBail

number of data points 4117 4117 6538 6538
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Figure S1: The recursive feature elimination (RFE) results for (a) random forest (RF) model,
(b) gradient boosting (GB) trees model and (c) XGBoost (XGB) model, where filled circles
represent the optimal number of features for each model.
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Figure S2: Refinement of disilicides MSi2 (M = Mo, Ta, V, Nb, La, Ce, Cr and W) X-ray
powder diffraction data. The observed data are black circles, the refinements are colored for
each sample, and the differences are grey lines.
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Figure S3: (a) Data distribution of 1062 training samples that were extracted from literature.
The bars represent the total counts in each bin and the curve represent the cumulative percent-
age. (b) The element frequency of 1062 training samples. (c) Distribution of applied loads
containing in the 1062 training samples extracted from literature. The bars represent the total
counts in each bin and the curve represent the cumulative percentage.
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Figure S4: The XGB predicted load-dependent hardness for MSi2 (M = Cr, V, Nb, Ta and Ce).

Figure S5: The predicted hardness phase diagrams for eleven TM-B-C ternary plots.
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Table S6: The predicted superhard materials (> 40GPa) in PCD, along with their % hardness
loss when load increases to 5N.

Composition HV,XGB at 0.5N % hardness loss
B3C10N3 72.56 2.80
B0.57C0.86N0.57 71.32 2.65
B0.67C0.66N0.67 67.47 3.73
B0.67C0.67N0.66 67.31 3.74
B0.86C0.41N0.73 64.29 6.87
B0.918C0.139N0.943 59.36 7.91
B1.1N0.9 57.31 8.34
B5.5O 52.31 10.03
B6O0.86 48.91 10.84
B13C1.33O0.67 47.02 14.06
B6O0.79 46.36 14.12
B6O0.83 44.59 13.10
B6O0.84 44.15 13.00
Ti0.93B24C 43.95 23.29
YB24C4.8 43.85 13.85
ScB13C 43.57 27.78
YB28.5C4 43.38 15.29
Sc0.1B12.3C0.58Si0.1 43.23 29.22
Y0.6B14C0.6 43.18 27.84
B25N 43.10 13.01
B25.03N0.94 43.09 13.01
Al0.74B24C4N1.02 43.09 11.77
W1.2Ni0.6B9 42.53 30.96
B13.72C1.52 42.42 8.63
B13.5C1.5 42.42 8.63
Sc3B51C0.75 42.36 29.48
B13.6C1.6 42.35 8.43
B13.74C1.51 42.34 8.57
B13.75C1.5 42.29 8.51
BeB2C2 41.72 15.04
Y1.1B66.4 41.37 25.40
Y1.01B66 41.32 25.43
W1.2Pt0.6B9 41.20 30.76
Al0.3B13.3C1.3 41.18 13.86
Sc0.05B 41.17 29.38
YB65.86 41.16 25.21
Y1.15B66 41.14 25.61
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V0.645B24C 41.11 22.59
Ir0.02B 41.08 25.38
YB41.2Si1.42 40.89 28.65
Sc1.32B105.2 40.82 20.00
Au0.01B 40.81 24.57
YB41Si1.25 40.80 28.61
Y0.55B14 40.78 28.35
Sc3.68B101.78 40.75 27.15
YB41Si1.2 40.74 28.66
Re0.01B 40.74 21.35
ScB15 40.71 29.95
Ti0.05B 40.71 22.97
MgB12Si2 40.70 27.10
Sc1.61B103 40.69 25.39
W0.9Pd0.9B9 40.67 31.32
YNi0.06B41Si1.3 40.67 28.57
Mg2B24C 40.54 29.67
YRh0.02B41.1Si1.1 40.51 28.73
Sc2Cu0.77B45 40.46 29.58
W0.6Rh1.2B9 40.36 29.21
B24.97C0.91 40.31 9.14
Mn0.78B105.9 40.20 18.17
Ti0.84B25 40.19 19.85
V0.09Re0.91B2 40.14 28.71
Ta0.15Re0.85B2 40.13 31.37
Mn0.05B 40.06 24.45
Mn4.48B103 40.04 24.87
Mg3B36Si9C 40.02 25.60
ScB2C2 40.02 26.61
Hf0.01B 40.01 19.64
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