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Abstract

Real time time dependent density functional theory (rt-TDDFT) has now been used to study

a wide range of problems, from optical excitation, to charge transfer, to ion collision, to ultrafast

phase transition. However, conventional rt-TDDFT Ehrenfest dynamics for nuclear movement

lacks a few critical features to describe many problems: the detail balance between state transition,

decoherence for the wave function evolution, and stochastic branching of the nuclear trajectory.

There are many-body formalisms to describe such nonadiabatic molecular dynamics, especially the

ones based on mixed quantum/classical simulations, like the surface hopping and wave function

collapsing schemes. However, there are still challenges to implement such many-body formalisms to

the rt-TDDFT simulations, especially for large systems where the excited state electronic structure

configuration space is large. Here we introduce two new algorithm for nonadiabatic rt-TDDFT

simulations: the first is a Boltzmann factor algorithm which introduces decoherence and detailed

balance in the carrier dynamics, but uses mean field theory for nuclear trajectory. The second is a

natural orbital branching (NOB) formalism, which use time dependent density matrix for electron

evolution, and natural orbital to collapse the wave function upon. It provides decoherence, detailed

balance and trajectory branching properties. We have tested these methods for a molecule radiolysis

decay problem. We found these methods can be used to study such radiolysis problem in which the

molecule is broken into many fragments following complex electronic structure transition paths.

The computational time of NOB is similar to the original plain rt-TDDFT simulations.
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I. INTRODUCTION

Time dependent evolution of the Schrodinger’s equation has a history as old as the

quantum mechanics itself1,2. While ground state calculations yield atomic structures and

binding energies, time dependent solution of the Schrodinger’s equation reveals the dynamics

of the system. Much like in the ground state calculation, the time dependent solution of

the Schrodinger’s equation is often based on Born-Oppenheimer expansion of the electron-

nuclear wave functions, taking the advantage of the large mass difference between electron

and nuclei3. In case where the nuclear movement needs to be described fully quantum

mechanically, one can first get the potential energy surface (PES) Ek({R}) of the nuclear

degree of freedom {R} by solving the many-body electronic adiabatic eigen state Ψk(r, R)

(where Ek({R}) is its eigen energy) at every nuclear atomic configuration {R}, where k

is an index of the electronic configuration. We can then solve the nuclear time dependent

Schrodinger’s equation based on the PES Ek({R}) including the transition between different

k’s4. In practice, it is only possible to precalculate the full Ek({R}) for small molecules, and

considering only a limited electronic configurations k4.

To analyze the dynamics process, one can express the total electron nuclear wave function

Ω(r, R, t) in the Born-Huang expansion3:
∑

k Ck(t)Ψk(r, R)Φk(R, t) where Ψk(r, R) does not

depend on the time t. One can then write down the time dependent equation of Φk(R, t)

based on the PES of Ψk(r, R), and the coupling between k and k’: < Ψk(r, R)| ∂
∂R
|Ψk′(r, R) >

(here R acts as a parameter). Such coupling introduces quantum transition flux between

different adiabatic states k5. One approximation is to use Gaussian wave packets to rep-

resent the nuclear wave function Φk(R, t)
6. In the full multiple spawning (FMS) method7,

the Φk(R, t) is represented by a number of Gaussian functions with fixed widths, while the

trajectory Rn(t) (subscribe n is an index of the trajectory) of the center of the Gaussian func-

tion follows the Newton’s law on the PES of the corresponding electronic state. A trajectory

Rn(t) can be spawned into two at R where the amplitude of < Ψk(r, R)| ∂
∂R
|Ψk′(r, R) > is

large. Then a child trajectory residing on the electronic state k’ can be generated7. Since the

Ψk(r, R) related to a given trajectory Rn(t) can be approximated by Ψk(r, Rn(t)), it can be

calculated on-the-fly, making the calculation much cheaper than the full PES based quantum

calculations. In an alternative approach, a nuclear trajectory R(t) does not spawn into two,

but it can hop from one k PES to another k’ PES, using< Ψk(r, R(t))| ∂
∂R
|Ψk′(r, R(t)) > ·Ṙ(t)
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as a guide for the hopping probability8. An assemble of trajectories are used to get the sta-

tistical properties. This is the surface hopping (SH) scheme8.

The above schemes use quantum mechanical description for the electron wave function

and classical trajectory for nuclear movement, they are thus called mixed quantum/classical

methods. In such methods, Ω(r, R, t)
.
=

∑
k Ck(t)Ψk(r, R(t))Φk(R, t). Suppose at t = 0, we

only have one Ψk(r, R(t))Φk(R, t) term. If we focus on the time evolution of the electron

wave function, then due to interstate coupling, this one term can be split into two terms:

Ψk(r, R(t))Φk(R, t) and Ψk′(r, R(t))Φk′(R, t). Immediately after this electron wave function

splitting, although Ψk′(r, R(t)) is different (orthogonal) to Ψk(r, R(t)), Φk′(R, t) is the same

as Φk(R, t) (one can view Φk as ridding on the splitting of Ψk). However, due to their subse-

quent trajectory difference, < Φk(R, t)|Φk′(R, t) > will decay from one to zero exponentially

with a time scale τk,k′ . As a result, in terms of the electron wave function propagation,

Ψk′(r, R(t)) cannot be scattered back to interfere with Ψk(r, R(t)) (due to their ridding nu-

clear wave function Φk, Φ′k differences). Thus, effectively, Ω(r, R, t) can be represented by an

classical assembly of non interference wave functions Ψh(r, Rh(t)). This is the basis of the

wave function collapsing (WFC) scheme of the mixed quantum/classical approach, which

focus more on the evolution of the electron wave function Ψ(r, R(t)). The sudden collapse

of the electron wave function adds dissipative feature in the time dependent Schrodinger’s

equation for Ψ(r, R(t))9. In this view, it is the decoherence which leads to wave function

collapsing, which leads to the hopping of the trajectory and stochastic trajectory branch-

ing. Thus WFC also has the SH component in it. It is one way to realize SH. In terms of

their derivations, the original SH is focused more on the nuclear wave function Φk(R, t), its

evolution with time, and how it can branch into different k (thus trajectory hopping), while

WFC is more focused on the time evolution of the electron wave function, and how different

parts of the wave function lose coherence with each other due to the nuclear wave functions

ridding on them5. The decoherence effect exhibits itself explicitly in the WFC scheme, while

it needs to be introduced additionally in the pure SH approaches1.

The other effect which needs to be enforced is the detailed balance. In the time dependent

Schrodinger’s equation for the electron wave function Ψ(r, t), there are transitions between

adiabatic states Ψk(r, R(t)) and Ψk′(r, R(t)). This transition does not depend on their

potential energy difference: dEk,k′ = Ek(R(t))−Ek′(R(t)). In reality however, if the nuclear

degree of freedom is also described quantum mechanically, and if finite temperature T is
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used to describe the occupation of the phonon wave function, then due to the existence of

zero phonon mode, the efficiencies of the two transitions (from k to k’, versus from k’ to

k) differ by an Boltzmann’s factor exp(−dEk,k′/kT ), which favor the transition from higher

energy adiabatic state to lower energy adiabatic state. This is also called detailed balance,

which is the cause for hot carrier cooling.

