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Abstract 

In Australia, party sparklers are commonly used to initiate or prepare inorganic based homemade 
explosives (HMEs) as they are the most easily accessible and inexpensive pyrotechnic available on the 
market. As sparkler residue would be encountered in cases involving these types of devices, the 
characterisation and source determination of the residue would be beneficial within a forensic 
investigation. The aim of this study is to demonstrate the potential of using trace elemental profiling 
coupled with chemometric and other statistical techniques to link a variety of different sparklers to 
their origin. Inductively coupled plasma – mass spectrometry (ICP-MS) was used to determine the 
concentration of 50 elements in 48 pre-blast sparkler samples from eight sparkler brands/classes 
available in Australia. Extracting ground-up sparkler residue in 10% nitric acid for 24 hours was found 
to give the most reliable quantification. The collected data were analysed using Principal Component 
Analysis (PCA) to visualise the distribution of the sample data and explore whether the sparkler 
samples could be classified into their respective brands. ANOVA based feature selection was used to 
remove elements that did not significantly contribute to the separation between classes. This resulted 
in the development of a 7-elemental profile, consisting of V, Co, Ni, Sr, Sn, Sb, W, which could be used 
to correctly classify the samples into eight distinct groups. Linear Discriminant Analysis (LDA) was 
subsequently used to construct a discriminant model using four out of six samples from each class. 
The model successfully classified 100% of the samples to their correct sparkler brand. The model also 
correctly matched 100% of the remaining samples to the correct class. This demonstrates the potential 
of using trace elemental analysis and chemometrics to correctly identify and discriminate between 
party sparklers.  

Keywords: Party sparklers; Physical evidence; Inductively Coupled Plasma Mass-Spectrometry (ICP-
MS); Elemental profiling; Chemometrics; Principal Component Analysis (PCA) 
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1.0 Introduction 

Homemade inorganic explosives (HMEs) are frequently encountered in cases involving improvised 
explosive devices due to the widely available and easily accessible precursor chemicals. In Western 
Australia (WA), ‘sparkler bombs’ or other devices primarily comprised of party sparkler residue make 
up the majority of the HME devices seized by police. Sparklers and sparkler residue can be used to 
prepare an endless number of unique explosive devices. Regardless of the design, all sparkler devices 
have the potential to initiate fires as well as cause major damage to property, animals and people. 
There is a high forensic interest in analysing pre and post-blast residues from incidents involving 
pyrotechnics. Establishing a link between sparkler residue and its respective brand would be beneficial 
to forensic investigators as it may provide information regarding how they were sourced and could 
lead to the person/s involved. The importance of profiling and discrimination of sources for other 
types of physical evidence such as drugs, glass and paint has previously been demonstrated, and so 
further advancements in the profiling of explosive residues is warranted 1-4. Therefore, an analytical 
approach capable of identifying the origin of sparkler material and discriminate between different 
sparkler brands is needed. To achieve this, analysis of pre-blast residue is first required to determine 
whether sparklers themselves can be classified based on their chemical composition.  

Party sparklers are primarily used for festivities or celebrations and are easily purchased through local 
retail or online stores 5. They are inexpensive, can be purchased in bulk quantities and have a long 
shelf life. A sparkler typically consists of a metal rod coated in an explosive mixture that burns when 
ignited, producing colourful sparks 6, 7. The chemical composition between brands vary slightly but will 
contain four major components which include an oxidising material, a fuel, a combustible binder and 
a metallic component 6, 8. Common oxidising agents include barium, potassium or strontium nitrate, 
as well as potassium chlorate or perchlorate 5, 6. Aluminium, iron and titanium metal powders or flakes 
are added to act as an accelerant or retardant. Binders such as dextrin, nitrocellulose and sugars serve 
a dual function in that they bind together the ingredients within the mixture and act as a fuel to 
promote burning 6. The varying formulations used between brands may provide a unique chemical 
profile that could be used to differentiate between sources.  

The components within an explosive mixture are routinely analysed and successfully identified using 
current instrumental techniques. Ion chromatography and capillary electrophoresis has shown to give 
the greatest sensitivity and selectivity for the analysis of cations and anions, as well as having the 
advantage of being field deployable 9-12. Other chromatographic methods such as gas chromatography 
and liquid chromatography 10, 13, 14 are routinely applied to the analysis of organic explosives, whilst 
less expensive methods such as FTIR and Raman spectroscopy have also been used to analyse both 
the inorganic and organic components 15-17. Alternative techniques including SEM 17, 18 and ion mobility 
spectrometry can be used to detect a range of explosive mixtures, but cannot provide quantitative 
results 19. While an explosive mixture can be successfully detected and identified, these techniques 
often do not provide enough characteristic information to distinguish between sources of the same 
substance.  

