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Synthesis, characterization and photophysical properties of a new 2,5-

di(aryl)phosphole derivative and their  trigonal copper-phosphole 

complexes. 

 

Abstract 

A new phosphole derivative 2,5-di(2-quinolyl)-1-phenylphosphole (1) was 

synthesized by using the Fagan–Nugent method. Phosphole 1 was obtained as an air 

stable solid in high yield (73%). Additionally, two new copper-phosphole complexes 

[CuX(Phosphole)2] (X = Cl (2a), I (2b), Phosphole = 1) have been synthesized by 

reaction of CuX (X = Cl, I) and phosphole derivative (1). All compound were 

characterized by NMR, ESI-MS, UV–Vis and fluorescence spectroscopy. The 

photophysical properties of all compounds were analyzed, UV-Vis spectra of the 

complexes 2a-b shown π–π* transitions with shift very similar to the found in the 

free phosphole due to that their symmetrical structures inhibits efficient ILCT. We 

have found that the compounds 1, 2a-b exhibited fluorescence between 460 and 583 

nm with quantum yields of Φf = 0.04 – 0.11. The emission energy of 2b is higher 

than 2a, suggesting that λmax is affected by the ligand-field strength of the halogen 

ions in the complexes (I¯< Cl¯). 

Keywords: phosphole, copper–phosphole complexes, bis(quinolyl)phosphole, 

photophysical properties, fluorescent Cu–complexes. 

 

1. Introduction 

Luminescent transition metal complexes have gained much attention due to their potential 

application in organic light-emitting diodes (OLEDs) and light-emitting electrochemical 

cells (LECs) [1–7]. Copper(I)-containing complexes have been extensively studied because 

of their relative abundance and low cost, moreover, they have demonstrated a wave variety 

of applications in solar energy conversion, luminescence-based sensors, catalysis and probes 

of biological systems [4,8–16].  Nowadays, it is well-know that the use of bulky and rigid 



ligands regulate the structure and configuration of copper (I) complexes, leading to effective 

suppression of the nonradiative processes, which is the key to synthesize highly efficient 

Cu(I)-complexes [17–20]. Additionally, different studies have reported that the nature of 

ligands, specifically halides and phosphines, affect the luminescence properties of Cu(I)-

compounds [21–25]. Particularly, three-coordinate Cu(I) halide coordinated by phosphine 

ligands have showed high luminescent efficiency [26–30].  

On the other hand, phosphole ligands have attracted growing interest for the 

development of complexes due to their ability to act as -ligands through the nucleophilic 

phosphorus atom [31–33], allowing a tuning of their photophysical properties which has been 

used in the development of multifunctional materials for OLEDs and catalytic reactions 

[16,34–38]. 

Based on the interesting electronic properties that present both phospholes-complexes 

and three-coordinate mononuclear Cu(I) halide with phosphine ligands, we have synthesized 

a new rigid phoshole with pi-conjugated system (1) and two trigonal copper-phosphole 

complexes (2a-b). Their spectroscopy characterization and photophysical properties are 

described. 

 

2. Experimental section  

2.1. Materials and methods 

All experiments were performed under an atmosphere of dry argon in the dark using a 

standard Schlenk technique. The solvents were previously dried and distilled following 

standard methods prior to use [39]. Dibromidephenylphosphine (PhPBr2) was synthesized 

according to published procedures [40]. 31P, 1H and 13C NMR spectra were recorded using a 

Bruker Advance AM 300 and AM600 spectrometers. Mass spectra were acquired on a 

Thermo Scientific TSQ Quantum Ultra AM Triple Quadrupole mass spectrometer employing 

the Heated Electrospray Ionization (HESI) technique. The UV‑Vis spectra were recorded on 

a PerkinElmer Lambda 2 spectrophotometer. All fluorescence spectra were recorded at room 

temperature at 10–6 M on a PerkinElmer L545 fluorescence spectrometer with a pulse xenon 

lamp, the fluorescence quantum yield was determined in CH2Cl2 on freshly prepared samples 

(air-equilibrated). Samples of tetraphenylporphyrin in CH2Cl2 were employed as a standard 

(Φf = 0.11). 