It is worth to mention that there are many other nonadiabatic molecular dynamics

approaches based on mixed quantum/classical scheme, like: quantum/classical Liouville

approach10, Bohmian dynamics11 and exact-factorization scheme12.

The simplest mixed quantum/classical approach is the mean field Ehrenfest (MFE)

dynamics13,14. However, since it does not have the decoherence and detailed balance

effects15–17, one has to introduce them explicitly either by deploying the SH scheme or

WFC scheme. One of the most popular SH scheme is the fewest switches surface hopping

(FSSH) approach8, where the nuclear trajectory is based on one potential energy surface

PES Ek(R) until it hopes to another PES Ek′(R) in a stochastic fashion depending on the

coupling between Ψk(r, R(t)) and Ψk′(r, R(r)). The original FSSH8 does not have decoher-

ence, which can be introduced by modifying the coefficients of wave functions after every

time step of the Schrodinger’s equation18,19. The schemes with WFC components include:

instantaneous decoherence20, A-FSSH21, decoherence induced surface hopping (DISH)22 and

mean-field dynamics with stochastic decoherence (MF-SD)23. In such WFC schemes, a time

dependent wave function Ψ(r, t) =
∑
CkΨk(r, t) will be stochastically collapse into a new

wave function Ψ′(r, t) consisted with a subset of the adiabatic states Ψk, e.g, by setting one

or few Ck to zero. The time dependent Schrodinger’s equation will restart from Ψ′(r, t). As

mentioned before, such WFC scheme has also SH feature, since the WFC helps the system

to jump into different PES. In both the pure SH and WFC schemes, immediately after

the hopping or collapsing event, the total energy needs to be conserved. If the transition

is from a lower energy to a higher energy state, the increased potential energy needs to

be compensated by a kinetic energy reduction along a transition degree of freedom (TDF)

(which is the coupling direction Ψk(r, R(t))| ∂
∂R
|Ψk′(r, R(t)) >.24 If this TDF does not have

sufficient kinetic energy, the attemped transition will need to be cancelled. This introduces

the required detailed balance in an approximated way.

The above mixed quantum/classical schemes are derived based on many-body wave func-

tions, here Ψk(r, R(t)) is the many-body adiabatic state k, Ek(R(t)) is its eigenenergy and
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r ∈ R3Ne , where Ne is the number of electrons. There is a tremendous interest to deploy

the above procedures to density functional theory (DFT)25, where large systems (e.g., more

than 100 atoms) can be calculated. The real-time time dependent density functional theory

(rt-TDDFT)26 has now been used to study a wide range of problems, including light absorp-

tion spectrum; ion collision stoping power; hot carrier dynamics; and laser pulse induced

ultrafast phase changes etc. However, the rt-TDDFT is based on the mean field Ehrenfest

dynamics, thus it lacks the decoherence, detailed balance and stochastic branching features.

This makes it impossible to study some important physical phenomena, like the hot carrier

cooling; molecule breaking by radiolysis; chemical reaction branching; and photochemistry.

Without detailed balance, the Ehrenfest dynamics often over heats the electronic degree of

freedom15–17. As a pure deterministic method, it cannot be used to estimate the probability

of different products for a given chemical reaction.

There are many works in implementing the above many-body schemes under DFT

framework5,22,27–31. There are however several challenges. In the wave function based quan-

tum chemistry methods, the many-body wave function Ψk(r, R(t)) for which most of the

above algorithms are based on is calculated explicitly. Within DFT, the Ψk(r, R(t)) does

not exist, thus has to be approximated. A widely adopted approach30 for photochemistry

problems is to use linear response TDDFT method to calculate the exciton states using

Casida equation, and using Casida coefficient and the single excitation Slater determinant

(SD) basis set to approximate the many body wave function Ψk(r, R(t)). Besides being rel-

atively expensive, this approach cannot be used to study problems with more than a single

electron excitations. One can used a self-consistent field (SCF) constraint DFT with a given

occupation configuration k to calculate the excited state energy31. In this scheme, the SD

of the given configuration k is used to represent the many-body wave function Ψk(r, R(t)).

The many-body wave function time evolution equation is provided by the constraint DFT

calculated PES and the state coupling calculated using the SD. Note, in this scheme, due to

SCF calculation, different occupation configuration k will have different Kohn-Sham single

particle orbital φi,k(r, R(t)) (here unlike above, r ∈ R3 is the single electron coordinate,

and we use lower case Greek symbol to represent the single particle wave functions). As a

result, the SD for different k might not be orthogonal to each other. An orthogonalization

procedure is needed to fix this problem31. One can simplify this procedure as in the DISH

method22,27,32, where the single particle time dependent Schrodinger’s equation is used to
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evolve ψj(r, t), much like in the conventional rt-TDDFT32. However, the ψj(r, t) is expanded

by the single particle adiabatic states φi(r, t) of the charge density ρ(r, t) at time t. Thus

the SD of {ψj(r, t)} will be a linear combination of many SD of {φi(r, t)} for all the possible

selections of Ne adiabatic states i. Then the wave function will be collapsed into one or

several SD of {φi(r, t)}, which is used to approximate the many-body adiabatic states. Since

a unified set of {φi(r, t)} is used, there is no orthogonalization problem as in the above con-

straint DFT approach.31. Besides, there is no need for a SCF calculation for each occupation

configuration k, thus the calculation is much faster. However, there could be issues for the

PES of one SD of {φi(r, t)}, since it is not selfconsistently calculated. Besides, immediately

after the wave function collapsing, {φi(r, t)} are no longer single particle adiabatic eigen

states for the after collapsing charge density ρ′(r, t), thus they are not stationary for time

evolution, which makes it different from the original many-body based scheme.

In the actual implementation of the many-body wave function based schemes, one prac-

tical difficult is the large number of possible occupation configurations k. In the molecular

quantum chemistry calculation, very often only a few excited states are considered. In the

large system we are interested for rt-TDDFT calculations, and for strong multi-state exci-

tations, the configuration space can grow exponentially with system size. Thus how to keep

track of all these states becomes a computational challenge.

Lastly, it is worth to mention that it is still an open issue for how accurate can

DFT/TDDFT describe the dynamics behavior of the excited state, for example to describe

the intersection seams at the conical intersection, which is important for small molecule

photochemistry33. For example, it was found that, while the overall picture of the PES

can be described well by linear response TDDFT29,34, there could be some small qualita-

tive difference (degeneracy splitting) between the linear response TDDFT results and high

order quantum chemistry results for small molecule single state excitations34. However, it

is possible that for more complex systems, and stronger many state excitations, this might

no longer be true, or the dynamics might not be so sensitively depend on the intersection

seams. After all, in all the above algorithms, the trajectory hopping and wave function

collapsing happen at R point where there is still an energy difference between the two PES

(e.g., due to avoid crossing35).