Elemental and isotopic profiling in combination with chemometrics has previously proven to be an 
effective approach for linking explosive precursor chemicals to their place of manufacture and 
discriminating between similar sources. Isotope ratio mass spectrometry is capable of characterising 
and discriminating between explosive samples based on their isotopic profile 20. IR-MS is commonly 
used to analyse nitrogen, oxygen and carbon isotopes and so it can be used on a range of inorganic 
and organic based explosives 21. Inductively coupled plasma mass spectrometry (ICP-MS) can be used 
to detect and quantify a large range of elements within a sample and can therefore provide 
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characteristic trace signatures 22. ICP-MS has previously been successful at linking inorganic explosive 
precursors to their manufacturer. Fraga et al. used ICP-MS and applied variable selection methods to 
obtain an elemental profile that was used to classify 125 calcium ammonium nitrate (CAN) samples 
from six different factories 23. Their approach was very effective as it was able to discriminate the CAN 
samples into 5 groups, one being two factories from the same company. A similar methodology was 
used to investigate the source determination of commercial cyanide stocks, however ionic and 
isotopic profiles were used in conjunction with the elemental signatures 24. The potential of using IR-
MS for the discrimination of explosives and their precursors has also been investigated 21. Benson et 
al. showed how the variability between the nitrogen, oxygen and hydrogen isotopes within 
ammonium nitrate samples could be used to differentiate between three different Australian 
manufactures, as well as five different overseas manufactures 25. Discrimination between ammonium 
nitrate-based fertilisers using a combination of their isotopic and elemental composition has also been 
reported, which highlighted the potential of using both techniques to differentiate between sources 
22.  

Sparklers primarily contain barium nitrate among a wide range of other components; therefore, the 
trace elemental signatures can potentially be exploited to discriminate between different brands. 
There are no reported studies on the source determination of party sparklers and so an analytical 
approach was prepared based upon previous works which investigated other inorganic explosive 
precursors 9, 24. The approach outlined in this investigation can additionally be applied to post-blast 
sparkler residues in future studies in order to build a model which could potentially relate post-blast 
and pre-blast residue.   

2.0 Materials and Methods 

2.1 Party sparkler sample collection 

Packets of sparklers were purchased from a variety of local and online Australian retail stores. Multiple 
packets from eight different brands were purchased and analysed throughout the study. Investigation 
into the source information for each brand revealed they were all manufactured in China by different 
companies, however information on the specific location of each factory within China could not be 
obtained. The sparklers from the brand ‘Party Central’ were used for the preliminary experiments 
detailed in section 3.1. All brands were used throughout the remainder of the study. Table 1 details 
the source information for each brand   

Table 1: List of sparkler brands used within study 

Brand name  Place of purchase  Supplier / Distributor 

We Love 2 Party (WL2P) Big W A.Royale & Co 

Artwrap Big W IG Design Group Australia Pty Limited 
Time 2 Party (T2P) Big W Yatsal Distributors Pty Ltd 

Whiz pop bang (WPB) Woolworths Korbond  
Party Central Red Dot PJ SAS Trading Pty Ltd 

Fun and Creative (FC) Ebay Australia KD Trading PTY LTD 

Firefox Ebay Australia Dun Pai Fireworks group  
Wizard Discount party warehouse 

online 
Discount party warehouse 
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2.2 Sample preparation  

To prepare a sparkler sample for ICP-MS analysis, all the residue was first stripped from the wire by 
hand. 10 mL of 10% nitric acid was added to 100 mg of sparkler residue in a glass test tube that had 
been soaked in a 10% nitric acid solution for 2 hours. The sample was sonicated for 10 minutes, capped 
and left undisturbed for 24 hours. The sample was filtered into another acid washed test tube using a 
25 mm Acrodisc® (0.45 µm hydrophilic polyethersulfone membrane) syringe filter attached to a 10 mL 
terumo hypodermic syringe. The sample was then diluted using a 1% nitric acid solution and analysed 
by ICP-MS.  A 100 and 10-fold diluted sample was prepared and analysed from every sample unless 
otherwise stated.  

