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Abstract 

Understanding the status of gut microbiota has been recognized as crucial in health 

management and disease treatment. To meet the demands of medical and biological applications 

where rapid evaluation of gut microbiota in limited research environment is essential, we 

developed new sensing systems able to readout the overall characteristics of complex microbiota. 

Response patterns generated by a synthetic library of 12 charged block-copolymers with 

aggregation-induced emission units were analyzed with pattern recognition algorithms, allowing 

to identify the species/phyla of 16 axenic cultures of intestinal bacterial strains. More importantly, 

our method clearly classified artificial models of obesity-associated gut microbiota, and further 

succeeded in detecting sleep disorders in mice through comparative analysis of the 

normal/abnormal mouse gut microbiota. Our techniques can analyze complex bacterial samples 

far more quickly, simply and inexpensively than common metagenome-based methods, offering a 

powerful and complementary tool for gut microbiome analysis for practical use, e.g., in clinical 

settings. 
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Introduction 

A number of diverse microorganisms [~100 trillion (1014) cells more than 1,000 species] 

inhabit the human gastrointestinal tract1,2. Recent studies have increasingly demonstrated that 

these microbial populations “gut microbiome” interacts with the host human, and thus closely 

related to our health and disease development3,4. A microbial imbalance, the so-called dysbiosis, 

has been observed in patients with a variety of diseases, including chronic sleep disruption, obesity, 

allergies, autism spectrum disorders, and cancers5-7. Therefore, understanding and controlling the 

gut microbiota are critical from the viewpoint of both health management and disease treatment.  

Metagenomic analysis, the current standard method for gut microbiome analysis, involves 

the sequencing of 16S ribosomal RNA (rRNA) gene amplicons or the entire genome of each 

bacteria in the microbiota. Although the metagenomics is a powerful tool, enabling to investigate 

whole community diversity and structure in the gut ecosystem, and genomic and metabolic 

capabilities of its constituents8,9, it does not necessarily meet the needs for medical and biological 

applications that demand rapid assessment of gut microbiome samples with limited equipment. 

This is because metagenomics requires highly expensive next-generation sequencer and high level 

of expertise for its use and data analysis in addition to significant labor and time. Besides, it still 

remains a challenge that the interpretations and insights obtained may differ from the actual state 

of the microbiota due to biases resulting from sample pretreatment, sequencing, and data analysis8,9. 

In the process of exploring diagnostic and therapeutic approaches based on differences in 

gut microbiota between healthy/diseased individuals detected by metagenomic analysis, it has 

become clear that, despite the high complexity of the gut ecosystem, the gut microbiota exhibit 

particular compositional patterns at the taxonomic rank level, e.g., genus-level enterotypes10-12 and 
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phylum-level Firmicutes/Bacteroidetes (F/B) ratio13-15, which correlate with the host conditions, 

including diseases and physical conditions. Inspired by these studies, we envisioned that such 

discrete compositional states can be recognized by sequencing-independent “chemical nose” 

sensing strategy. Chemical nose is an analytical concept that mimics the sensory mechanisms of 

animals, where arrays of molecular probes and pattern-recognition techniques are combined. By 

using a library of molecular probes that exhibit varying affinities for samples of interest, this 

strategy enables the generation of characteristic pattern information reflecting the entire samples 

through comprehensive interactions between molecular probes and the components of samples16,17. 

As with olfaction, the essence of this strategy is that the samples can be analyzed comparatively 

as long as the response patterns are generated, even if the compositions of the samples are unknown. 

Thus, it is suitable for determining whether a sample is normal or for classifying its state. Indeed, 

we18-20 and other researchers21,22 have demonstrated that this strategy is capable of identifying the 

states of complex biological samples, such as serum, cell lysates and secretions. 