Note that, for some problems, one can just solve the single particle time dependent

Schrodinger’s equation using one single particle time evolving wave function ψ(r, t) without
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worrying about the many-body aspects. This can be used to simulate a single hot car-

rier cooling and carrier transport ignoring the possible carrier-carrier interaction, and the

backreaction to the nuclear dynamics. Under classical path approximation (CPA) (which

ignores the effect of electron to the nuclear dynamics backreaction), the ground state ab

initio MD can be used to provide the single particle Kohn-Sham time dependent Hamilto-

nian H(t), on which the time dependent Schrodinger’s equation i∂ψ(r, t)/∂t = H(t)ψ(r, t)

can be solved. There is also an decoherence and detailed balance issue since they are not

in the i∂ψ(r, t)/∂t = H(t)ψ(r, t) equation. The solution for this problem is simpler. For

example, we have developed a P-matrix scheme36 where the problem is solved based on a

density matrix, where the decoherence and detailed balance are introduced.

Overall, there are still challenges in implementing the many-body mixed quantum/classical

schemes for nonadiabatic dynamics on DFT. It will be useful to explore alternative methods

which fits more naturally to rt-TDDFT frameworks. In the current work, we introduce

two new methods to describe the nonadiabatic MD within rt-TDDFT formalism. The first

is a Boltzmann method, which incorporates the decoherence and detailed balance in the

time dependent Schrodinger’s equation, while it uses a mean field approach for nuclear

dynamics. Unlike the CPA single particle nonadiabatic molecular dynamic approach36, in

this Boltzmann-TDDFT method, the backreaction is fully considered. It can be used to

describe the hot carrier cooling; multi-carrier interaction; polaron formation; laser induced

phase transition etc. But as an mean field dynamics, it cannot describe trajectory branching

and different products in a chemical reaction. The second method is a stochastic method,

which uses density matrix to describe the wave function evolution, and natural orbitals to

collapse the wave functions upon. It has the decoherence and detailed balance features, as

well as the stochastic branching feature. In a way, this is a similar approach to the DISH

method22,27,32, but with a different and more natural wave function collapsing scheme. Being

a stochastic method, one needs to simulate the system multiple times in order to get the

statistics. In that sense, it is more expensive than the Boltzmann-TDDFT. In the following,

we will first describe these two methods separately.
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II. BOLTZMANN RT-TDDFT METHOD

In rt-TDDFT simulation26, the equation for the time evolving single particle orbital ψj(t)

is:

i
∂ψj(t)

∂t
= H(t)ψj(t) (1)

here H(t) is the DFT Hamiltonian which depends on the charge density at t, and ψj(t) has

an occupation o(j) which is independent of time. In the simplest case, oj equals 1 for the

first N orbital (N = Ne/2 for double occupation, and N = Ne for single occupation in spin

polarized calculations), and zero otherwise, In that case, the whole dynamics is invariant

regard to an unitary rotation among {ψj(t)}. Thus in the following, we will drop o(j). We

thus should pursue formalism which retain this occupation space rotational invariance.

Our Boltzmann formalism will be based on adiabatic state φi(t), which satisfies: H(t)φi(t) =

εi(t)φi(t). We follow a procedure as in our previous rt-TDDFT work37 where we expand

ψj(t) on the basis set of φi(t) as:

ψj(t) =
∑
i

C(i, j, t)φi(t) (2)

We can then convert the Eq.(1) to an equation for the coefficient C(i, j, t)

i
∂C(i, j, t)

∂t
= εi(i, t)C(i, j, t) +

∑
i′

D(i, i′, t)C(i′, j) (3)

Here D(i, i′, t) = −i < φi(t)| ∂∂t |φi′(t) >, thus D(i, i) = 0 and D(i, i′) = D∗(i′, i).

Now, in order for our formalism to be occupation subspace rotational invariant, we will

concentrate on the density matrix: d(i, i′, t) =
∑N

j=1C(i, j, t)C∗(i′, j, t). Most importantly,

we can define:

T (i, i′, t) = −
N∑
j=1

2Re{iC∗(i, j, t)D(i, i′, t)C(i′, j, t)} (4)

This T (i, i′, t) represents an instantaneous charge flow from i’ adiabatic state φi′(t) to i

adiabatic state φi(t). Note: T (i, i′, t) = −T (i′, i, t). We first introduce the decoherence effect

by making an integration of T (i, i′, t):

8



I(i, i′, t) =
1

τi,i′

∫ ∞
0

T (i, i′, t− t′)e−t′/τi,i′dt′ (5)

This I(i, i′, t) will effectively average the charge flow between i and i’ over a period of τi,i′

which is the decoherence time between states φi(t) and φi′(t). Longer the decoherence time,

longer the average. For example, a long decoherence time will lead to an Fermi golden rule

about the transition energy between εi − εi′ which is encoded in the C in Eq.(4) and the

phonon frequency which is encoded in the D(i, i′, t) in Eq.(4). If the Fermi golden rule is

not satisfied, the T (i, i′, t) will exhibit a sinusoidal oscillation, and the integration of Eq.(5)

will yield zero result for I(i, i′, t) (due to coherence cancellation). On the other hand, if

the decoherence time is extremely short, then even instantaneous oscillation in T (i, i′, t) will

result in real charge transfer.

This integrated quantity I(i, i′, t) is the real charge flow (after considering the coherence

interference) which should be subjected to detailed balance. Our basic approach is to modify

this charge flow depending on whether such charge flow is from lower adiabatic state to higher

adiabatic state, or the opposite. More specifically, we like to introduce the following change

to this charge flow in order to enforce the detail balance:

∆I(i, i′, t) =

I(i, i′, t)(e−|εi−εi′ |/kT − 1), I(i, i′, t)(εi − εi′) > 0,

0, I(i, i′, t)(εi − εi′) ≤ 0
(6)

This change will thus reduce the charge flow by a Boltzmann factor if the flow is from an

lower energy adiabatic state to a higher energy adiabatic state. Note here, instead of using

many-body total energy, we have used single particle eigen energies. In other words, the

total energy difference after a single orbital transition is approximated by the single orbital

eigen value difference. The charge flow in Eq.(6) is the charge flows between adiabatic

states i and i’ sum over all time evolving single particle orbital ψj(t). Thus, in the following,

instead of altering each individual single particle wave function ψj(t), we will alter them

as a whole. In this way, we can keep the subspace rotational invariance. We also have

∆I(i, i′, t) = −∆I(i′, i, t) We next add this ∆I(i, i′, t) to the adiabatic occupation d(i, i, t)

as:
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d′(i, i, t) = d(i, i, t) + ∆t
∑
i′

∆I(i, i′, t) (7)

The above equation is valid for one integration step of ∆t time interval. The intention is to

use d′ to replace d in the following step. Alternatively, one can also write the Eq.(7) as:

∂

∂t
d(i, i, t) = 2

N∑
j=1

Re(C(i, j, t)
∂

∂t
C∗(i, j, t)) +

∑
i′

∆I(i, i′, t) (8)

with the second term as the Boltzmann correction term. To make a mean field approx-

imation, and keep the formalism remain in the rt-TDDFT representation (e.g., the system

is represented by a single SD), we like to modify the coefficient C(i, j, t) in Eq.(2) so we will

have the desired d′(i, i, t) (after each time integration step dt). To do that, we introduce a

change ∆C(i, j, t) to the coefficient C(i, j, t), which satisfies the following linear equation:

M∑
i=1

C(i, j1, t)∆C
∗(i, j2, t) + ∆C(i, j1, t)C

∗(i, j2, t) = 0 (9)

2
N∑
j=1

Re[C(i, j, t)∆C∗(i, j, t)] = ∆d(i, i, t) (10)

Here ∆d(i, i, t) = d′(i, i, t) − d(i, i, t) as defined in Eq.(7). The first line in Eq.(9) is to

satisfy the orthonormal condition for ψj(t), and the second equation is to yield the modified

occupation d′(i, i, t) on each adiabatic state φi(t). After ∆C(i, j, t) is solved from Eq.(9) and

(10), we can update the wave function after each integration step ∆t as:

ψj(t) =
∑
i

(C(i, j, t) + ∆C(i, j, t))φi(t) (11)

Note that, if the number M of adiabatic state φi(t) in Eq.(2) is much larger than the

number N of time evolving orbital ψj(t), Eq.(8) is under determined for ∆C(i, j, t). Besides,

we need to keep in mind that any subspace rotation among {φj(t)} will retain the d(i, i, t) and

the orhonormal condition. We thus seek the ∆C(i, j, t) which satisfies the Eq.(9), but also

have the minimum amplitudes. We also note that, we have not required any specific values

for the off diagonal term of d(i, i′, t). One could impose additional conditions to the change
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of d(i, i′, t) (e.g., proportional to their diagonal values changes in d(i, i, t) and d(i′, i′, t))) to

further fix the ∆C(i, j, t). Right now, we found that fixing d(i, i, t) with minimum change

∆C(i, j, t) yields good results.

We also note that, in actual integration, we often have ∆t in the order of 0.1fs (note,

each ∆t integration involves many smaller dt step integrations of the Eq.(1) on an reduced

M dimension basis set of {φi(t1)} with the algorithm described in Ref.37. Due to the finite

size of ∆t, the above equations can be modified accordingly, taking into account the finite

∆t second order effects, for example, to assure that d′(i, i, t) remains within the range of

[0,1] and the orthonormal condition is satisfied through Eq.(9) (by adding the second order

term in ∆C(i, j, t)).

We have used an iterative method to solve Eq.(9). In our test, the solution of Eq.(9) can

increase the total computational time by a factor of 2-3 for systems with about 50 φi(t). The

timing however depends on the implementation of the linear solver, as well as the criterion

to stop the iteration during the solution of the linear equation.

Lastly, the change in Eq.(11) does change the total energy. To restore the energy conser-

vation, we need to give the energy to the nuclear kinetic energy in the TDF. The ∆I(i, i′, t)

in Eq.(6) is responsible for the total energy change. It can thus be used to define TDF,

which is represented by an set of atomic force:

FTDF (Ra, t) =
∑
i,i′

∆I(i, i′, t)/|d(i, i′, t)|Re{< φi′(t)|
∂H(t)

∂Ra

|φi(t) > d(i, i′, t)} (12)

Here Ra is the atomic coordinates for atom a, and it is also used here as an atom index.

d(i, i′, t) is used to provide the proper phase for the φi(t) and φi′(t) terms. The missed energy

can be added back in the direction {FTDF (Ra, t)}. More specifically, one can calculate the

total energy EDFT ({ψj(t)}) after the Eq.(11) update for {ψj(t)}, then calculate the total

energy change ∆E = Etot − EDFT − Ekin, here Ekin is the nuclear kinetic energy, and Etot

is the original conserved total energy. We then rescale the velocity according to:

V ′(Ra, t) = V (Ra, t) + αFTDF (Ra, t)/Ma (13)

here Ma is the nuclear mass, the factor α is determined in order to increase the kinetic
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energy by ∆E. Since ∆E is usually positive (the effect of Boltzmann factor always lowers the

total energy, we never found the opposite case), we can always satisfy energy conservation.

Actually, there are two solutions, and we should take the small α one (e.g., for small ∆t, α

should also be small, proportional to ∆t). This concludes our description for the Boltzmann

factor correction for rt-TDDFT simulations. Details testing result will be provided later.

III. NATURAL ORBITAL BRANCHING

The above Boltzmann method works well to describe the hot carrier cooling, and how

the DFT system jumps from higher energy configurations to lower energy configurations.

It is a mean field method for its nuclear movement, so it is deterministic and only has one

trajectory. This is good if only the average electronic dynamics is of interest. However, there

are cases where the branching of the nuclear movement is of central interest, for example

if we like to know what is the probability of different chemical reaction products. In such

cases, it is unavoidable to have some stochastic features in our simulation, and multiple

runs are needed to get the required statistics. In that sense, the above Boltzmann factor

approach is inadequate.

To introduce the stochastic behavior, we will use WFC scheme. In the traditional WFC

approach, the many body wave function Ψ(t) is represented as a linear combination of

many-body adiabatic states Φk(t) as: Ψ(t) =
∑

k C(k, t)Φk(t). At fixed intervals (e.g.,

determined by the weighted average decoherence time22), the wave function Φk(t) will be

broken into subset of the adiabatic states with the probability proportional to the amplitudes

|C(k, t)|2. However, there are many ways to make such collapsing. For example, in the

DISH method22, one adiabatic state Φk(t) is randomly selected according to its amplitude

|C(k, t)|2. Then with another random number choice, the Ψ(t) is either broken into Φk(t),

or into
∑

k′ 6=k C(k′, t)Φk′(t). There are however issues in such collapsing schemes. First,

different pairs (k, k′) of adiabatic states might have different decoherence time τk,k′ . The

above scheme is difficult to accommodate these individual pair differences. Second, it is hard

to justify why the system must collapse into either one adiabatic state, or the sum of the rest

adiabatic states. One can imagine, the wave function can collapse into a sum of a subset of

adiabatic states. Then, there are many different ways to select the subset. There is even an

issue whether the wave function has to collapse into the adiabatic state at all. Based on the
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arguments presented in the introduction section, the wave function should be collapsed into

electron wave functions where their nuclear wave functions have become orthogonal to each

other. This does not mean such decoherent states must be adiabatic states. For example, in

some cases the localized diabatic state might be decoherent between each other more than

the adiabatic states. All these mean it will be desirable to have an algorithm which delivers

the decoherent states automatically, instead of relying on the many-body adiabatic states in

an artificial way. We also like to have a scheme which fit more naturally to the single particle

orbital formalism of the DFT calculation, instead of many-body wave functions which do

not exist in DFT.