 

2.2. Synthesis of 1-phenyl-2,5-di(2-quinolyl)phosphole (1) 

A solution of n-BuLi in hexane (1.6 M, 1.9 mL; 3.05 mmol) was added dropwise to a solution 

of 1,8-di(2-quinolyl)octa-1,7-diyne (500.0 mg; 1.39 mmol) and [Cp2ZrCl2] (405.6 mg; 1.39 

mmol) in THF (25 mL) at –78 °C. The reaction mixture was warmed to room temperature 

and stirred for 12 h. Freshly distilled PhPBr2 (383.6 mg; 1.43 mmol) was added to this 

solution at –78 °C. The solution was allowed to warm to room temperature and stirred for 24 

h. The solution was filtered, and the volatile materials were removed under vacuum. After 

purification on basic alumina (4 x 25 mL THF) and the washing on pentane, 1 was obtained 

as a yellow solid (yield: 472.9 mg; 73%).  NMR-31P{1H} (200 

MHz, CDCl3): δ = 12.36 (s). NMR-1H (600 MHz, (CD3)2CO): δ 

= 7.80 (2H; d; JH
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7.20 Hz; H7); 6.93 (2H; m; Ho); 6.63 (3H; m; Hp and Hm) 3.12 (2H; m; H13a); 2.47 (2H; m; 

H13b); 1.45 (2H; m; H14a); 1.28 (2H; m; H14b). NMR-13C{1H} (200 MHz, (CD3)2CO): δ = 

145.42 (d; 2JPC = 18.00 Hz; C2); 139.25 (d; 2JPC = 10.60 Hz; C12); 137.85 (s; C5); 135.48 (s; 

C11); 126.40 (s; C4); 124.77 (s; Ci); 123.86 (d; 2JPC = 17.70 Hz; Co); 120,08 (s; C8); 118.89 

(s; C9); 118.76 (s; Cp); 118.70 (s; Cm); 117.97 (s; C6); 116.36 (s; C7); 116.21 (s; C10); 112.17 

(d; 3JPC = 8.90 Hz; C3); 18.94 (s; C13); 12.81 (s; C14). MS (CH2Cl2, ESI): m/z: 469.19 

[C32H25N2PH]+. UV-Vis (CH2Cl2), λmax (nm):  240 nm (ε = 775023 M –1cm–1), 402 (ε = 

279991 M –1cm–1). Fluorescence (CH2Cl2), λmax (nm): 460 nm, Φf = 0.04. 

2.3. Synthesis of [CuCl(1-phenyl-2,5-di(2-quinolyl)phosphole)2] (2a) 

A solution of 1 (157.7 mg; 0.34 mmol) and CuCl (16.9 mg; 0.17 mmol) in CH2Cl2 (15 mL) 

was stirred at room temperature under argon for 24 h. The solvent was removed under 

vacuum and the remaining solid washed on pentane (4 x 10 mL) to give 2a as a red solid 

(yield: 151.3 mg; 87%). NMR-31P{1H} (200 MHz, CDCl3): δ = 4.57 (s) NMR-1H (600 

MHz, CDCl3): δ = 8.23 (4H; m; H4); 7.86 (4H; d; H9); 7.53 (8H; m; H6 y H3); 7.46 (8H; m; 

H8 and H7); 7.36 (4H; m; Ho); 7.11 (6H; m; Hp and Hm); 3.34 (4H; m; H13a); 2.72 (4H; m; 

H13b); 1.74 (4H; m; H14a); 1.69 (4H; m; H14b). NMR-13C{1H} (200 MHz, CDCl3): δ = 154.13 

(s; C2); 152.37 (s; C12); 147.77 (s; C5); 135.72 (d; C11); 133.70 (s; C4); 130.15 (s; Ci); 129.75 



(s; Co); 129.50 (s; C8); 129.34 (s; C9); 127.42 (s; Cp); 127.21 (s; Cm); 126.26 (s; C6); 126.05 

(s; C7); 124.24 (s; C10); 122.36 (s; C3); 29.74 (s; C13); 22.63 (s; C14). MS (CH2Cl2, ESI): m/z: 

999.31 [C64H50N4P2Cu]+. UV-Vis (CH2Cl2), λmax (nm):  240 nm (ε = 909294 M –1cm–1), 403 

(ε = 322051 M –1cm–1). Fluorescence (CH2Cl2), λmax (nm): 583 nm, Φf  = 0.07. 

