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Abstract

We present an open-source software package, NIC-CAGE (Novel Implemen-
tation of Constrained Calculations for Automated Generation of Excita-
tions), for predicting quantum optimal control fields in photo-excited chem-
ical systems. Our approach utilizes newly derived analytic gradients for
maximizing the transition probability (based on a norm-conserving Crank-
Nicolson propagation scheme) for driving a system from a known initial quan-
tum state to another desired state. The NIC-CAGE code is written in the
MATLAB and Python programming environments to aid in its readability
and general accessibility to both users and practitioners. Throughout this
work, we provide several examples and outputs on a variety of different po-
tentials, propagation times, and user-defined parameters to demonstrate the
robustness of the NIC-CAGE software package. As such, the use of this pre-
dictive tool by both experimentalists and theorists could lead to further ad-
vances in both understanding and controlling the dynamics of photo-excited
systems.
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PROGRAM SUMMARY
Program Title: NIC-CAGE
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: MATLAB or Python
Nature of problem: The NIC-CAGE software package predicts optimized (and con-
strained) electric fields that can drive a system from a known initial vibrational
eigenstate to a specified final quantum state with a large (≈ 1) transition proba-
bility.
Solution method: Analytic gradients, Crank-Nicolson propagation, and gradient
ascent optimization

1. Introduction

The interaction between light and chemical/material systems is central
to a multitude of technological applications, including energy-efficient pho-
tovoltaic materials, [1, 2, 3] plasmon-induced energy transfer, [4, 5, 6, 7] and
sustainable photocatalysis. [8, 9, 10] Our capability to fully harness these
light-induced systems has tremendous potential to grow further as we build
our understanding on how to control the excited-state quantum dynamical
processes in these systems. While the majority of theoretical and experimen-
tal studies have focused on how these systems interact with a given electro-
magnetic radiation source (i.e, a laser pulse or an external light source), fewer
studies have investigated the inverse problem to ask “If we desire a specific
behavior in a chemical/material system, can we construct a light source to
achieve this, and what does its functional form look like?”. [11, 12, 13]

To help address this “inverse” question, this work provides an open-
source software package, NIC-CAGE (Novel Implementation of Constrained
Calculations for Automated Generation of Excitations), for predicting opti-
mized electric fields to control photo-excited chemical systems. With a pre-
computed electronic potential energy, V (x) (which can be routinely obtained
with most electronic structure software packages), the NIC-CAGE code cal-
culates optimal electric fields, ε(t), that can drive a system from a known
initial vibrational eigenstate to another desired state, as depicted in Fig. 1.
Our approach utilizes newly derived analytic gradients to construct a control
field, ε(t), that gives a large (≈ 1) transition probability for (constrained) ex-
citations from an initial to a specified final quantum state. The NIC-CAGE
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code is provided in the MATLAB and Python programming environments
as two separate but fully self-contained implementations. We have chosen to
implement this code in these high-level programming environments to allow
general researchers to easily understand how these approaches and tools are
used in practice to control photo-excited mechanisms in a variety of systems.
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Figure 1: Schematic of an arbitrary potential energy well, V (x), with various allowed
energy levels (E0, E1, and E2) and their associated probability densities, |ψ(x)|2 (drawn in
blue). The optimized control fields, ε(t), enable transitions between the desired vibrational
eigenstates.

The present paper is organized as follows: Section 2 briefly outlines the
basic theoretical concepts needed to understand the general idea for con-
trolling the time evolution of a photo-excited system. Section 3 gives a
more detailed description of our derivation and numerical implementation
for carrying out this time-evolution operation. In particular, we provide an-
alytic gradients for maximizing the transition probability based on a norm-
conserving Crank-Nicolson propagation scheme, which have not been previ-
ously reported in the literature. With the basic concepts and mathematical
formulation in place, Section 4 provides several examples and outputs on a
variety of different potentials, propagation times, and user-defined param-
eters to demonstrate the robustness of the NIC-CAGE software package.
Finally, Section 5 concludes with a brief discussion and perspective look at
potential future applications of our approach.
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2. Theory

Within this section, we outline the basic theoretical concepts for optimiz-
ing/controlling the time evolution of a molecular system under the influence
of electromagnetic radiation (i.e, a laser pulse or an external light source). A
more detailed description of our numerical implementation and approach for
carrying out this time-evolution optimization is given in Section 3. Although
there have been previous studies on optimizing quantum control fields (each
with their own purposes and advantages) [11, 12, 13, 14], we focus on the
grid-based Crank-Nicolson discretization utilized in this work since (1) the
analytic gradients for this norm-conserving approach have not been previ-
ously reported in the scientific literature, and (2) the resulting numerical
scheme is more straightforward to implement and understand compared to
other approaches.

The temporal dynamics for describing the motion of nuclei in a molecular
system are governed by the time-dependent Schrödinger equation, which, in
atomic units is given by:

i
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t), (1)

where the time-dependent Hamiltonian operator, H(x, t), is

H(x, t) = − 1

2m

∂

∂x2
+ V (x, t). (2)

In the expression above, x denotes the reduced coordinate along a reaction
path (cf. Fig. 1), m is the effective mass associated with the molecular
motion along the reaction path, and V (x, t) is a time-dependent potential
energy function (additional details on both x and V (x, t) are given later).
The effective mass, m, is closely related to Wilson’s G-matrix formalism
[15], and previous work by us [16] gives details and an open-source code for
calculating this molecular parameter along the reaction path.