 

2.3 ICP-MS analysis 

ICP-MS analysis was performed using an Agilent 7900 ICP-MS (Santa Clara, CA, USA) with ISIS-3 
discrete sampling introduction, coupled to an ASX-560 autosampler (Teledyne CETAC technologies, 
Omaha, NE, USA). The concentrations of 50 elements were determined by 6-point calibration in the 
range of 0.2 – 50 ppb prepared from 10 ppm 68 multi-element standards A, B, C and Hg. (Choice 
Analytical, NSW, AUS). Dilution was performed using a Hamilton MicroLab 600 series auto-dilutor 
using 1% distilled nitric acid prepared from an OmniPure acid still. 103Rh and 193Ir were used as internal 
standards and analysed under no gas, hydrogen and helium modes. The 10 ppb 68 multi-element 
standard A, B and C, as well as an appropriate drift solution from a previous run were used to assess 
quantitative drift throughout the analyses. Additional ICP-MS tune parameters are detailed in Table 
2.     

Table 2: Parameters and tuning settings used for ICP-MS analysis 
 

RF Power 1550 W 

S/C Temp 2˚C 

Nebuliser Gas 1.05 L/min 

Auxillary Gas 0.90 L/min 

Plasma Gas 15.0 L/min 

He Flow 4.5 ml/min 

H2 Flow 5.0 ml/min 

Sampling time 0.31 sec 
 
2.4 Chemometric analysis 

Data pre-processing was carried out using Microsoft Excel and chemometric analysis was performed 
using the Unscrambler X 10.5 software (Camo Software AS, Oslo, Norway). Elements which presented 
a low number of counts (< 1000) from the instrument were initially removed. ANOVA based feature 
selection was performed on the remaining elements, which has previously proven to be an effective 
approach at reducing the number of classifiers in order to give greater separation between samples 
23, 26, 27. F-ratios were calculated for each element in Microsoft Excel using the ANOVA class-to-class 
and within-class variance equations 26. As the magnitude of the f ratio indicates the amount of class 
separation, elements with the highest f-ratios will have a large contribution to the separation of 
samples. Principal component analysis (PCA) was initially carried out before feature selection was 
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applied to the data set to determine whether any brands could be immediately distinguished. Scores 
plots were subsequently generated using up to five principal components (PCs) to visualise the 
distribution of sample data after removing elements that had the lowest f-ratios. This process was 
repeated until the maximum separation between classes was achieved.  

Once the number of elements used for classification was refined, linear discriminant analysis (LDA) 
was used to construct a discriminant model. Four out of six samples from each class (total of 32 
samples from 8 classes) were randomly selected and used to build the discriminant model and the 
remaining two samples from each class (total of 16 samples from 8 classes) were used for validation. 
Additionally, cross-validation was performed internally by the Unscrambler software to build the 
model. The calibration set was then used to predict samples from the validation set, the resulting 
predicted classification being compared to the actual classification to assess the accuracy of the 
constructed model. 

3.0 Results and Discussion  

3.1 Preliminary experiments  

Explosives and dangerous goods laws in Australia prohibit the use of most consumer fireworks and 
pyrotechnics. The use of pyrotechnics is very limited outside of commercial firework displays and 
celebratory events. Party sparklers are the most accessible pyrotechnic available for use by the general 
public all year round, and therefore are most commonly used to initiate or make improvised explosive 
devices. Previous work has been undertaken on the characterisation of consumer fireworks and 
pyrotechnics as well as the environmental impact and persistence of post-blast residues 28-30. 
However, these studies have little relevance to the Australian forensic context as most of the products 
investigated are not commercially available within Australia. As elemental analysis of party sparklers 
has yet to be reported, varying sample preparation and extraction methods were initially investigated.  

The impact of the solvent, solvent strength, dilution factor and extraction time was explored using a 
sparkler from the brand ‘Party Central’. Samples were extracted using MilliQ water, 1% nitric acid and 
a 1% nitric/hydrochloric acid (1:1) solution and then analysed after dilution by a factor of 1, 10 and 
100. It was found that extraction of 100 mg of residue in nitric acid after dilution by a factor of 100 
was the most effective. The concentration of many elements was more than double that of the 
samples that were extracted in the nitric/HCl solution, and extraction in water yielded no signal for 
most elements. Subsequent experiments analysed samples extracted in 1, 5 and 10% nitric acid and 
samples extracted in 10% nitric acid for 1, 2, 4 and 24 hours. It was found that the concentration for 
most elements were the highest when 100 mg of residue was extracted using 10% nitric acid for 24 
hours and so these parameters were used for the remaining experiments. Within a real investigation 
a shorter extraction time might be preferable, in which case a 4-hour extraction would be ideal. 
However, for the purpose of this study a longer extraction time was preferred as it resulted in a more 
efficient extraction. 