Here we present a natural orbital branching (NOB) method. In this method, for the time

dependent Schrodinger’s equation, instead of working on the wave functions, we will work

on the density matrix d(i, i′, t) on the basis set of single particle adiabatic state φi(t). Note

in a previous work for nonadiabatic molecular dynamics under CPA36, we have developed

a P-matrix formalism based on the density matrix. But that density matrix is an classical

assembly of the single particle solution, which is different from our current density matrix,

which represents all the electrons in a given system. At the beginning of the simulation, we

can have: d(i, i′, t = 0) =
∑N

j=1C(i, j, t = 0)C∗(i′, j, t = 0) (occupying a set of time evolving

wave function {ψj}). But as the time evolves, we will no longer have this relationship. The

time dependent Schrodinger’s equation for the density matrix is:

i
∂

∂t
d(i, i′, t) = (εi(t)− εi′(t))d(i, i′, t) + [D, d](i, i′, t) (14)

here [D, d] = Dd− dD is the anti-commutator of matrix d and D. So far, this is the same as

the wave function based rt-TDDFT. Now, to represent the decoherence between adiabatic

single particle orbitals φi(t) and φi′(t), it is common to add an decay term to reduce the off

diagonal matrix of d(i, i′, t)38. In other words, we can change Eq.(14) to:

i
∂

∂t
d(i, i′, t) = (εi(t)− εi′(t))d(i, i′, t) + [D, d](i, i′, t)− id(i, i′, t)/τi,i′ (15)

The last term is only nonzero when i 6= i′, in other words, τi,i = ∞. Note that, here,

instead of using the decoherence life time τk,k′ between two many-body states k and k’, we

have used the decoherene life time τi,i′ between two single particle orbital, a description

more natural to DFT calculations. In the density matrix formalism, the charge density is
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calculated as : ρ(r, t) =
∑

i,i′ φi(r, t)d(i, i′, t)φ∗i′(r, t). The kinetic energy is calculated as

Ek(t) = −1
2

∑
i,i′ < φi′ |∇2|φi > d(i, i′, t), and the Hellman-Feynman force can be calculated

as: FR(t) = −
∑

i,i′ < φi′ |∂H(R)
∂R
|φi > d(i, i′, t). Most importantly, as shown in the supple-

mental information (SI), using this Hellman-Feynman force, Eq.(15) does conserve the total

energy, regardless of what τi,i′ are used.

Now, we can diagonalize the density matrix d(i, i′, t), get the eigen vector C ′(i, j, t) and

eigen values λj(t):

M∑
i′=1

d(i, i′, t)C ′(i′, j, t) = λj(t)C
′(i, j, t) (16)

we then get the natural orbitals:

θj(r, t) =
M∑
i=1

C ′(i, j, t)φi(r, t) (17)

which is the eigen vector of the density matrix. θj(r, t) (j=1,M) are different from the

time evolving wave functions φj(r, t) (j=1,N) in Eq.(1). If there is no decoherence term in

Eq.(15), then the first N θj will be the same as the φj(r, t) and λj(t) will be the same as 1

(for j=1,N) and 0 (for other j). On the other hand, due to the decoherence term in Eq.(15),

we will have λj(t) ∈ [0, 1]. We can define an entropy of the set of {λj(t)} as:

S(t) = −
∑
j

[λj(t)lnλj(t) + (1− λj(t))ln(1− λj(t))] (18)

Thus, when S(t) is not zero, the d(i, i′, t) cannot be represented by a single SD. One way

to represent d(i, i′, t) is to use an assemble of different decoherent SD, each consisted with N

{θj(t)}. It is thus natural to set a criterion Sc, when the entropy S(t) becomes larger/equal

to Sc, we request a WFC event. In this event, we will collapse the wave function into one

SD consisted with N selected {θj(t)}. Thus, after this WFC event, the entropy S(t) will be

reset to zero, and set λj(t) = 1 for the selected j’s and 0 otherwise. Note that, the wave

functions (or the density matrix) is not collapsed into a subset of the adiabatic state {φi(t)}.

Instead, it collapsed into a subset of natural orbital {θj(t)}. The above procedure provides a

way to deal with the different decoherence time τi,i′ for different adiabatic pair (i, i′). Thus,

in our scheme, although the decoherence happens between different single particle adiabatic

orbital pairs, the WFC happens on the basis of natural orbitals. This is a major difference
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between out NOB scheme and the DISH scheme22. Another difference is our Eq.(15). If the

original Eq.(14) is used as in DISH, then in our scheme, there will be no WFC. The use

of Sc provides a natural choice to decide when to do WFC. It is not based on an regular

time interval determined by τi,i′ . Basing directly on τi,i′ (or their average) can cause some

problems. For example, if the off diagonal D(i, i′, t) in Eq.(3) is small, at time equals τi,i′ ,

there might not be large adiabatic state mixing, it is thus not necessary to break up the

wave function ψj(t) (since ψj(t) might still be the same as the adiabatic state φi(t)). As

we will find out later, in our scheme, the interval of wave function collapsing varies a lot

depending on the dynamic situation in different time period.

Now, lets discuss the procedure to select N orbital j from M possible candidates based

on probability {λj(t)}. We require that the probability for each θj(t) to be selected is

proportional to {λj(t)}, this is important so an assemble average after the collapsing events

will retain the occupation of each θj(t). This is a sampling without replacement problem

with desired unequal probability of selection39. We follow the procedure by Sampford39 with

a small modification. In Sampford’s procedure, sampling with replacement (which means

the selected j will not be removed from the M candidate pool) is used. The first draw

(selecting one j from the M candidates) is done according to their probabilities λj(t)/N .

The subsequent N-1 draws are done with their probabilities proportional to λj(t)/(1−λj(t)).

However, if any of the j have been draw more than once in the above N draws, the whole

draw will be abandon, and the draw will restart from beginning. This procedure is simple.

However, in our case, we have many j with their λj(t) close to 1, this will lead to extremely

high probability for one of the j’s to be draw more than once. To avoid this, we have made

the following modifications. First, we have select a small δ (e.g., 0.01). Let’s assume there

are Q j’s with λj(t) > 1 − δ. For these Q j’s, for each j, we randomly determine whether

it will be selected according to its probability λj(t). Let’s assume q of these j’s have been

selected in this way (usually q is rather close to Q, since these λj(t) are all close to 1).

Now, we place the rest M-Q j’s in the Sampford’s method, and require it to select N-q j’s

proportional to their probability λj(t). If there is double drawing in Sampford’s procedure,

we repeat it until it is successful. Since we have removed the j’s with close to one λj(t), the

probability for double drawing has been significantly reduced, e.g., the successful rate can

be about 20%. Fig.1 show a typical case with S=1.7, and N=12 θj(t) is selected from M=25

possible states. The λj(t) (and 1− λj(t)) are shown in logarithmic scale, together with the

15



actual probability pj tested with a million successful selections with δ = 0.01. We can see

pj is very close to λj(t). Note, the above selection is the same as to select all possible CN
M

occupation configurations S(u) each with a probability:

P (S(u)) = K(N,M)
N∏
u=1

λj(u)(t)

(1− λj(u)(t))
(N −

N∑
u=1

λj(u)(t)) (19)

where K(N,M) is an overall normalization factor depends only on N and M, and j(u) is the

selected j index of S(u). It is interesting to note that P (S(u)) does not simply proportional

to
∏N

u=1 λj(u)(t).