The complex-valued molecular wavefunction, ψ(x, t), in Eq. (1) repre-
sents the probability amplitude for the motion of the nuclei along the re-
duced coordinate path, and |ψ(x, t)|2 can be interpreted as a probability
density with the normalization condition∫ ∞

−∞
|ψ(x, t)|2dx = 1, (3)
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which holds for all t. In this work, we utilize the dipole approximation
[5, 4, 17] in which the time-dependent potential can be written as

V (x, t) = V (x)− µ(x)ε(t), (4)

where V (x) is the time-independent portion of the potential that contains the
Born-Oppenheimer electronic energy of the molecule along the reaction path
(which can be obtained from a standard quantum chemistry calculation).
The dipole moment function, µ(x), can also be readily computed from an
electronic structure calculation at every point, x, along the reaction path as
described in Ref. [18]. Finally, ε(t) is the time-dependent external electric
field whose functional form is iteratively optimized using the NIC-CAGE
software package in this work.

At this point, it is worth mentioning a few choices for the reduced coor-
dinate, x, given in Eqs. (2) and (4), respectively. One of the most common
choices for x is the set of mass-weighted coordinates along the minimum
energy path (also known as the intrinsic reaction coordinate), which is de-
fined as the steepest descent path from a transition state toward reactants
or products [19, 20]. However, obtaining this quantity can be computation-
ally expensive since it typically requires a full computation of the molecular
Hessian at each point along the reaction path. As such, prior work by us
[18, 21, 22, 23, 24, 25] and other researchers [26, 27] have shown that a suit-
able path can be parameterized with a single internal coordinate such as a
bond length [18], valence bend angle [23, 24, 25], or dihedral angle [21, 22]
that can accurately describe reactions involving bond dissociation, isomeriza-
tion, or internal rotation, respectively. Once a suitable reduced coordinate,
x, is chosen, both V (x) and µ(x) can be readily computed in most quantum
chemistry packages such as Gaussian [28], Q-Chem [29], GAMESS [30], or
NWChem [31] by carrying out a relaxed potential energy scan.

With x and V (x) properly chosen/computed, Eqs. (1) and (2) allow us to
mathematically answer the question: “Given an electric field ε(t), how does
an initial state, ψ0(x, t = 0), evolve after some final time T has elapsed?”
However, as mentioned in the Introduction, we instead seek the answer to
the following “inverse” question: “If we want to reach a desired final state
ψN−1(x, t = T ) at time T (after N − 1 propagation steps), what does the
functional form of ε(t) look like?” Providing accurate and efficient answers to
this inverse question is the ultimate goal of the NIC-CAGE software package
described in this work. To be more mathematically precise, we seek the func-
tional form of an external electric field, ε(t), that maximizes the transition
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probability, P [ψN−1(x)], given by

P [ψN−1(x)] =

∣∣∣∣∫ ∞
−∞

ψ∗f (x)ψN−1(x)dx

∣∣∣∣2 , (5)

where ψf is a known desired final target wavefunction (given by the user and
discussed further below), and ψN−1 is obtained after applying N−1 succesive
iterations. It should be noted that the transition probability is essentially a
measure of the similarity of the final target and the propagated wavefunction.
As written, the maximization of Eq. (5) is an unconstrained optimization
problem to numerically solve for the time-dependent, external electric field
ε(t). However, to make a direct connection to realistic experiments that
may have limited power constraints for generating the optimal ε(t), we can
augment Eq. (5) with a fluence penalty term:

J [ψN−1(x), ε] = P [ψN−1(x)] + F [ε] , (6)

where the fluence, F [ε], acts as a penalty to prevent unphysically large values
of the electric field and is given by:

F [ε] = −α
∫ T

0

ε(t)2dt, (7)

where α is a positive constant to be chosen by the user. For the remainder of
this paper, we focus on the constrained maximization of J [ψN−1(x), ε] given
by Eq. (6).

With the quantum optimal control problem now properly defined, one
can next choose the desired initial and final molecular wavefunctions to be
used as initial conditions in the numerical quantum control procedure. In
principle, both the initial and final wavefunctions can take on any form and
are not even required to be stationary states of the Schrödinger equation
(i.e., the numerical optimization techniques used in the NIC-CAGE software
package can be used equally well for stationary or non-stationary states). In
practice, however, one typically desires a control field that drives the system
from a known initial vibrational eigenstate, ψi=νi(x), to another desired vibra-
tional eigenstate, ψf=νf (x), of the system (νi and νf denote the vibrational
quantum numbers of the initial and final wavefunction, respectively). As
such, to obtain these stationary wavefunctions as input, the NIC-CAGE soft-
ware package contains a numerical routine for solving the time-independent
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Schrödinger equation; i.e., [− 1
2m

dψ(x)
dx2

+ V (x)ψ(x) = Eiψ(x)] is diagonalized
to obtain both ψi=νi(x) and ψf=νf (x). Put more concretely, we choose our
initial state ψ0(x, t = 0) to be a user-specified stationary vibrational eigen-
state ψi=νi(x) of the time-independent Schrödinger equation, and the desired
final state ψN−1(x, t = T ) is chosen to be a different vibrational eigenstate
ψf=νf (x). To make our notation more succinct in the remainder of this paper,
ψi=νi(x) and ψf=νf (x) are abbreviated as ψi(x) and ψf (x), respectively.