2.4. Synthesis of [CuI(1-phenyl-2,5-di(2-quinolyl)phosphole)2] (2b) 

A solution of 1 (170.8 mg; 0.36 mmol) and CuI (33.9 mg; 0.18 mmol) in CH2Cl2 (15 mL) 

was stirred at room temperature under argon for 24 h. The solvent was removed under 

vacuum and the remaining solid washed on pentane (4 x 10 mL) to give 2b as an orange solid 

(yield: 187.8 mg; 88%). NMR- 31P{1H} (121,4 MHz, CD2Cl2): δ = 2.22. NMR-1H (600 

MHz, CDCl3): δ = 8,20 (4H; m; H4); 7.87 (4H; d; H9); 7.51 (8H; m; H6 and H3); 7.45 (4H; 

m; H8) 7.41 (4H; m; H7); 7.31 (4H; m; Ho); 7.09 (6H; m; Hp and Hm); 3.34 (4H; m; H13a); 

2.82 (4H; m; H13b); 1.75 (8H; m; H14a,b). NMR-13C{1H} (150,8 MHz, CDCl3): δ = 154.64 

(s; C2); 154.09 (s; C12); 152.12 (s; C5); 148.09 (s; C11); 147.67 (s; C4); 136.01 (s; C i); 135.62 

(s; Co); 133.70 (s; C8); 129.98 (s; C9); 129.50 (s; Cp); 129.25 (s; Cm); 128.52 (s; C6); 127.16 

(s; C7); 126.23 (s; C10); 125.93 (d; C3); 29.65 (s; C13); 22.70 (s; C14). MS (CH2Cl2, ESI): m/z: 

999.31 [C64H50N4P2Cu]+. UV-Vis (CH2Cl2), λmax (nm):  239 nm (ε = 572282 M –1cm–1), 403 

(ε = 196877 M –1cm–1). Fluorescence (CH2Cl2), λmax (nm): 490 nm, Φf  = 0.11. 

 

3. Results and discussion 

3.1. Synthesis and characterization of 1-phenyl-2,5-di(2-quinolyl)phosphole (1) 

The new phosphole derivative (1) was obtained employing the Fagan–Nugent method 

[41,42], which involve the oxidative coupling of 1,8-di(2-quinolyl)octa-1,7-diyne [43] with 

[Cl2ZrCp2] followed by treatment with dibromidephenylphosphine (PhPBr2) (Scheme 1). 

The phosphole derivative is purified by flash column chromatography (Al2O3 basic, eluant: 

THF) and isolated as air-stable yellow solid in high yield (73%). The new phosphole (1) was 

stable in different solvents such as THF, CH2Cl2, CHCl3, DMSO and acetone. The ESI-MS 

spectrum of compound 1 displayed a peak at m/z 469.19, which matches with the molecular 

ion [1 + H]+ = [C32H25N2PH]+]. Its 31P{1H}NMR spectrum showed only a singlet at  +12.36 

ppm, whose shift is similar to that found for related symmetrical 2,5-disubstituted 1-

phenylphospholes [31]. On the other hand, all 1H and 13C{1H} NMR signals were 



unequivocally assigned on the basis of 1D and 2D, correlation spectroscopy (COSY), 

heteronuclear multiple quantum correlation (HMQC) and heteronuclear multiple bond 

correlation (HMBC) experiments (for complete NMR data see experimental section). Thus, 

their 1H and 13C{1H} NMR spectra showed signals consistent with the structure of the 

phosphole 1. 

 

Scheme 1. Synthesis of phosphole 1 and their complexes 2a-b. 

 

3.2. Synthesis and characterization of [CuX(1-phenyl-2,5-di(2-quinolyl)phosphole)2] (X = 

Cl (2a), I (2b)) 

The reaction of CuX (X = Cl, Br, I) with two equivalent of phosphole 1 in dichloromethane 

as solvent at RT for 24 h lead to the complexes [CuX(Phosphole)2] (X = Cl (2a), I (2b), 

Phosphole = 1), the complex with bromide not was observed. 2a-b were isolated in good 

yields as air stables red and orange solids, respectively (87% 2a, 88% 2b yields). Both 

complexes 2a-b were stable in different solution such as CH2Cl2, CHCl3, DMSO; slightly 

soluble in Et2O, THF; and insoluble in pentane and H2O.  

The ESI-MS spectra of the complexes 2a-b depict a peak of high intensity 

corresponding to the molecular ion [C64H50N4P2Cu]+ at m/z 999.31 in both cases. These are 

consistent with a copper atom and two phosphole ligands, suggesting that the compounds 

obtained are of the type [M-X-Phosphole]. The 31P, 1H and 13C signals showed variations in 



their chemical shifts with respect to those of the free phosphole, being the Δ used as a 

parameter to deduce the binding mode of 1 to the metal center. The 31P{1H}NMR spectra of 

both complexes exhibit only a singlet signal high-field shifted in comparison to the free 

phosphole ( = 4.57 (2a) and 2.22 (2b) ppm), indicating that each compound correspond to 

a disubstituted Cu-complex with two equivalent phosphorus atoms. Their 1H and 13C{1H} 

NMR spectra showed very small differences compared to those of the free ligand, suggesting 

that each complex present a -coordination of the two phosphole ligands and a symmetrical 

structure. Based on the available data, the structures shown for 2a-b in Scheme 1 are the most 

likely. Thus, the compounds 2a-b correspond to 16-electron symmetric Cu(I)-complexes in 

the usual d10 trigonal planar coordination geometry as we have been previously reported for 

[Cu{1-phenyl-2,5-bis(2-thienyl)phosphole}2Cl] [44]. 