 Here, we present the first chemical nose platform for recognizing gut microbiota. To 

challenge these largely unknown and obscure samples, we created a synthetic library of charged 

block-copolymers appended with aggregation-induced emission (AIE) fluorophores. Our chemical 

nose comprising up to 12 structurally diverse and environmentally sensitive polyethylene glycol-

block-poly-L-lysine (PEG-b-PLL) derivatives can generate characteristic “fluorescence response 

patterns” through various interactions with the surfaces of intestinal bacteria (Figure 1A). The 

response patterns were subjected into pattern-recognition techniques, allowing to identify the gut-

derived bacterial strains at different taxonomic ranks (strains/species/phylum) and of mixed 

intestinal bacterial cultures as obesity models. Furthermore, this system could accurately 

distinguish the gut microbiota of healthy mice from those of insomniac mice. 
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Results 

Design and characterization of a polymer library 

 

Figure 1. Workflow and synthetic library for optical pattern recognition of gut 

microbiota. (A) The collected samples of mouse gut microbiota were applied to a chemical 

nose composed of aggregation-responsive polymers, generating fluorescence response 

patterns reflecting the characteristics of the whole gut microbiota, followed by statistical 

analysis with linear discriminant analysis. (B) The molecular structures of PEG-b-PLL 

appended with TPE fluorophores and various functional groups. Log P values of the head 

groups are shown in parentheses. 
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A key in library design for the differentiation of highly complex gut microbiota (consisting 

of over 1,000 bacterial species)1,2 is to incorporate two classes of properties: (i) high chemical 

diversity capable of recognizing the surfaces of intestinal bacteria in a variety of manners and (ii) 

sharp turn-on emission characteristics capable of reproducibly transducing microenvironment of 

the bacterial surface into optical signals. Figure 1B illustrates a library of block-copolymers 

synthesized to meet the criteria. For the sensitive and selective extraction of bacterial 

characteristics, PEG-b-PLL was chosen as the scaffold material with high density of reaction sites 

that allow interaction in a multi-contact manner17,23. Amino groups of PEG-b-PLL were partially 

modified with an aggregation-induced emission (AIE) luminogen, tetraphenylethene (TPE)24. 

Upon binding to bacterial surfaces, PEG-b-PLL appended with TPE (-None) was expected to emit 

fluorescence through restricted intramolecular rotation of the central olefin stator of the TPE 

molecule. To provide high structural diversity, the remaining amino groups of -None were (i) 

guanidinized to enhance hydrogen-bonding ability (-hA), (ii) modified by amino acids with 

different aliphatic, aromatic, and additional amino groups (-Dap, -Pro, -Nle, -Leu, -Phe and -

Pyri) and a hydrophilic tripeptide (-Gly3), and (iii) modified by acid anhydrides for charge 

inversion from cationic to anionic (-Suc, -Pht and -Pyr). Since these modifications enable to cover 

a wide chemical space, we hypothesized that the array of these polymers can recognize complex 

features of bacterial surfaces consisting of lipopolysaccharides, lipids, peptidoglycans, and 

proteins25, so that the surface information is transduced into a highly sensitive AIE due to the low 

background of the TPE fluorophore (For details of synthesis and characterization of the polymers, 

see Section 1 of the Supporting Information). 

First, AIE response of TPE-appended PEG-b-PLL (-None) through its binding to bacteria 

was examined. While -None was nearly non-emissive in aqueous solution (pH = 7.0), addition of 
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Anaerostipes caccae (phylum Firmicutes; F.A., Table 1), an anaerobic and butyrate-producing 

intestinal bacterium, enhanced fluorescence emission up to nearly 40-folds (Figure 2A). This 

response suggested that -None bound to or aggregated on the bacteria primarily through 

electrostatic interactions with the dense array of negatively charged teichoic acids present on the 

surface of the gram-positive F.A.25, causing the restriction of intramolecular motion of TPE. The 

AIE feature of -None was also demonstrated by fluorescence microscopy, where blue emission 

from TPE was observed only from F.A. [the inset of Figures 2A, and S3 for Escherichia coli DH5α 

(phylum Proteobacteria; P.E.1)], which is consistent with the microscopic observations of 

previous TPE derivatives for the pattern-recognition-based bacteria sensing26,27. The sharp turn-

on fluorescence capability of our TPE-appended polymer would lead to high experimental 

reproducibility due to high signal-to-background ratio, compared with our previously reported 

dansyl-fluorophore-modified polymers28, which is a stark advantage in constructing high-precision 

chemical noses. 

 

Table 1. Gut-derived bacterial strains used for the initial testing. 