3. Numerical Methodology

With the basic theoretical concepts discussed in the previous section, we
now give a detailed description of the various numerical approaches used in
the NIC-CAGE code for calculating optimized control fields that drive the
system from ψi(x) to ψf (x). Section 3.1 gives the numerical scheme used to
discretize the time-independent portion of the Hamiltonian across a spatial
grid. With the time-independent Hamiltonian properly discretized, Section
3.2 describes the Crank-Nicolson approach used in the NIC-CAGE code to
numerically propagate the full time-dependent Schrödinger equation. Fi-
nally, Section 3.3 describes the gradient ascent approach for maximizing an
objective functional of the transition probability P . Throughout the follow-
ing subsections, we use the following notation: scalars are denoted by italic
letters (x), vectors by bold lower case letters (x) (unless specified otherwise),
matrices by bold upper case letters (X), the element in the kth row and lth

column of matrix X by [X]kl, the identity matrix by I, where I(m±) denotes
a matrix with entries of 1 on the mth diagonal either above (+) or below (–)
the main diagonal, a diagonal matrix having the entries x along the diago-
nal by diag(x), the Schur (element-wise) product by the � symbol, and the
conjugate and conjugate transpose of X by X∗ and X†, respectively.

3.1. Grid-Based Discretization of the Time-Independent Hamiltonian

We commence by discretizing the kinetic energy portion of the Hamilto-
nian operator across a grid of L equidistant points on the interval [xmin, xmax].
Using a second-order five-point stencil finite difference approximation gives

d2ψ(x)

dx2
≈

−ψ(x− 2∆x) + 16ψ(x−∆x)− 30ψ(x) + 16ψ(x+ ∆x)− ψ(x+ 2∆x)

12(∆x)2
, (8)
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where ∆x = xmax−xmin

L−1
. The notation of Eq. (8) can be considerably simplified

by defining the ith grid point as xi = xmin + i∆x (where i = 0, . . . , L−1) and
ψ(xi) = ψi. With this simplified notation, the discretized time-independent
Schrödinger equation can be written as

H(x)ψ(x) = − 1

2m

∂

∂x2
ψ(x) + V (x)ψ(x)

≈ − 1

2m

−ψi−2 + 16ψi−1 − 30ψi + 16ψi+1 − ψi+2

12(∆x)2
+ V iψi

(9)

The notation in Eq. (9) can be mathematically interpreted as a matrix-
vector equation, and the time-independent Hamiltonian can be written as
the following matrix

H = − 1

24m(∆x)2

(
−I(2−) + 16I(1−) − 30I + 16I(1+) − I(2+)

)
+ V, (10)

where I is an L × L identity matrix with entries of 1 on the main diagonal,
I(1±) are L × L matrices with entries of 1 on the 1st diagonal either above
(1+) or below (1–) the main diagonal, I(2±) are L× L matrices with entries
of 1 on the 2nd diagonal either above (2+) or below (2–) the main diagonal,
and V is an L × L diagonal matrix with entries [V]ij = V (xi)δij, where δij
is the Kronecker delta. As mentioned in Section 2, the time-independent
Hamiltonian matrix in Eq. (10) is diagonalized to obtain the initial and final
states, ψ0(x, t = 0) = ψi(x) and ψN−1(x, t = T ) = ψf (x), respectively, as
input to the gradient ascent optimization in the NIC-CAGE software package.

3.2. Time Evolution

With the time-independent Schrödinger equation properly discretized in
Section 3.1, we can now proceed with the general case for a time-dependent
Hamiltonian and its discretized form. By combining explicit and implicit
Euler schemes as in Ref. [32], one obtains the following Crank-Nicolson
scheme for a time-dependent Hamiltonian:[

1 +
iτ

2
H
(
x, t+

τ

2

)]
ψ(x, t+ τ) =

[
1− iτ

2
H
(
x, t+

τ

2

)]
ψ(x, t), (11)

where τ = T
N−1

is the time step across a grid of N equidistant points on the
interval [0, T ]. It is important to note that the Crank-Nicolson scheme in
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Eq. (11) is unitary and, therefore, preserves the norm of the wavefunction.
We are now in a position to discretize time in a similar manner as we have
previously discretized space in Section 3.1. Using a similar notation scheme
as before gives ψ(xi, tj) = ψ(xmin + i∆x, jτ) = ψij where i = 0, . . . , L − 1
and j = 0, . . . , N − 1. With this simplified notation, in conjunction with the
matrix notation of Eq. (10), the Crank-Nicolson expression in Eq. (11) can
be written as the following matrix equation:(

I +
iτ

2

[
− 1

24m(∆x)2

(
−I(2−) + 16I(1−) − 30I + 16I(1+) − I(2+)

)
+ Vj+1/2

])
ψj+1 =(

I− iτ

2

[
− 1

24m(∆x)2

(
−I(2−) + 16I(1−) − 30I + 16I(1+) − I(2+)

)
+ Vj+1/2

])
ψj,

(12)

where ψj is vectorized in space (x) and evaluated at time tj = jτ , where j =
0, . . . , N −1 (i.e., ψj is a column vector with entries ψij). In addition, Vj+1/2

is a diagonal matrix (cf. Eq. (10)) evaluated at time tj+1/2 = (j + 1/2)τ ,
where j = 0, . . . , N − 2. It should also be noted that Eq. (12), by definition,
is only valid for values of j = 0, . . . , N − 2, and ψ0, therefore, represents the
initial state.

As will be shown in Section 3.3, it is helpful to write Eq. (12) in a more
compact notation. To this end, we denote the operator in parentheses on the
left-hand side of Eq. (12) as the L×L matrix Uj+1/2. Similarly, we represent
the operator on the right-hand side of Eq. (12) by the L×L matrix Wj+1/2,
which results in the following matrix equation:

Uj+1/2ψj+1 = Wj+1/2ψj, (13)

where Uj+1/2 and Wj+1/2 are banded pentadiagonal L × L matrices of the
form 

a1 b1 d1 0 · · · 0
c2 a2 b2 d2 ...e3 c3 a3 b3 d3

0
. . . 0

...
eL−2 cL−2 aL−2 bL−2 dL−2

eL−1 cL−1 aL−1 bL−1

0 · · · 0 eL cL aL


. (14)
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Upon closer examination of Eq. (12), one finds that the upper and lower
diagonals of Eq. (14) are all constants, while the diagonal entries are func-
tions of the time-dependent potential V (xi, tj+1/2) = V (xi)− µ(xi)ε(tj+1/2),
as summarized below:

[Uj+1/2]kl =


1 + 5iτ

8m(∆x)2
+ iτ

2
[V (xk)− µ(xk)ε(tj+1/2)], l = k

− iτ
3m(∆x)2

, l = k ± 1
iτ

48m(∆x)2
, l = k ± 2

(15)

[Wj+1/2]kl =


1− 5iτ

8m(∆x)2
− iτ

2
[V (xk)− µ(xk)ε(tj+1/2)], l = k

iτ
3m(∆x)2

, l = k ± 1

− iτ
48m(∆x)2

, l = k ± 2

(16)

Since the matrix-vector product on the right-hand side of Eq. (13) is com-
puted several times for each time step, significant computational savings are
utilized in the NIC-CAGE software package by replacing the matrix-vector
product with a single pre-computed vector with the following elements:

rij = ψij −
iτ

2

[
− 1

24m(∆x)2

(
−ψi−2

j + 16ψi−1
j − 30ψij + 16ψi+1

j − ψi+2
j

)
+ V i

j+1/2ψ
i
j

]
, (17)

where V i
j+1/2 = V (xi, tj+1/2) = V (xi)− µ(xi)ε(tj+1/2).

3.3. Numerical Optimization

The numerical procedure presented in the previous section gives the time-
evolution of the wavefunction for a given εj+1/2 where j = 0, . . . , N − 2. In
this section, we derive analytic gradients and present a numerical maximiza-
tion method (using a gradient ascent algorithm) that back-propagates the
gradient of the objective functional, J [ψN−1(x), ε]:

dJ [ψN−1(x), ε]

dεj+1/2

=
dP [ψN−1(x)]

dεj+1/2

+
dF [ε]

dεj+1/2

, (18)

where we have used the definition of J [ψN−1(x), ε] from Eq. (6). To make
our discussion of this numerical optimization more concrete (and to remind
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the reader of the specific time steps used in this calculation), Fig. 2 shows
a schematic of how the electric field optimization process can be conceptu-
alized. As mentioned in Section 3.2, the time interval [0, T ] is discretized
across a grid of N equidistant points (endpoints inclusive); however, the
electric field amplitudes εj+1/2 are only defined at times tj+1/2 = (j + 1/2)τ ,
where j = 0, . . . , N−2. Within the small duration τ = T

N−1
, the electric field

amplitudes, εj+1/2, are approximated to be constant. The vertical arrows in
Fig. 2 represent the gradients dJ

dεj+1/2
that indicate how each amplitude εj+1/2

should be modified in the next iteration to maximize the objective functional
J .

Figure 2: Schematic representation of the electric field amplitudes, εj+1/2, defined from

time t = 1
2τ to (N − 3

2 )τ . During each small interval, the electric field amplitude εj+1/2

is approximated to be constant. The vertical arrows represent the gradients dJ
dεj+1/2

that

indicate how each amplitude εj+1/2 should be modified in the next iteration to maximize
the objective functional J .

To enable this numerical optimization across a grid of points, we first
approximate the transition probability in Eq. (6) as

P [ψN−1(x)] =

∣∣∣∣∫ ∞
−∞

ψ∗f (x)ψN−1(x)dx

∣∣∣∣2
≈ |ψf † ·ψN−1|2(∆x)2

(19)

whereψf is a known final target wavefunction (given by the user, as described
in Section 2), and ψN−1 is obtained after applying N − 1 iterations of Eq.
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(13). For clarification, Eq. (19) uses the same notation as Section 3.2, where
ψN−1 is a column vector with entries ψiN−1 and ψf

† is the complex conjugate

transpose of ψf (i.e., ψf
† is a row vector with entries (ψif )

∗). With these
definitions, it follows that P ≤ 1.

Similarly, the fluence in Eq. (7) can be approximated as

F [ε] = −α
∫ T

0

ε(t)2dt

≈ −ατε · ε,
(20)

To evaluate Eq. (18), we commence by first obtaining expressions for the
derivatives of P with respect to each εj+1/2 value using the chain rule of
Wirtinger’s derivatives [33].

dP

dεj+1/2

=

(
∂|ψf † ·ψN−1|2

∂(ψf
† ·ψN−1)

d(ψf
† ·ψN−1)

dεj+1/2

+
∂|ψf † ·ψN−1|2

∂(ψf
† ·ψN−1)∗

d(ψf
† ·ψN−1)∗

dεj+1/2

)
(∆x)2

= 2×<

{
(ψf

† ·ψN−1)
d(ψf

† ·ψN−1)

dεj+1/2

∗}
(∆x)2,

(21)

where

d(ψf
† ·ψN−1)

dεj+1/2

=
d(ψf

† ·ψN−1)

dψN−1

dψN−1

dεj+1/2

= ψf
† · dψN−1

dεj+1/2

,

(22)

As such, our gradient ascent algorithm culminates in finding an expression
for

dψN−1

dεj+1/2
. To obtain a numerically tractable expression for this derivative,

we note that ψj+1 can be propagated from ψj by inverting Eq. (13); i.e.,

ψj+1 = U−1
j+1/2Wj+1/2ψj, (23)

where we recall that the above expression, by definition, is only valid for
values of j = 0, . . . , N − 2 (cf. Eq. (12)). It follows that repeated iteration
of Eq. (23) gives