FIG. 1. The selected probability pj compared with the λj using a modified Sampford algorithm

with δ = 0.01. The entropy of the {λj} set is 1.75

After the N j’s subset S(u) is selected, we can set λj′(t) = 1 for all the selected j′ = j(u)

(u=1,N), and λj′′ = 0 for the unselected j”. We thus reset the S(t) to zero. However, this

should not be the final decision for whether this selection is successful. First note, between

two consecutive WFC events, the total energy is conserved by Eq.(15). Like in the other HS

or WFC schemes, it is critical to make sure the hopping/collapsing event can satisfy the total

energy conservation using the transition degree of freedom (TDF), so the detailed balance

will be restored. To do this, one first evaluates the DFT energy EDFT,after WFC using the

selected {θj′(t)} as the occupied wave functions. In principle, this DFT energy evaluation

should be straight forward, no SCF iteration should be needed. However, in practice, there

is a subtle issue in our adiabatic state based calculation using Eq.(2) and Eq.(17)37. Before
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the collapse, the {θj′(t)} can all be represented by the adiabatic state φi(t) according to

Eq.(17). However, after the collapse, the charge density is changed to ρ′(r, t), thus φi(t)

will also be changed to φ′i(t). If the number M of the adiabatic basis set is not very large

(hence {φ′i(t)} is not a complete basis set), the {θj′(t)} can no longer be represented by

{φ′i(t)}. Usually this is a small error due to the finite number of M. However, without fixing,

it can cause numerical instability. We have developed a procedure to solve this problem

(as described in the SI), where the φ′i(t) is solved iteratively, while the calculation of charge

density is based on {θ′j′(t)} which is a projection of {θj′(t)} to the {φ′i(t)} basis set. Such

a selfconsistent solution guarantees that {θ′j′(t)} can be represented by the adiabatic states

{φ′i(t)} of charge density ρ′(t) =
∑

j′ |θ′j′(t)|2. Thus after the WFC, the system will restart

with a set of occupied wave functions: {θ′j′(t)}.

After the EDFT,after WFC is calculated, if ∆E = EDFT,after WFC−EDFT,before WFC > 0 we

need to have a TDF to determine whether the increased potential energy can be provided

by the kinetic energy in the TDF; while if dE ≤ 0, we need to give the extra kinetic energy

to the TDF. Our wave function collapsing can be considered as a transition between all

the unselected natural orbitals {θj′′} to all the selected natural orbitals {θj′}. We thus can

calculate the TDF force direction as:

FTDF (Ra, t) =
∑

j′∈N ;j′′ /∈N

(1− λj′)λj′′Re{< eiβj′θj′ |
∂H(t)

∂Ra

|eiβj′′θj′′ >} (20)

Here we have added a random phase factor eiβj′ to each natural orbital θj′ . One can

consider this as an additional random factor in the stochastic process. Given this FTDF and

dE, we can judge whether the needed energy (in case ∆E > 0 ) can be provided from the

nuclear kinetic energy using Eq.(13). If that can be provided by the kinetic energy, or if

∆E < 0, we can adjust the nuclear velocity by Eq.(13). If on the other hand, ∆E > 0 cannot

be provided by the nuclear kinetic energy as described by Eq.(13), then we will repeat the

N j’s selection process, until one selection where Eq.(13) can satisfy the ∆E. In practice,

we found that, typically 1 to 2 selection will be enough to satisfy the energy conservation.

Only occasionally, more than 2 selections are needed. Our strategy is that, when S(t) = Sc,

we keep making selection until the energy conservation is successful. So, at each S(t) = Sc

point, we will always have a WFC event. After this event, and after the rescaling of the

velocity, our simulation can continue with {θ′j′(t)} as the initial states. This concludes our
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NOB procedure description.

IV. RESULTS AND DISCUSSIONS

To test our methods, we choose to study radiolysis problem for molecules. In the

radiolysis40,the molecule is first ionized (e.g., losing one electron into a +1 state) by either

electron beam in electro microscope or by a ultroviolet light. Subsequently, the molecule

can break down into fragments. This is an important problem for material decay, but there

are insufficient theoretical studies due to the lack of appropriate ab initio methods41. This

is also a complicated problem which can involve different physical phenomena like Auger

cascade, Coulomb explosion, hot carrier cooling and electron-phonon interaction. To test

our methods, we will focus on the electron-phonon interaction and hot carrier cooling, while

ignoring other possible phenomena at this moment. We have chosen molecule C3H7OH to

carry out our test. Plane wave pseudopotentials are used to represent the Hamiltonian, with

a 50 Ryd cut off for the plane wave kinetic energy, and SG15 optimized norm-conserving

Vanderbilt pseudopotential (ONCVPSP) is used. General gradient approximation (GGA)

exchange-correlation functional is employed. The calculation is done with spin polarization.

The molecule is placed in a 8 × 8 × 8 Å periodic box. At neutral charge, the system has

26 electrons. An ab initio molecular dynamics (AIMD) has been performed at room tem-

perature with neutral charge. After the equilibrium has been reached, we carry out the

rt-TDDFT simulation.

First, the Kohn-Sham orbital eigen energies, and some of their wave functions squares

are shown in Fig.2 at neutral charge. We can see that the first valence state is about 18 eV

below the highest occupied molecular orbital (HOMO). The wave functions have different

characters, localized at different bonds. We like to mimic the situation where one of the

electron has been ionized (e.g., by an high energy electron beam, or ultraviolet light). In

reality, this means the system is transited into one of the higher energy many-body excited

states, while its nuclei remain at t=0 positions (under the instantaneous transition approxi-

mation). We thus have one hole in one of the valence orbital in one spin, and we carry out a

constraint occupation spin polarized SCF DFT calculation. Such constraint DFT result will

approximate the corresponding many-body eigen state at a given occupation configuration.

This is the t=0 electronic structure configuration for our rt-TDDFT simulation.
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FIG. 2. The DFT eigen energy spectrum (right panel) and the first 8 valence state wave function

squires for the neutral charge C3H7OH molecule.

Our rt-TDDFT simulation will be based on the adiabatic state representation formalism

as described in Ref.37. This allows us to use a relative large ∆t (0.1 fs). Note, our subsequent

Boltzmann and NOB operations will all be based on this ∆t interval, although within each ∆t

step, there are many smaller time evolution steps on a reduced M dimension Hamiltonian,

here M is the number of adiabatic states used in Eq.(2). For details of this integration

scheme, we refer to Ref.37. We first carried out a plain rt-TDDFT by removing one electron

from valence state 4 in one spin (hence the system will be +1 charged), roughly at the middle

of the valence bands as shown in Fig.2. Such rt-TDDFT simulation can be used to study

phenomena like ultra-fast dynamics and molecule dissociation before hot carrier cooling

becomes important. In recent years, there are many of such rt-TDDFT simulations to study

different phenomena42–44. Fig.3(a) shows the potential energy (DFT energy, excluding the

nuclear kinetic energy, the same terminology below) as a function of integration time. We

see that, although there are large energy changes and oscillations , there is no clear trend of

the DFT total energy reduction (hot carrier cooling). This is because the plain rt-TDDFT

does not have the detailed balance. We have plotted the adiabatic eigen energies εi(t) as

functions of time t in Fig.3(b). As we can see, there are large oscillations. Nevertheless,

the initial structure in the energy spectrum remain, and there is still a large band gap

between the lowest occupied molecule orbital (LUMO) and highest occupied molecule orbital

(HOMO). We have also plotted the occupations of the 13 adiabatic valence states calculated

as: oi(t) =
∑N

j=1 |C(i, j)|2 in Fig.3(c). The state 4 has a zero occupation at t=0, but gains

its occupation after 20 fs. At 100 fs, there are still many states having relatively large

amplitudes especially among valence states 6 to 13. Thus there is no clear picture of hot
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carrier cooling. Instead the holes are roughly equally distributed among the valence bands.