Phylum Genus Species Abbr. 

Firmicutes Anaerostipes caccae F.A. 

Firmicutes Blautia  hydrogenotrophica F.B. 

Firmicutes Clostridium  citroniae F.C. 

Firmicutes Eubacterium  fissicatena  F.E. 

Firmicutes Ruminococcus  gauvreauii  F.R. 

Firmicutes Lactococcus  lactis  F.L.1 

Firmicutes Lactobacillus helveticus  F.L.2 

Bacteroidetes Bacteroides dorei B.B.1 

Bacteroidetes Bacteroides coprophilus B.B.2 
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Bacteroidetes Bacteroides clarus B.B.3 

Bacteroidetes Bacteroides oleiciplenus B.B.4 

Actinobacteria Bifidobacterium  longum  A.B.1 

Actinobacteria Bifidobacterium thermophilum A.B.2 

Actinobacteria Bifidobacterium faecale A.B.3 

Proteobacteria Escherichia coli (DH5α)a P.E.1 

Proteobacteria Escherichia coli (JM109)a P.E.2 

a Strain name.  

 

We then investigated the relationship between the polymer structure and the response under 

physiological ionic strength (Figure 2B), where the relative contribution of other factors, such as 

 

Figure 2. Characterization of representative polymers. (A) Fluorescence spectra of -

None (150 nM) upon addition of F.A. (OD600 = 0 - 0.05) in 20 mM MOPS (pH = 7.0); λex 

= 330 nm. Inset: Fluorescence image of F.A. treated with -None. (B) Binding isotherms 

for -None and -Nle (150 nM) upon addition of F.A. and P.E.1 in 20 mM MOPS (pH 7.0) 

and 20 mM MES (pH = 5.0) with 150 mM NaCl. λex/λem = 330 nm/460 nm. Values shown 

represent mean values ± 1SE (n = 3).  
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hydrophobic interactions, to the signal was enhanced through electrostatic shielding. At pH = 7.0, 

-None experienced a similar increase in fluorescence intensity for F.A. and P.E.1 with optical 

density at 600 nm (OD600) < 0.03, but the maximum intensity was higher in F.A. than in P.E.1. A 

more complex behavior was observed for the hydrophobic -Nle. The responses to F.A. increased 

monotonically, while the signal began to decrease at OD600 > 0.02 in the case of P.E.1. In addition, 

the responses of charged polymers to bacteria varied markedly depending on the pH values; the 

responses of the polymers at pH = 5.0 became similar except for -Nle/P.E.1. These pH 

dependences appear to be attributed primarily to the protonation of the carboxyl groups on the 

bacterial surface and the amino groups of the polymer, especially for -Nle (Section 3 of the 

Supporting Information), by shifting the pH from 7.0 to 5.0. These complex responses were most 

likely due to differences in the chemical structure of the polymers, and this trend was expected to 

favor our polymer design for extracting features of bacterial strain and their mixed samples. 

 

Identification of gut-derived bacterial strains 

We tested whether our polymers could generate unique optical response patterns for gut-

derived bacterial strains (Table 1). The 16 bacterial strains chosen covered the predominant phyla 

in the gut microbiota, i.e., Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, which 

constitute more than 97% of the human gut microbiome29. For the sensing procedure, each 

bacterial suspension was added to an array consisting of the polymers (150 nM) in 20 mM MOPS 

buffer (pH = 7.0) or 20 mM acetate buffer (pH = 5.0) with 150 mM NaCl on a 96-well plate. The 

fluorescence responses from each bacterial strain/polymer combination were recorded using two 

different channels [λex/λem = 330 nm/480 nm (Ch1) and 360 nm/530 nm (Ch2)], providing a dataset 
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of 48-dimensional fluorescence patterns (12 polymers × 2 pHs × 2 channels). A preliminary study 

has found that preprocessing of the data, usually required to improve the accuracy of chemical 

noses, such as background subtraction (I-I0)
30, was not necessary (Figure S4), presumably due to 

the low background of TPE fluorescence. This is advantageous for the construction of a practical 

system as it saves labor and time.  