ψN−1 =
(
U−1
N−3/2WN−3/2

)(
U−1
N−5/2WN−5/2

)
· · ·
(
U−1
j+1/2Wj+1/2

)
· · ·
(
U−1

3/2W3/2

)(
U−1

1/2W1/2

)
ψ0. (24)
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We have specifically chosen to write Eq. (23) in this suggestive form since
only the diagonal entries of Uj+1/2 and Wj+1/2 are a function of εj+1/2 (cf.,
Eqs. (13), (15), and (16)). Therefore:

dψN−1

dεj+1/2

=
(
U−1
N−3/2WN−3/2

)(
U−1
N−5/2WN−5/2

)
· · ·

[(
dU−1

j+1/2

dεj+1/2

)(
Wj+1/2

)
+
(
U−1
j+1/2

)(dWj+1/2

dεj+1/2

)]
· · ·
(
U−1

3/2W3/2

)(
U−1

1/2W1/2

)
ψ0

=

(
N−2∏
k=j+1

U−1
k+1/2Wk+1/2

)[(
dU−1

j+1/2

dεj+1/2

)(
Wj+1/2

)
+
(
U−1
j+1/2

)
diag

(
iτ

2
µ

)]
ψj.

(25)

where diag
(
iτ
2
µ
)

denotes a diagonal matrix having the entries iτ
2
µ along

the diagonal, and
∏N−2

k=j+1 U
−1
k+1/2Wk+1/2 denotes a “time-ordered product,”

where matrices at earlier times are to the right of matrices at later times.
Eq. (25) can be simplified even further by using the following identity for
the derivative of a matrix inverse: dA−1

dx
= −A−1 dA

dx
A−1. Therefore,

dψN−1

dεj+1/2

=

(
N−2∏
k=j+1

U−1
k+1/2Wk+1/2

)[(
−U−1

j+1/2

dUj+1/2

dεj+1/2

U−1
j+1/2

)(
Wj+1/2

)
+
(
U−1
j+1/2

)
diag

(
iτ

2
µ

)]
ψj

=

(
N−2∏
k=j+1

U−1
k+1/2Wk+1/2

)[
−U−1

j+1/2diag

(
−iτ

2
µ

)
U−1
j+1/2Wj+1/2

+ U−1
j+1/2diag

(
iτ

2
µ

)]
ψj

=

(
N−2∏
k=j+1

U−1
k+1/2Wk+1/2

)[
−U−1

j+1/2diag

(
−iτ

2
µ

)
ψj+1+U−1

j+1/2diag

(
iτ

2
µ

)
ψj

]

=
iτ

2

(
N−2∏
k=j+1

U−1
k+1/2Wk+1/2

)
U−1
j+1/2

[
µ�

(
ψj+1 +ψj

)]
,

(26)
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where the � symbol denotes the Schur (element-wise) product (i.e., µ �(
ψj+1 +ψj

)
is a column vector with entries µi

(
ψij+1 + ψij

)
). It should also

be mentioned that
dψN−1

dεj+1/2
, by definition, is only defined for values of j =

0, . . . , N − 2 (see Eqs. (12), (23), and recall that the “latest” electric field
that ψN−1 can depend on is the previous εN−3/2, not the future εN−1/2).
However, it should be pointed out that Eq. (26) cannot be directly evaluated
for j = N − 2 since the lower index of the product symbol then becomes
larger than the upper index. To evaluate

dψN−1

dεj+1/2
for the special case when

j = N − 2, we can use the original definition of ψN−1 to obtain

dψN−1

dεN−3/2

=

[
d

dεN−3/2

(
U−1
N−3/2WN−3/2

)](
U−1
N−5/2WN−5/2

)
· · ·
(
U−1
j+1/2Wj+1/2

)
· · ·
(
U−1

3/2W3/2

)(
U−1

1/2W1/2

)
ψ0

=

[
d

dεN−3/2

(
U−1
N−3/2WN−3/2

)]
ψN−2. (27)

Using the same mathematical techniques and identities as in Eqs. (25) - (26)
finally gives

dψN−1

dεN−3/2

=
iτ

2
U−1
N−3/2µ�

[(
U−1
N−3/2WN−3/2 + I

)
ψN−2

]
. (28)

For convenience, we summarize the closed form expressions for
dψN−1

dεj+1/2
for all

possible values of j:

dψN−1

dεj+1/2

=


iτ
2
U−1
N−3/2

[
µ�

(
ψN−1 +ψN−2

)]
, j = N − 2

iτ
2
U−1
N−3/2WN−3/2U

−1
N−5/2

[
µ�

(
ψN−2 +ψN−3

)]
, j = N − 3

iτ
2

(∏N−2
k=j+1 U

−1
k+1/2Wk+1/2

)
U−1
j+1/2

[
µ�

(
ψj+1 +ψj

)]
, 0 ≤ j ≤ N − 4

(29)

Now that we have a closed form expression for
dψN−1

dεj+1/2
, the only remaining

quantity needed to evaluate the gradient of the objective functional (i.e.,
dJ [ψN−1(x),ε]

dεj+1/2
in Eq. (18)) is the derivative of the fluence term (Eq. (20)),

which fortunately has a relatively simple form:

dF [ε]

dεj+1/2

= −2ατεj+1/2 (30)
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With these results, we can now numerically solve for the optimized, time-
dependent, external electric field at each lth iteration step, ε

(l)
j+1/2, to give

ε
(l)
j+1/2 = ε

(l−1)
j+1/2 + γ

dJ [ψN−1(x), ε]

dεj+1/2

= ε
(l−1)
j+1/2 + γ

(
dP [ψN−1(x)]

dεj+1/2

+
dF [ε]

dεj+1/2

)
= ε

(l−1)
j+1/2 + γ

(
2×<

{
(ψf

† ·ψN−1)

(
ψf
† · dψN−1

dεj+1/2

)∗}
(∆x)2 − 2ατεj+1/2

)
,

(31)

where we have made use of Eqs. (18), (21), (22), and (30) in the above

expression. Finally,
dψN−1

dεj+1/2
can be calculated using Eq. (29), and γ in Eq.