FIG. 3. (a) The potential energy changes during a rt-TDDFT simulation when valence state 4 is

ionized at t=0. Three cases are tested: (1) the pure rt-TDDFT simulation without Boltzmann

factor; (2) the rt-TDDFT simulation with Boltzmann factor and decoherence time τ equals 20 fs;

(3) the rt-TDDFT simulation with Boltzmann factor and decoherence time τ equals 40 fs; (b) The

adiabatic state eigen energy changes as functions of time during rt-TDDFT simulation. The ones

with Boltzmann factor (not shown) are qualitatively similar; (c) The occupation changes on the

adiabatic states during a pure rt-TDDFT simulation. At the beginning, the state 4th is empty;

(d) The occupation changes on the adiabatic states for the rt-TDDFT with Boltzmann factor with

τ equals 20 fs.

We then carry out Boltzmann rt-TDDFT calculation for the above system. There are

different ways to calculate τi,i′ for each individual pairs (i,i’), e.g., from their energy difference

fluctuations from Fig.3(b)36. However, here we will first use an uniformed τi,i′ = 20 fs to

represent this effect as we found τ is usually around this range for many different systems36,45.

The potential energy as a function of time is shown in Fig.3(a) in comparison with the plain

rt-TDDFT result. As we can see, the potential energy in Boltzmann factor simulation

decays significantly, representing hot carrier cooling. The individual eigen state energies

are qualitatively similar to the plain rt-TDDFT results shown in Fig.3(b). However, the

adiabatic state occupations looks rather different, as shown in Fig.3(d). In particular, at

100 fs, the hole occupations are concentrated on the few near HOMO states, much more

narrowly distributed than the pure rt-TDDFT case as shown in Fig.3(c). To test the effect

of τi,i′ , we have also done a Boltzmann simulation with τ = 40 fs. The potential energy
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result is also shown in Fig.3(a). As we can see, its results are rather similar to that of the

τ = 20 fs result in their overall trends. Thus, within a reasonable range of τ , the result

is insensitive to the exact τ value (on the other hand, if τ is ∞, the Boltzmann method

becomes the pure rt-TDDFT method). Overall, we see the effects of detailed balance for

the hot carrier cooling in the Boltzmann rt-TDDFT simulations.

Although the Boltzmann rt-TDDFT has a detailed balance, its nuclear trajectory follows

a mean field path. There is no stochastic effects, thus cannot be used to describe different

possible reaction paths and products. In our case, under the high energy ionization (photol-

ysis), the molecule can be broken into many fragments. We found that there is no molecule

breaking when the 4th valence state is ionized in both of our plain rt-TDDFT simulation

and Boltzmann rt-TDDFT simulation. However, if we ionize the first valence band state,

in both rt-TDDFT and Boltzmann rt-TDDFT simulation, we found the OH group will fly

away from the rest of the molecule. This is a pure dynamic process due to the initial hole

concentrate at the O-C bond as shown in Fig.2. Thus, this happens to both rt-TDDFT and

Boltzmann rt-TDDFT. But there is no other fragmentation happens. We thus carried out

23 NOB simulations (with different random number seeds) for the valence state 1 ioniza-

tion. Although the initial condition is the same, we get many different fragments due to the

stochastic feature of the simulation, as summarized in Table.I (for the different fragments

and their counts of appearance in the 23 runs at the end of 200 fs). As we can see, the NOB,

has a higher tendency to break the molecule into more fragments. Perhaps this is because

Boltzmann rt-TDDFT is a mean field method for the nuclear trajectory, the method cannot

break the symmetry and select one particular fragment breaking path instead of another.

As a result, it has a smaller tendency to break up the molecule.

The potential energies as functions of time for the 23 different simulations when the first

valence state is ionized are shown in Fig.4(a). As we can see, there is a wide range of

trajectories. However, the trajectories cluster into different groups, especially for the initial

major WFC. One happens around 50 fs, another happens around 100 fs. Note, in all these

trajectories, the OH group will separate from the molecule in the first 10 fs, as a dynamic

process, same as in the plain rt-TDDFT and Boltzmann rt-TDDFT simulations. After the

OH flies away, in some cases, they will suddenly dissociate, but in other cases, they stick

together. For the remaining CH2CH2CH3, in most cases, they will become CH3CHCH3

fragment. But in some cases, the H can fly away, thus generate some other 3 carbon
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fragments. The H dissociation process can be a result of the secondary collision by the fly-

away H (from the initial OH), but can also be due to the thermal vibration of the 3 carbon

fragment itself without collision. Surprisingly, the C-C bond was never broken by itself in

this valence state-1 ionization case, despite the large ionization energy. A detail analysis of

the trajectories shows that, all the 2 carbon and 1 carbon products in Table.I are the results

of secondary collision by the fly-away OH, or dissociated O, or H, to the periodic neighbours

of the molecule. So, if we were simulating an isolated molecule, they should not exist. The

same is true for CH3CO, CHO, and H2O fragments, they are all the results of secondary

collision.

FIG. 4. (a) The individual trajectory potential energies when the valence state 1 is ionized using

NOB algorithm; (b) The average energy for the 23 trajectories in (a), for Sc=0.5 and Sc=0.25, in

comparison with Boltzmann rt-TDDFT simulation potential energy. All the simulations have used

τi,i′ = 20fs.

In the above tests, we have used Sc = 0.5. In order to test the effect of Sc, we have

repeated the 23 trajectory calculations with Sc = 0.25. The individual trajectories are

very different. However, the average potential energy of these 23 trajectories (also shown in

Fig.4(b)) are rather similar to the Sc = 0.5 result. This indicates that the final assembly

result is insensitive to the exact value of Sc used. In Fig.4(b), we also show the Boltzmann

rt-TDDFT result for valence state-1 ionization. We see that the Boltzmann result decay

faster than the NOB result at the beginning. Also, its final potential is slightly lower. This is
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TABLE I. The final fragments and their the number of their appearance in the 23 NOB simula-

tions after 200 fs simulations. Some of the final fragments are results of collisions with periodic

neighboring molecules.

Fragment N Fragment N Fragment N

CH3CH1CH3 10 CHCH 1 OH 6

CH3CHCH2 3 CH3CO 1 H2 3

CH3CHCH 3 CHO 4 O 12

CH3CCH3 2 CH3 3 H 30

CH3CH 1 CH2 3

CH2CH2 1 H2O 1

because the Boltzmann result does not have any other molecule breaking besides the initial

OH one, while the NOB can generate more molecule fragments, which cost energy, thus

makes their potential energies higher (and kinetic energy lower).