 The responses are summarized visually in the form of a heat map in Figure 3A. Applying 

the intestinal bacterial suspensions to our chemical nose obviously led to the generation of a variety 

of fluorescence response patterns. The discriminative information was then statistically evaluated 

using linear discriminant analysis (LDA), a supervised pattern recognition algorithm that provides 

a graphical output describing the similarity and the classification ability of the data16. The linear 

discriminant score plot (Figures 3B and S5), where each point represents the fluorescence response 

pattern of a single analyte in the chemical nose, confirmed well-separated clusters, indicating 

statistically significant differences between the patterns of the 16 bacterial strains examined. The 

discrimination accuracy was quantitatively evaluated by two different tests [a leave-one-out cross-

validation test (the so-called jackknife test) and a holdout test], and the 100% accuracy for the 

identification of the bacterial strains was successfully afforded in both tests. Furthermore, a 

minimal system with sufficient accuracy could be constructed using the selected two polymers 

(Section 4 of the Supporting Information). 
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Figure 3. Optical pattern recognition of gut-derived bacteria. (A) Heat map of the 

fluorescence response patterns of 16 different intestinal bacterial strains (OD600 = 0.04). 

Eleven replicates are shown for each analyte. (B, C) Discriminant score plot for intestinal 

bacterial strains (OD600 = 0.04), where analytes were labelled according to (B) species 

and (C) phylum. Ellipsoids represent confidence intervals (±1 SD) for each analyte.  
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Intriguingly, clusters at the “phylum” level, which is a taxonomic rank much higher than 

the “species” level, were observed (Figure 3B), even though the bacterial phylotypes have not been 

well proven to correlate with their surface properties. To evaluate the potential of this phylum-

level feature extraction in more detail, a meta-analysis was performed with phylum labeling on the 

data for each bacterium. As expected, clusters corresponding to the four phyla segregated well on 

the linear discriminant score plot (Figure 3C). High accuracy was achieved in both the jackknife 

test (99%) and the holdout test (100%). Recent studies have been revealing that gut microbiota 

exhibit phylum- or genus-level compositional patterns10-15, suggesting that our chemical nose, 

which can recognize phylum-level features of intestinal bacterial strains, may serve to acquire the 

response patterns of gut microbiota. Note that our chemical tongue have succeeded in recognizing 

even differences between bacteria that are classified into the same “species” but differ at the lower 

“strains” level (i.e., eight Escherichia coli strains; Section 5 of the Supporting Information). 

 

Classification of models of obesity-associated gut microbiota 

   Although still controversial, F/B ratio in the gut microbiota is well known to vary between 

healthy humans/mice and those with lifestyle diseases, such as obesity and type II diabetes, and 

hence, gut microbiota composition even at the phylum level is expected to be a potential biomarker 

or a new therapeutic target for such diseases13-15. To investigate the applicability of our chemical 

nose to F/B ratio classification, tests were performed using model gut microbiota that simulate 

obese and healthy samples. According to a recent report31, we prepared model gut microbiota 

consisting of six intestinal bacterial strains belonging to four major phyla, which differ in the 

content ratios of Firmicutes and Bacteroidetes (Figure 4A). These model microbiota were intended 
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to cover the range from underweight persons (F/B ratio ~ 0.70, nearly corresponding to “Slightly-

low”) to obese persons (F/B ratio ~ 1.54, nearly corresponding to “Slightly-high”)31. 

The prepared model microbiota were applied to a chemical nose composed of six polymers 

(-None, -Dap, -Gly3, -Leu, -Phe and -Pht), which were rationally chosen based on a hierarchical 

clustering analysis (for details, see Section 4 of the Supporting Information). Statistical analysis 

of the fluorescence response patterns (Figure S6) by LDA revealed that four clusters were 

distributed without overlapping in the two-dimensional space (Figure 4B). Consistently, the 

discriminant accuracies were 100% for the jackknife test and 97% for the holdout test. The first 

discriminant score [score (1)], which accounts for the most of variance (97.5%), was highly 

correlated with F/B ratio (r = -0.95). This predictive behavior of the scores possibly leads to 

quantify F/B ratios using regression analysis based on machine learning techniques16. Though this 

result is still preliminary because the real obesity-associated microbiota is far more complex, the 

ability to accurately recognize these subtle differences in bacterial mixtures may promise its 

application to real samples. 
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Application to the diagnosis of mouse insomnia 

One potential application of gut microbiome measurement is the diagnosis or routine 

monitoring of health status as well as that of serious disease development32,33. Here, we challenged 

a proof-of-concept study to detect deterioration in health conditions by optical pattern recognition 

of the microbiota in mouse feces.  