(31) is the learning rate of the gradient ascent algorithm, which we calculate
using the bisection line-search approach [34] described in Ref. [35]. In short,
the gradient ascent algorithm proceeds until the transition probability defined
in Eq. (19) reaches a specified tolerance or exceeds a maximum number of
iterations (set to 0.99 and 100, respectively, in the NIC-CAGE code). We
conclude this section with the following algorithm flowchart that summarizes
the various inputs and algorithmic steps used in the NIC-CAGE software
package to calculate the optimized electric field ε(t):
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Algorithm 1: NIC-CAGE

Input: spatial interval [xmin, xmax], grid spacing ∆x, time interval
[0, T ], time step τ , mass m, dipole moment function µ(x), potential
energy function V (x), initial state number i, desired final state
number f
Output: initial wavefunction ψi(x), desired final wavefunction ψf (x),
final propagated wavefunction ψN−1(x), optimized electric field ε(t),
power spectrum of optimized electric field

1. Diagonalize time-independent Schrödinger Equation in Eq. (10) to
obtain ψi(x) and ψf (x)

2. Initialize εj+1/2 = 0 for j = 0, . . . , N − 2
3. Initialize P = 0 and iter = 0

while P < 0.99 & iter < 100 do
for j = 1 to N − 1 do

Calculate ψj from Eq. (12)

end
Update J and P using Eq. (6)
for j = N − 2 to 0 do

Calculate dJ
dεj+1/2

from Eq. (18)

end
Calculate γ with bisection linesearch method
Update εj+1/2 for j = 0, . . . , N − 2 using Eq. (31)
Set iter = iter + 1

end
return εj+1/2

It is worth noting that our implementation can be scaled straightforwardly
to higher dimensions by vectorizing the spatial grid in the other dimensions,
which still results in a system of linear equations in matrix form [36]. Most
notably, the gradient formulation developed in this work remains unchanged
for higher dimensional systems since the control field, εj, continues to appear
in the diagonal entries only.
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4. Numerical Examples and Results

As mentioned in Section 2, the time-independent portions of Eq. (4)
[i.e., V (x) and µ(x)] can be obtained from a quantum chemistry calculation
or take any arbitrary form. To demonstrate the flexibility and capabilities
of the NIC-CAGE software package, we give a few representative results
of running the NIC-CAGE code on two example potentials that mimic a
bond stretching/dissociation process in a photocatalytic reaction. All of the
parameters for both potentials (expressed in atomic units) are included in
the easy-to-use demo1.m, demo2.m, and demo3.m scripts.

4.1. Morse Potential

For our first example, we perform a quantum control optimization using
a Morse potential that mimics the photo-induced stretching of an O–H bond
[37]. The spatial dependence, V (x), of the Morse potential that we used in
Eq. (4) has the following form:

V (x) = De(e
−β(x−x0) − 1)2 −De, (32)

where the well depth, width, and equilibrium bond distance were taken from
Ref. [37] and are given by De = 0.1994, β = 1.189, and x0 = 1.821, respec-
tively. In addition, the dipole moment function that we used in Eq. (4) has
the functional form

µ(x) = µ0 · x · e−
x
x∗ , (33)

where µ0 = 3.088 and x∗ = 0.6. The value of m that we used in Eq. (2) is the
reduced mass of oxygen and hydrogen. A snippet from the included demo1.m

MATLAB script given below provides values of the parameters used in this
section:

x_min = 1; x_max = 3.2; dx = 0.02;

x = (x_min : dx : x_max)’;

T = 30000; tau = 1;

t = (0 : tau : T)’;

t_half_points = linspace(tau/2, T-tau/2, length(t)-1)’;

m = 1728.468338;

mu = 3.088*x.*exp(-x/0.6);

V = 0.1994*(exp(-1.189*(x-1.821))-1).^2-0.1994;

states = stationary_states(V, m, dx, 10);

psi_0 = states(:,1);
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psi_f = states(:,2);

Ef = zeros(length(t_half_points), 1);

alpha = 1;

These values correspond to the variables described previously in this paper
as follows:

• x_min, x_max, dx: spatial range specified by [xmin,xmax], grid spacing
∆x
• T, tau: propagation time T , time step τ
• m: effective mass m associated with the molecular motion along the

reaction path
• mu: dipole moment function µ(x), cf. Eq. (33)
• V: Morse potential V (x), cf. Eq. (32)
• psi_0: initial state ψ0(x)
• psi_f: final state ψf (x)
• Ef: electric field ε(t)
• alpha: fluence penalty pre-factor α, cf. Eq. (7)

The quantum control optimization commences with an initial guess of
ε(t) = 0 with α = 1. It is worth mentioning that this specific choice of
initial conditions works for all the examples presented in this paper; however,
larger energy transitions may require a non-zero initial guess. Throughout
this section, we use the notation mentioned at the end of Section 2 where
transitions between the initial and final vibrational eigenstates, ψi(x) and
ψf (x), are simply denoted by νi and νf , respectively, where ν = 0 represents
the zero-point ground state.