To illustrate the dynamics processes in more details, we have shown in Fig.5(a) the

increase of S(t) and the wave function collapsing events for one particular NOB trajectory

(call it trajectory-1) using Sc = 0.5. We see that this trajectory has a slow S(t) increase

at the beginning. This is because at the first, the hole is concentrate on state 1 and 2 as

shown in Fig.5(d), and only these two states have energy crossing with each other, as shown

in Fig.5(c). However, after 90 fs, several big WFC events happen, and there is a period with

frequent WFC, until the system potential energy is completely relaxed to the equilibrium

one (Fig.5(b)). This fast WFC period also corresponds to the jump of the hole concentration

to the higher energy states as shown in Fig.5(d). Since these higher energy adiabatic eigen

energies are close to each other as shown in Fig.5(c), they have much faster state mixing,

which causes S(t) to increase rapidly, and leads to more frequent WFC until the system

reach equilibrium, with the hole resides in the HOMO level.

To demonstrate the NOB algorithm can lead to different fragments, we show in Fig.6

four different trajectories. We have calculated the bond lengths at t=0 and their subsequent

changes. They are numerated in the inset of Fig.6(a). The trajectory in Fig.6(a) is the

trajectory-1 shown in Fig.5 when the first valence state is ionized. As we can see, the O-C

bond is dissociated immediately after the initial ionization because the strong localization

of the valence state 1 shown in Fig.2. At about 100 fs, in trajectory-1, the O-H bond of the

fly-away OH group is dissociated. This happens when OH group is isolated, perhaps due to

its electronic structure WFC, and it follows the rapid WFC period shown in Fig.5(a). On the
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FIG. 5. The details of one particular trajectory (trajectory-1) in Fig.4(a) when valence state 1 is

ionized at t=0 using Sc = 0.5. (a) The increase of S(t) as a function of time; (b) The potential

energy of this trajectory as a function of time; (c) The spin=1 single particle adiabatic eigen state

energies εi(t). Note, at t=0, the first state is empty for spin=1; (d) The adiabatic state occupation

oi(t) = d(i, i, t). Note, the sudden change of occupation between state 1 and 2 before 80fs is mostly

caused by the eigen energy crossing between these two states, which leads to a change of definition

for which state is 1, which is 2. The occupations for different eigen states are color coded in the

same way as in (c).

other hand, for trajectory-2 shown in Fig.6(b), the OH group is never dissociated. Instead,

two H atoms dissociated from the carbon 3 group, perhaps due to thermal vibrations with

the heat generated from the relaxation of the initial high energy ionization (the molecule

can reach 4000-8000 K in temperature due to the energy gained from the hot hole cooling).

In Fig.6(c), We show a trajectory when the valence state 7 is ionized. In this case, none of

the bond is broken, the molecule remains as a whole. On the other hand, in trajectory-2

shown in Fig.6(d), one C-C bond is broken, the final fragments are CH2OH and CH2CH3.

We thus see that, it is not just the ionization energy, but also the ionized orbital, which

determine what bonds will be broken. The stochastic feature in NOB allows the description

of different reaction paths from the same initial condition.

Overall, we see that our NOB is able to calculate the molecular breakdown in the radiol-

ysis process. It can provide the rates for different molecule fragment products. It is worth
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FIG. 6. The bond breaking in different NOB trajectories at different initial valence state ioniza-

tions. (a) The trajectory-1 when valence state 1 is ionized. The number in the bond (e.g, 3,O-C)

corresponds to the numbers in the inset; (b) The trajectory-2 when valence state 1 is ionized;

(c) The trajectory-1 when valence state 7 is ionized. See Fig.2 for the initial valence state wave

functions and eigen energy; (d) The trajectory-2 when valence state 7 is ionized.

to mention that one does not need to carefully analyse the process and provide the specific

many-body state configurations k before the simulation. Such analysis is possible for small

molecules, but becomes increasingly complicated for large systems, and for high energy ex-

citation cascade processes like we tested here. In our calculation, all the selections are done

automatically, and there is no need to numerate all the possible many-body excited states

k, which can be extremely large. Such automatic selection of the states to be collapsed on

(the natural orbital) can be beneficial for high throughput simulations for large systems.

In terms of computational time, the NOB is almost the same as the original rt-TDDFT.

The density evolution of Eq.(15) has a similar cost as our original adiabatic basis set in-

tegration scheme37. The main cost is to the calculation of the adiabatic state φi(t). The

off diagonal decay term in Eq.(15) does not affect the iterative convergence of the φi(t).

One can also use other exchange-correlation functional in the simulation, e.g, the hybrid
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exchange-correlation functional, without changing the algorithm itself. The natural orbital

selection does not cost extra time. In most case, only one extra SCF DFT calculation is

needed to evaluate the total energy after each WFC, and to determine whether a WFC can

be accepted using Eq.(13). Since the WFC happens only in about 5% (when Sc = 0.5)

to 10% (when Sc = 0.25) of the total MD steps (when a ∆t = 0.1 fs is used), this only

constitutes about 5% to 10% cost increase. Both NOB and Boltzmann method make the

rt-TDDFT simulation more stable when using the adiabatic basis set integration scheme37.

This is because there are less occupation in the higher energy adiabatic state basis func-

tions near the truncation of the basis set, which makes the algorithm more stable. For the

plain rt-TDDFT, the algorithm might diverge after a long time evolution (when the higher

adiabatic basis become populated), a consequence of the lack of detailed balance. In both

NOB and Boltzmann method, the simulation can continue without the divergence problem.

For our test system, for a 2000 step (200 fs) simulation, it takes about 2 hours on a 4 GPU

workstation.

V. CONCLUSION

In summary, we have introduced two new schemes for nonadiabatic molecular dynamics

under rt-TDDFT formalism. One is the Boltzmann factor scheme which uses the decoherence

time and restores the detailed balance in the simulation. It thus can be used to describe

the hot carrier cooling with electron-phonon interaction and backreaction from electron

dynamics to nuclear dynamics. However, in terms of nuclear dynamics, it uses a mean

field approach, much like the original rt-TDDFT. It thus cannot be used to describe the

nuclear trajectory branching, and different paths and products of an chemical reaction. The

second method is a natural orbital branching (NOB) scheme based on the stochastic WFC

approach. This is close to the DISH22 method, but with critical difference in the collapsed

wave function selection and the time evolution of the wave function. We use a density matrix

formalism for time propagation, and natural orbital basis to collapse the wave function upon.

Thus, unlike most many-body based methods, here we do not collapse the wave function

into an many-body adiabatic state, or a SD consisted with single particle adiabatic states.

Instead, we collapse the wave function into a set of natural orbital. The selection process is

simple, and do not need to deal with the exponentially increasing (with system size) number
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of possible adiabatic state SDs. We feel this is a more natural way to collapse the wave

function to. We have tested our methods on the molecule radiolysis problem. We found

they can efficiently study such problems delivering what the algorithms are designed to do.

For the Boltzmann method, the computational time increases by a factor or 2-3 due to the

solution of a linear equation, although this could be improved by further code optimizations.

For the NOB method, the computational time is about the same as the plain rt-TDDFT

method. These two methods make the rt-TDDFT integration more stable than the original

plain TDDFT calculation. We expect them to find wide range of applications in different

nonadiabatic problems.
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