 

Figure 4. Optical pattern recognition of obese and healthy model bacterial mixtures. 

(A) The relative abundance of intestinal bacterial strains in samples with different 

Firmicutes/Bacteroidetes ratios. (B) Discriminant score plot for intestinal bacterial 

mixtures, where ellipsoids represent confidence intervals (±1 SD) for each analyte.  
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In this study, we employed a sleep disorder model to prepare mice with health deterioration, 

where continuous stress, disturbing sleep, is imposed on mice (8 weeks-aged) by being confined 

inside a rotating wheel34,35 for 28 days after a 10-day habituation process in a normal cage with 

the rotating wheel (Figures 5A and S7; for details, see Section 1 of the Supporting Information). 

In normal cages, nocturnal mice were significantly more active at night, whereas the stressed mice 

ran on the wheel almost all day immediately after exposure to the stress, causing sleep 

fragmentation (Figure 5B). Homogeneous microbiota suspensions were prepared as follows; fecal 

samples collected on day 28 from healthy or sleep-disordered mice (n = 4, respectively) were 

suspended in phosphate buffer saline (PBS), and then centrifuged to remove the soluble fraction, 

and filtered to remove large aggregates (for details, see Section 1 of the Supporting Information). 

The obtained gut microbiome samples (4 individuals × 2 conditions) were diluted to 20 μg/mL by 

distilled water and used in subsequent experiments. 
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As with the axenic culture of gut-derived bacteria (Figure 2), addition of mouse gut 

microbiome samples to TPE-appended PEG-b-PLL markedly enhanced fluorescence emission 

(Figure S8). After confirming the response, we attempted to generate the fluorescence response 

 

Figure 5. Optical pattern recognition of mouse gut microbiota. (A) Procedure of mouse 

fecal collection. After 10 days of habituation in the normal cage, mice for insomnia-induction 

were transferred to the sleep disturbance cage on day 0, followed by the collection of mice 

feces after 28 days. (B) Representative double-plot actograms for control mice and those 

under sleep disturbance stress, which display in black while the mouse is rotating the wheel. 

The light/dark cycles are shown as white/black bars, respectively, above the actograms. (C) 

Heat map of the fluorescence response patterns of feces from healthy and insomnia mice (20 

μg/mL). Eleven replicates are shown for each analyte. (D) Histogram of discriminant scores 

for mouse gut microbiota, which is marked with normal distributions fitted to the full data.  
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patterns at 11 replicates for each sample by the chemical nose (Figure 5C). The LDA analysis of 

the thus-obtained twelve-dimensional patterns showed clear differences between the healthy and 

insomnia groups with only slight overlap on the histogram of discriminant scores (Figure 5D), 

where the Student’s t-test indicated p < 1.8×10-4 (Figure S9). Consistent with this differentiation, 

both the Jackknife test and the holdout test successfully afforded high reliability (91% and 94 %, 

respectively). Interestingly, in an attempt to discriminate individual mice, little overlap was shown 

in the two-dimensional score plot (Figure S10) with 90% accuracy for the jackknife test, even 

though these individuals grew up in the same rearing environment before the treatment. In this 

labeling, the clusters were again separated between healthy and insomnia mice, suggesting that the 

differences in responses between the presence/absence of the stress is larger than those between 

individuals. As well as the intestinal bacteria strains, we have successfully constructed a minimal 

sensor even for mouse gut microbiota (Section 4 of the Supporting Information). 