Fig. 3 depicts the values of both the objective functional, J , and transi-
tion probability, P , as a function of the number of iterations (iteration zero
corresponds to the initial values of J or P with an initial guess of ε(t) = 0).
For the transition νi = 0→ νf = 1, only 3 steps are required to reach a tran-
sition probability of 99.2%. Since the vertical axis in Fig. 3 is scaled linearly,
it would be incorrect to infer that the improvement at iteration number one
is minimal. We can fully appreciate the progress made at the first iterative
step by computing the percentage change in J from the previous step. For
instance, at the first iteration, the value of J increases from 1.03 × 10−27

to 6.19 × 10−9, which translates to an increase by 6.01 × 1020% – the high-
est among all other iterations. This overall trend is consistent with all the
numerical examples discussed in this paper.
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Figure 3: Objective functional, J , and transition probability, P , as a function of the
number of iterations for a quantum control optimization of the νi = 0→ νf = 1 transition
in a Morse potential.

Fig. 4 summarizes the various outputs and post-processed results of the
NIC-CAGE software package for the νi = 0 → νf = 1 transition in a Morse
potential. The panel in Fig. 4a shows the norm-squared vibrational eigen-
state, |ψi(x)|2, with νi = 0 (dashed red line), superimposed on the Morse
potential energy function (solid blue line). The optimized electric field in
Fig. 4b is nearly a pure sinusoid, which is also reflected in the frequency
domain as a sharp peak at around 112 THz in Fig. 4c. It is worth not-
ing that the peak frequency matches the resonant frequency required for the
transition between the ground and first excited state. As a check on the
fidelity of the results, Fig. 4d shows that the norm-square of the propagated
wavefunction, |ψN−1|2, closely matches the desired target |ψf |2. As a side
note, it should be mentioned that the propagated wavefunction, ψN−1, is
complex-valued in general and has both real and imaginary parts (not shown

in Fig. 4d); nevertheless, the transition probability
∣∣∣∫∞−∞ ψ∗f (x)ψN−1(x)dx

∣∣∣2
is real-valued and close to unity, emphasizing the ability of the NIC-CAGE
software package to directly optimize the control field ε(t) in this system.
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(a) (b)

(c) (d)

Figure 4: (a) Morse potential energy (solid blue line) and norm-squared initial vibrational
eigenstate, |ψi(x)|2, with νi = 0 (red dashed line). The numerical value of the potential
energy and probability density can be measured from the left and right vertical axes,
respectively. (b) Optimized electric field as a function of time for the νi = 0 → νf = 1
transition. (c) Power spectrum of the optimized electric field. The dominant frequency
is approximately 112 THz. (d) Norm-squared final target wavefunction |ψf (x)|2 with
νf = 1 and the propagated wavefunction |ψN−1|2, which achieves a transition probability
of P = 0.992.

In our next example, we attempt a more difficult case with the NIC-CAGE
software package that involves a transition between non-adjacent energy lev-
els (included in the demo2.m MATLAB script). Fig. 5 shows the convergence
behavior of both the objective functional, J , and transition probability, P ,
as a function of the number of iterations for the νi = 3→ νf = 5 transition.
After only two iteration steps, over 88% of the maximum objective functional
value is achieved, and the subsequent steps give an incremental improvement
before terminating at the 44th step with 99.1% probability. It is interest-
ing to note that terminating the optimization prematurely after only two
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iterations results in an electric field that is almost a pure sinusoid at approx-
imately 188 THz. As such, the subsequent iterations clearly show that the
fluence term (i.e., Eq. (20)) significantly impacts the overall objective func-
tional value with the algorithm effectively penalizing the dominant frequency
component, allowing for multi-photon transitions to occur (discussed further
below).

Figure 5: Objective functional, J , and transition probability, P , as a function of the
number of iterations for a quantum control optimization of the νi = 3→ νf = 5 transition
in a Morse potential.

Fig. 6 summarizes the various outputs and post-processed results of the
NIC-CAGE software package for the νi = 3 → νf = 5 transition in a Morse
potential. The panel in Fig. 6a shows the norm-squared initial vibrational
eigenstate, |ψi(x)|2, with νi = 3 (dashed red line), superimposed on the
Morse potential energy function (solid blue line). The optimized electric
field in Fig. 6b is signficantly more complicated than the νi = 0 → νf = 1
case discussed previously. The power spectrum of the optimized electric field
at the end of 44th iteration step, shown in Fig. 6c, now contains three
peaks that correspond to the ν = 3 → 4, ν = 4 → 5 and ν = 3 → 5
transitions. While the single-photon transition has a higher intensity than
the peaks corresponding to the ν = 3→ 4→ 5 transition, this example shows
that using a single “trivial” frequency corresponding to the energy difference
between the ground and excited state may not be sufficient, and a fully
numerical optimization as implemented in the NIC-CAGE code is necessary.
Finally, as a check on the fidelity of the results, Fig. 6d shows that the norm-
square of the propagated wavefunction, |ψN−1|2, closely matches the desired
target |ψf |2.
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(a) (b)

O  = 3  4
 = 4  5 O

 = 3  5 O

(c) (d)

Figure 6: (a) Morse potential energy (solid blue line) and norm-squared initial vibrational
eigenstate, |ψi(x)|2, with νi = 3 (red dashed line). The numerical value of the potential
energy and probability density can be measured from the left and right vertical axes, re-
spectively. (b) Optimized electric field as a function of time for the νi = 3 → νf = 5
transition. (c) Power spectrum of the optimized electric field. Three major peaks at
approximately 92, 97, and 188 THz can be seen, which correspond to the resonant fre-
quencies in the labelled transitions. (d) Norm-squared final target wavefunction |ψf (x)|2
with νf = 5 and the propagated wavefunction |ψN−1|2, which achieves a transition prob-
ability of P = 0.991.