 

3.3. Photophysical properties 

Phosphole ligand and their complexes were analyzed by UV-Vis and fluorescence 

spectroscopy to evaluate and compare their electronic properties. The spectroscopic data are 

summarized in Table X. The measured absorption and emission spectra of all compounds 

were recorded in CH2Cl2 at room temperature. These spectra were measured at an identical 

molar concentration (1 × 10
−6

 M), so that a direct comparison of absorbance could be made.  

The phosphole ligand (1) exhibit an absorption at 402 nm in the visible region of its 

UV–vis spectrum, that is attributed to the π–π* transitions of the extended p-conjugated 

system of the phosphole ligand [31,45,46]. UV-Vis spectra of both complexes 2a-b (Figure 

1) showed π–π* transitions with shift very similar to the observed in the free phosphole, 

which can be due to the symmetrical structure of the complexes, that inhibits efficient ILCT 

[31].  



 

Figure 1. UV‑Vis absorption spectra for the phosphole 1 and their complexes 2a-b in 

CH2Cl2 at room temperature and [c] = 10–6 M. 

The measured UV-excited (𝝀= 240 nm) fluorescence spectra have shown that 

phosphole ligand and their corresponding complexes exhibit emission between 460 and 583 

nm (Figure 2). A wide range of Stokes shifts were found for all compound (Table 1), in which 

complex 2a displays the largest Δλ value (180 nm) and the phosphole 1 displays the shortest 

one (Δλ = 58 nm). The emission bands of the complexes are broad and unstructured, 

suggesting that the emissive excited states have charge-transfer character [26,47]. The 

emission energy of 2b is higher than 2a, suggesting that λmax is affected by the ligand-field 

strength of the halogen ions in the complexes (I¯< Cl¯). Presumably the electronic nature of 

the triplet excited state of 2a-b is influenced to some extent by X¯ → π*(1) charge-transfer 

transitions [25–27,47–49]. 



 

Figure 2. Fluorescence emission spectra (𝝀= 240 nm) for the phosphole 1 and their 

complexes 2a-b in CH2Cl2 at room temperature and [c] = 10–6 M. 

Phosphole 1 showed a quantum yield low (Φf = 0.04) due to chromophores that 

present 3-P centers generally exhibit almost no fluorescence as a result of quenching by the 

lone pair of the phosphorus atom [32,36,50–53]. Coordination of the phosphole ligands to 

metal center has an impact in the quantum yields [31,32,54], showing in the complexes 2a-

b values higher than those of the corresponding free phosphole (Φf = 0.07 (2a); 0.11 (2b)). 

It is also noteworthy that the complex 2b exhibiting the highest value in solution. The values 

of fluorescence quantum yield of these complexes are highest that the found in trigonal Cu(I)-

phosphine halide complexes [26,29]. 

 

 

 



Table 1. UV-Vis and fluorescence spectra of phosphole (1) and their complexes (2a-b). 

Compound UV-Vis 

λmax/nma 

ε/M-1 cm-1 F 

λmax/nmb 

Φf
c Stokes Shift 

Δ λ 

1 
240 

402 

775023 

279991 
460 0.04 58 

2a 
240 

403 

909294 

322051 
583 0.07 180 

2b 
239 

403 

572282 

196877 
491 0.11 88 

aAt room temperature in CH2Cl2. 
bAt room temperature in CH2Cl2. [1, 2a-b] = 10-6 M 
cFluorescence quantum yield in CH2Cl2 relative to tetraphenylporphyrin (Φf = 0.11). 

4. Conclusions  

We have synthesized a new 2,5-di(aryl)phosphole derivative (1) by the Fagan–Nugent 

method in high yield. Additionally, we have obtained two new three-coordinate mononuclear 

Cu(I) halide complexes (2a-b) through the reaction of CuX (X = Cl, I) with two equivalent 

of 1. All the compounds were characterized by analytical and spectroscopic techniques. The 

photophysical studies showed that all complexes exhibit fluorescence with quantum yields 

Φf = 0.04 – 0.11, being the highest value for complex 2b. These new complexes open up the 

possibility of new researches in catalytic applications or studies of their biological activities 

as we have previously reported [16,44]. 
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