 

Discussion 

In the present study, we constructed a synthetic library of block copolymers appended with 

AIE fluorophores to establish a chemical nose strategy for sensing of gut microbiota. Our chemical 

nose composed of synthesized TPE-appended PEG-b-PLLs, which can produce marked 

fluorescence emission through binding to gut-derived bacteria, was capable of (i) identifying the 

species and the phyla of 16 intestinal bacterial strains (Figure 3) and the strains of eight Escherichia 

coli strains (Figure S18), (ii) classifying artificial models (intestinal bacterial culture mixtures) of 

obesity-associated gut microbiota (Figure 4), and (iii) detecting sleep disorders through 

comparatively evaluating mouse gut microbiota (Figure 5). To the best of our knowledge, this 
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study is the first in two respects; the chemical nose strategy allows (i) the recognition of phylum 

level differences and (ii) the applicability to the real complex gut microbiota (mouse fecal samples), 

which consist of more than 1,000 bacterial species1,2. 

The achievement presented should be largely attributed to a newly developed polymer 

library that is suitable for microbiome-targeted chemical nose. TPE, which emits light in response 

to changes in molecular rotational motion, led to a high signal-to-background ratio24, offering high 

reproducibility and simplifying the sensing procedure. Twelve synthesized TPE-appended PEG-

b-PLLs cover a wide chemical space, which provides the ability to bind bacterial surfaces in a 

multi-contact manner that combines electrostatic, hydrophobic, π-π, and hydrogen-bonding 

interactions. This feature has more likely enabled to recognize patterns of characteristic microbiota 

composition correlated with the host conditions10-15. The 48-dimensional optical response patterns 

generated by 12 polymers are one of the largest datasets in the hitherto chemical noses. Meta-

analysis of these dataset will provide more in-depth knowledge and guide new material designs 

for chemical noses. 

To date, the chemical nose strategy has been applied to detect pathogenic bacteria in the 

context of diagnosing infectious diseases36, where libraries of fluorescent probe molecules26,27,37, 

polymers38, nanoparticles39,40 and supramolecular complexes41,42 have been developed to identify 

the pathogens. However, no chemical nose approach for gut-derived bacteria has been developed 

and reported yet. Besides, our system can discriminate not only the species of these bacteria, but 

also the phylum level, a much higher phylogenetic rank (Figure 4C). The outer surface of gram-

positive bacteria [Gram (+); Actinobacteria and Firmicutes] is composed of peptidoglycans that 

are typically intercalated with covalently attached anionic teichoic acids, while that of gram-

negative bacteria [Gram (-); Bacteroidetes and Proteobacteria] is surrounded by a negatively-
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charged outer membrane containing lipopolysaccharides25. These outer structures produce large 

physicochemical differences, which should have been recognized by our chemical nose, similar to 

the previous reports37,41,42. However, the common differences in the outer structures between 

bacteria bearing the same gram-stainability are not well understood. Therefore, the ability to 

extract information about such unknown differences is a distinguishing feature of our system.  

Our current chemical nose is capable of measuring relatively small amount of samples (<10 

μg) in a short time (<30 min) with only a common analytical instrument, and comparative analysis 

can be performed based on the overall characteristics of the samples even if the details of the target 

microbiota are unknown. Since this system does not need to grow bacteria and can directly measure 

the real environmental samples, it will be promising for application to a variety of bacteria and 

microbiomes, including fastidious and/or uncultured bacteria, which are a major obstacle to 

microbiology and its-related industries. Therefore, we expect our approach to complement the 

metagenomic analysis to offer a powerful platform for simple, accurate, and high-throughput 

characterization of microbiota in a wide range of fields, including medical and healthcare. 

 

Corresponding Authors 

*E-mail: s.tomita@aist.go.jp (S.T.). 

*E-mail: r.kurita@aist.go.jp (R.K.). 

 

Acknowledgements 



 20 

We thank Dr. Masahiko Nakamoto (Department of Chemistry, University of California, 

Irvine) for help with acid-base titration experiments. This work was partially supported by JSPS 

KAKENHI grant (JP17H04884 and JP20H02774 to S.T.; JP19H05679 and JP19H05683 (Post- 

Koch Ecology) to H.K. and H.T.), AMED PRIME (Grant number JP18gm6010019) to H.T., JST 

ERATO Grant Number JPMJER1502 to H.T., and DAICENTER project grant from the DBT 

(Govt. of India) to Renu Wadhwa and special strategic grant from AIST (Japan) to R.K. 

 

References 

1. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. 

Nature 464, 59-65 (2010). 

2. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499-

504 (2019). 

3. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. 

Engl. J. Med. 375, 2369-2379 (2016). 

4. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut 

microbiota. Nature 555, 210-215 (2018). 

5. Poroyko, V. A. et al. Chronic sleep disruption alters gut microbiota, induces systemic and 

adipose tissue inflammation and insulin resistance in mice. Sci. Rep. 6, 35405 (2016). 

6. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic 

cancer outcomes. Cell 178, 795-806 (2019). 

7. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The 

microbiome, cancer, and cancer therapy. Nat. Med. 25, 377-388 (2019). 

8. Nayfach, S. & Pollard, K. S. Toward accurate and quantitative comparative metagenomics. 

Cell 166, 1103-1116 (2016). 

9. Fricker, A. M., Podlesny, D. & Fricke, W. F. What is new and relevant for sequencing-based 



 21 

microbiome research? A mini-review. J. Adv. Res. 19, 105-112 (2019). 

10. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174-180 

(2011). 

11. Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. 

Nat. Microbiol. 3, 8-16 (2018). 

12. Christensen, L., Roager, H. M., Astrup, A. & Hjorth, M. F. Microbial enterotypes in 

personalized nutrition and obesity management. Am. J. Clin. Nutr. 108, 645-651 (2018). 

13. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for 

energy harvest. Nature 444, 1027-1031 (2006). 

14. Sweeney, T. E. & Morton, J. M. The human gut microbiome: A review of the effect of 

obesity and surgically induced weight loss. JAMA Surg. 148, 563-569 (2013). 

15. Abenavoli, L. et al. Gut microbiota and obesity: A role for probiotics. Nutrients 11, 2690 

(2019). 

16. Li, Z., Askim, J. R. & Suslick, K. S. The optoelectronic nose: Colorimetric and fluorometric 

sensor arrays Chem. Rev. 119, 231-292 (2019). 

17. Sugai, H., Tomita, S. & Kurita, R. Pattern-recognition-based sensor arrays for cell 

characterization: From materials and data analyses to biomedical applications. Anal. Sci. 

https://doi.org/10.2116/analsci.20R002 (2020). 

18. Tomita, S., Sakao, M., Kurita, R., Niwa, O. & Yoshimoto, K. A polyion complex sensor 

array for markerless and noninvasive identification of differentiated mesenchymal stem cells 

from human adipose tissue. Chem. Sci. 6, 5831-5836 (2015). 

19. Tomita, S., Niwa, O. & Kurita, R. Artificial modification of an enzyme for construction of 

cross-reactive polyion complexes to fingerprint signatures of proteins and mammalian cells. 

Anal. Chem. 88, 9079-9086 (2016). 

20. Tomita, S. et al. Noninvasive fingerprinting-based tracking of replicative cellular senescence 

using a colorimetric polyion complex array. Anal. Chem. 90, 6348-6352 (2018). 

21. Rana, S. et al. Array-based sensing of metastatic cells and tissues using nanoparticle-

fluorescent protein conjugates. ACS Nano. 6, 8233-8240 (2012). 



 22 

22. Le, N. D. B. et al. Cancer cell discrimination using host-guest "doubled" arrays. J. Am. 

Chem. Soc. 139, 8008-8012 (2017). 

23. Tomita, S., Ishihara, S. & Kurita, R. Biomimicry recognition of proteins and cells using a 

small array of block copolymers appended with amino acids and fluorophores. ACS Appl. 

Mater. Interfaces 11, 6751-6758 (2019). 

24. Mei, J., Leung, N. L., Kwok, R. T., Lam, J. W. & Tang, B. Z. Aggregation-induced 

emission: Together we shine, united we soar! Chem. Rev. 115, 11718-11940 (2015). 

25. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. 

Perspect. Biol. 2, a000414 (2010). 

26. Liu, G.J., Tian, S. N., Li, C. Y., Xing, G. W. & Zhou, L. Aggregation-induced-emission 

materials with different electric charges as an artificial tongue: Design, construction, and 

assembly with various pathogenic bacteria for effective bacterial imaging and 

discrimination. ACS Appl. Mater. Interfaces 9, 28331-28338 (2017). 