4.2. Asymmetric Double-Well Potential

To test the robustness of the NIC-CAGE software package, we now per-
form a quantum control optimization on a different potential energy function,
namely an asymmetric double-well potential:

V (x) =
x4

64
− x2

4
+

x3

256
. (34)

The functional form of this double-well potential captures all the basic physics
of a donor-acceptor reactant/product photochemical system. Specifically, the
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initial ground state with νi = 0 is localized in the deeper “electron donor re-
actant” left well, and the desired vibrationally-excited final state with νf = 1
is primarily confined to the “electron acceptor product” well on the right (cf.
Figs. 8a and 8d). In addition to examining a completely new potential en-
ergy function, this particular example investigates the effects of a significantly
shorter pulse on the optimization. For this specific example, we chose a unit
mass with a dipole moment given by µ(x) = x. The following code snippet
from the included demo3.m MATLAB script shows only those initialization
variables that differ from the previous section:

x_min = -8; x_max = 8; dx = 0.1;

T = 100; tau = 0.01;

m = 1;

V = x.^4/64-x.^2/4+x.^3/256;

mu = x;

For the νi = 0 → νf = 1 transition in the asymmetric double-well po-
tential, we examined the effect of using two different propagation times:
T = 1000 and 100 a.u. As illustrated in Fig. 7a for T = 1000, we ob-
served a rather quick convergence to a transition probability of 1.000 within
5 iteration steps. The corresponding optimized electric field for this case, not
shown for brevity, is essentially a pure sinusoid at 1,041 THz, the resonant
frequency associated with the desired transition. In contrast, for T = 100,
the transition probability reaches 0.975 only after a lengthy 100 iteration
steps (cf. Fig. 7b).

(a) (b)

Figure 7: Objective functional, J , and transition probability, P , as a function of the
number of iterations for a quantum control optimization of the νi = 0→ νf = 1 transition
in an asymmetric double-well potential for (a) T = 1000 a.u. and (b) T = 100 a.u.
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Since the solutions of the asymmetric double-well potential for T = 1000
are relatively trivial, we only present the various outputs and post-processed
results of the NIC-CAGE software package for the T = 100 case in Fig. 8.
The panel in Fig. 8a shows the norm-squared initial vibrational eigenstate,
|ψi(x)|2, with νi = 0 (dashed red line), superimposed on the asymmetric
double-well potential energy function (solid blue line). The optimized elec-
tric field in Fig. 8b is clearly a superposition of numerous frequencies, which
is more complicated than either of the cases discussed previously. This com-
plexity is reflected in the power spectrum of the optimized electric field shown
in Fig. 8c, which contains a multitude of peaks. Finally, as a check on the
fidelity of the results, Fig. 8d shows that the norm-square of the propa-
gated wavefunction, |ψN−1|2, closely matches the desired target |ψf |2. Taken
together, both this example and the Morse potential discussed previously
demonstrate the robustness of the NIC-CAGE software package for handling
different potentials, propagation times, and various user-defined parameters.
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(a) (b)

(c) (d)

Figure 8: (a) Asymmetric double-well potential energy (solid blue line) and norm-squared
initial vibrational eigenstate, |ψi(x)|2, with νi = 0 (red dashed line). The numerical
value of the potential energy and probability density can be measured from the left and
right vertical axes, respectively. (b) Optimized electric field as a function of time for the
νi = 0→ νf = 1 transition. (c) Power spectrum of the optimized electric field. (d) Norm-
squared final target wavefunction |ψf (x)|2 with νf = 1 and the propagated wavefunction
|ψN−1|2, which achieves a transition probability of P = 0.975.

5. Conclusions

In this work, we have fully described, documented, and provided the
NIC-CAGE software package – an open-source code for predicting optimized
electric fields, ε(t), to control photo-excited chemical systems. Specifically,
the NIC-CAGE code utilizes analytic gradients with a grid-based (norm-
conserving) Crank-Nicolson propagation scheme to optically drive a chemical
system from a known initial vibrational eigenstate to another desired state.
Our approach is implemented in the high-level MATLAB and Python pro-
gramming languages to allow researchers to get a detailed “look under the
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hood” to understand how our approaches are numerically incorporated in
practice. Most importantly, we have tested the NIC-CAGE software package
on a variety of different potentials, propagation times, and user-defined pa-
rameters to demonstrate its robustness in obtaining transition probabilities
with extreme (typically over 97%) accuracy.

Looking forward, we anticipate that the NIC-CAGE software package
could be used in a multitude of applications to control photo-excited chem-
ical systems. For instance, as demonstrated in our asymmetric double-well
example, the optimal electric field, ε(t), can be strongly dependent on the
total propagation time T . As such, the flexibility in choosing T provides
an opportunity to use the NIC-CAGE program to examine how this param-
eter can control the underlying dynamics. For example, if a low-intensity
electric field is desired, then a long propagation time T should be chosen.
Alternatively, one may desire a short propagation time to overcome rapid
relaxation mechanisms in a system (such as intramolecular energy transfer)
[38] or other experimental physical limitations. In the same vein of exploring
parameter space, one can also use the NIC-CAGE program to explore the
effect of altering the parameter, α, in the fluence penalty term (cf. Eq. (7)).
For instance, if a low-power electric field is desired, a larger value α should be
chosen to penalize high pulse intensities and meet the experimental limita-
tions of the user. Similarly, one can also modify α to have the form of a shape
function such as a Gaussian pulse shape, which may be more experimentally
accessible.

Finally, the NIC-CAGE software package could also be used as a pre-
dictive tool by experimentalists to give rigorous bounds on the wavelengths
of light that would lead to the desired products in a photo-induced reac-
tion/experiment. More concretely, an experimentalist could run this easy-
to-use code to predict the specific range of optical frequencies that would
be needed to populate a desired photocatalytic product. We envision that
further interactions of this kind between quantum control theorists and ex-
perimentalists would lead to further advances in site-specific excitations and
bond-selective control in a multitude of photocatalytic and photo-excited
systems.
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