3.2 Discrimination of party sparkler brands 

A total of eight different brands of party sparklers commercially available within WA were analysed 
using ICP-MS and chemometrics to determine whether the differences in their elemental composition 
can be used as a discriminating feature (see Table 1). Six individual sparklers were analysed from each 
brand, making a total of 48 samples. The concentrations of 55 elements within the sparkler residue 
were determined. Many elements were found to be present in bulk and trace amounts within the 
sparkler residue (See supplementary information Table S1). Additionally, the concentration of most 
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elements varied greatly across the brands. While the residue consisted mostly of barium, other 
elements such as cobalt, strontium, manganese, copper and chromium were also present in large 
amounts. Contact was made with one of the distributors and it was found that barium nitrate made 
up approximately 50% of the sparkler by weight, with iron and aluminium making up around 33 and 
9% respectively. It is likely that the detected metals originate from impurities within these major 
components as this would explain why they are present in large amounts compared to the other 
elements detected. Interestingly, many trace elements such as tungsten, lead, arsenic, tin, 
molybdenum and antimony were also found. Again, the presence of these elements may be a result 
of impurities from the other inorganic and organic components, or contamination during the 
manufacturing process. This highlights how even though all brands were manufactured in China, the 
region/location of the warehouse as well as the ingredients used within the manufacturing process 
clearly has an impact on the concentrations of these elements in the final product. Additionally, there 
were no brands containing certain elements that were not present in the others, therefore none of 
the brands could be immediately discriminated based on the presence or absence of a certain 
element.  

After an initial assessment of the data, elements which exhibited an extremely low number of counts 
(<1000) were removed (Table S1). Isotope selection was also performed to minimise potential 
interferences and to assist in data reduction. PCA was performed using the remaining elements to 
show how the sparkler brands clustered before feature selection was applied to the data (Figure 1a). 
It was clear from initial assessment of the PCA scores plot that barium had the largest impact on 
clustering and contributions from other elements became almost negligible (Figure 1a). The 
concentration of barium was at least five times larger than every other element and so was removed 
from the data. When removed, PCA performed using the remaining elements reveals three distinct 
clusters as shown in Figure 1b. In an attempt to improve the separation between samples ANOVA 
based feature selection was performed on the remaining list of elements. F-ratios were calculated for 
each remaining element, therefore ranking them based on their contribution to the separation of 
samples. By raising the f-ratio threshold, elements with the lowest contribution are removed from the 
data and PCA can be performed using the newly refined elemental profile to visualise how the samples 
cluster, ultimately determining whether the eight sparkler brands can be discriminated based on their 
elemental composition.   

Table S2 details the f-ratio values for the analytes used within PCA from lowest to highest, indicating 
which were removed at the select thresholds. A low threshold (10-150) did not have an impact on 
brand discrimination as the plots generated looked near identical to the one displayed in Figure 1b. 
Three brands remained separated, with a large cluster containing the remaining five. The elements 
that were removed therefore did not have any major contributions to the separation of the samples. 
Once the threshold reached 200 and manganese was removed from the data, the ‘Artwrap’ sparklers 
could be discriminated from the other brands. The 2-D scores plot looked very similar to Figure 1b, 
however visualisation of the samples in 3-dimensions with an additional PC reveals the discrimination 
of four out of eight groups.  

Removal of zirconium and copper had minimal impact on the scores plot, a major difference in sample 
clustering was first seen when zinc was removed at a f-threshold of 275. As seen in Figure 2a, PCA 
analysis was performed using a refined 8-element profile and total visual separation of all eight brands 
was achieved. This plot also highlights how little variability there is between individual sparklers, as 
there is minimal spread between samples within each brand. One sample from the ‘Wizard’ brand was 
found to be the only outlier as it does not cluster with any group, which could possibly be attributed 
to contamination during sample preparation or manufacturing.  
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Figure 1: 2-dimensional PCA scores plot showing the distribution of samples before (a) and after (b) 
barium was removed 

 

 

Artwrap We love 2 party Time 2 party Whiz pop bang 

Party central Fun and creative Firefox Wizard 

(a) 

(b) 
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Figure 2: 3-dimensional PCA scores plot showing the distribution of samples using quantitative data 
from an 8-element (a) and a 7-element profile (b) 