27. Zhou, C. et al. Engineering sensor arrays using aggregation-induced emission luminogens 

for pathogen identification Adv. Funct. Mater. 1805986 (2018). 

28. Tomita, S., Ishihara, S. & Kurita, R. Environment-sensitive turn-on fluorescent polyamino 

acid: Fingerprinting protein  populations with post-translational modifications. ACS Appl. 

Mater. Interfaces 9, 22970-22976 (2017). 

29. Rosenbaum, M., Knight, R. & Leibel, R. L. The gut microbiota in human energy 

homeostasis and obesity. Trends Endocrinol. Metab. 26, 493-501 (2015). 

30. Anzenbacher Jr, P., Lubal, P., Bucek, P., Palacios, M. A. & Kozelkova, M. E. A practical 

approach to optical cross-reactive sensor arrays. Chem. Soc. Rev. 39, 3954-3979 (2010). 

31. Koliada, A. et al. Association between body mass index and Firmicutes/Bacteroidetes ratio 

in an adult Ukrainian population. BMC Microbiol. 17, 120 (2017). 

32. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome 

Med. 8, 51 (2016). 

33. Johnson, A. J. et al. Daily sampling reveals personalized diet-microbiome associations in 

humans. Cell Host Microbe 25, 789-802 (2019). 



 23 

34. Miyazaki, K., Itoh, N., Ohyama, S., Kadota, K. & Oishi, K. Continuous exposure to a novel 

stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-

wake cycles in mice. PLoS One 8, e55452 (2013). 

35. Minakawa, E. N. et al. Chronic sleep fragmentation exacerbates amyloid beta deposition in 

Alzheimer's disease model mice. Neurosci. Lett. 653, 362-369 (2017). 

36. Chen, J., Andler, S. M., Goddard, J. M., Nugen, S. R. & Rotello, V. M. Integrating 

recognition elements with nanomaterials for bacteria sensing. Chem. Soc. Rev. 46, 1272-

1283 (2017). 

37. Svechkarev, D., Sadykov, M. R., Bayles, K. W. & Mohs, A. M. Ratiometric fluorescent 

sensor array as a versatile tool for bacterial pathogen identification and analysis. ACS Sens. 

3, 700-708 (2018). 

38. Ngernpimai, S. et al. Rapid identification of biofilms using a robust multichannel polymer 

sensor array. ACS Appl. Mater. Interfaces 11, 11202-11208 (2019). 

39. Li, B. et al. Colorimetric sensor array based on gold nanoparticles with diverse surface 

charges for microorganisms identification. Anal. Chem. 89, 10639-10643 (2017). 

40. Ji, H., Wu, L., Pu, F., Ren, J. & Qu, X. Point-of-care identification of bacteria using protein-

encapsulated gold nanoclusters. Adv. Healthc. Mater. 7, e1701370 (2018). 

41. Han, J. et al. A polymer/peptide complex-based sensor array that discriminates bacteria in 

urine. Angew. Chem. Int. Ed. 56, 15246-15251 (2017). 

42. Shen, J. et al. Fluorescent sensor array for highly efficient microbial lysate identification 

through competitive interactions. ACS Sens. 3, 2218-2222 (2018). 

43. Thompson, C. C. et al. Microbial taxonomy in the post-genomic era: Rebuilding from 

scratch? Arch. Microbiol. 197, 359-370 (2015). 

44. Hayashi Sant'Anna, F. et al. Genomic metrics made easy: what to do and where to go in the 

new era of bacterial taxonomy. Crit. Rev. Microbiol. 45, 182-200 (2019). 

45. The Human Microbiome Project, Consortium structure, function and diversity of the healthy 

human microbiome. Nature 486, 207-214 (2012). 

46. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. 



 24 

Microbiol. 18, 35-46 (2020). 

47. Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable 

agriculture. PLoS Biol. 15, e2001793 (2017). 

48. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. 

Nat. Rev. Microbiol. 15, 579-590 (2017). 

49. Wang, L. & Li, X. Steering soil microbiome to enhance soil system resilience. Crit. Rev. 

Microbiol. 45, 743-753 (2019). 

50. Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: 

Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 

107371 (2019). 

 