Increasing the threshold further to 300 and removing titanium resulted in very similar clustering 
(Figure 2b). Total separation can still be achieved with a 7-element profile, however the amount of 
separation between clusters differs. Figure 3 compares the 2-D scores plot when using the 7 and 8-
element profile. The brand ‘T2P’ is in the same position in both plots and when titanium is present the 
brand ‘Firefox’ has greater separation along the PC2 axis from the other brands. The remaining six 
clusters are much closer to each other along the PC2 axis than they are when titanium is not present, 
as seen in Figures 3a and 3b. The clusters are more evenly distributed along this axis when using the 
concentrations from 7 elements and so this elemental profile was found to be overall more effective 
at discriminating between the eight sparkler brands. The factor loadings can be used to identify which 
elements contribute to the variation across the different PCs (Figure 4). Most of the variability 
between the samples is visualised across PC1, which is attributed to the concentration of strontium. 
The loadings from both PC2 and PC3 show that variation along these PCs are mostly due to the 
concentrations of nickel and copper, with small contributions from the remaining elements within the 
profile.  

Artwrap We love 2 party Time 2 party Whiz pop bang 

Party central Fun and creative Firefox Wizard 

(a) (b) 
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Figure 3: 2-dimensional scores plot showing the distribution of samples when using an 8 (a) and 7-
elemental profile (b) 

Artwrap We love 2 party Time 2 party Whiz pop bang 
Party central Fun and creative Firefox Wizard 

(a) 

(b) 
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Figure 4: Factor loadings of the first 3 PCs for PCA performed on the eight sparkler brands using the 
refined 7-elemental profile 

Table 3 is a summary of the average concentration values of the elements used within the refined 
profile. The concentration of strontium is considerably different across each brand which is why PC1 
describes most of the variation between samples. Additionally, the relative standard error is very low 
for most elements, which is why there appears to be minimal spread within each cluster. 

Table 3: Average concentration (ppb) and relative standard deviation of elements within refined 7-
element classification profile 

Brand V Co Ni Sr Sn Sb W 

WL2P 307 ±  
6.9% 

3.71 x 103 ± 
5.2% 

757 ±  
0.7% 

7.41 x 103 ± 
6.7% 

46.5 ±  
5.6% 

40.0 ±  
5.8% 

28.4 ±  
7.9% 

Artwrap 
138 ±  
2.3% 

3.18 x 103 ±  
0.9% 

4.68 x 103 ±  
2.3% 

9.46 x 103 ±  
3.9% 

59.1 ±  
16.0% 

36.2 ±  
5.9% 

45.2 ±  
4.2% 

T2P 206 ±  
4.5% 

2.23 x 103 ±  
4.1% 

4.03 x 103 ±  
6.1% 

6.64 x 104 ±  
3.0% 

67.1 ±  
4.0% 

26.1 ±  
3.5% 

26.4 ±  
10.3% 

WPB 120 ±  
4.4% 

2.46 x 103 ±  
4.8% 

689 ±  
6.1% 

9.82 x 103 ±  
5.6% 

73.3 ±  
3.3% 

45.1 ±  
6.9% 

24.0 ±  
14.0% 

Party 
central 

150 ±  
3.8% 

2.44 x 103 ±  
3.0% 

743 ±  
9.5% 

1.64 x 103 ±  
5.5% 

69.9 ±  
6.5% 

30.4 ±  
12.4% 

22.1 ±  
12.8% 

FC  272 ±  
12.1% 

6.09 x 103 ±  
3.5% 

503 ±  
3.5% 

1.12 x 103 ±  
6.4% 

33.9 ±  
10.5% 

13.9 ±  
6.0% 

20.1 ±  
5.6% 

Firefox 554 ±  
2.1% 

1.05 x 103 ±  
4.4% 

633 ±  
1.9% 

1.72 x 104 ±  
6.4% 

388 ±  
2.2% 

84.2 ±  
2.7% 

213 ±  
2.5% 

Wizard 204 ±  
12.0% 

2.16 x 103 ±  
4.9% 

1.32 x 103 ±  
40.9% 

1.93 x 103 ±  
7.0% 

75.5 ±  
21.0% 

33.4 ±  
10.6% 

24.1 ±  
10.3% 
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Increasing the threshold above 300 and removing additional elements did not improve brand 
discrimination. After nickel is removed, four of the groups can still be visually discriminated, however 
the remaining four are clustered together in the corner between the PC1 and PC2 axes. This trend 
continues as the threshold increases further. This is also in agreement with the loadings profile as 
nickel is one of the key elements linked to brand discrimination across PC’s 2 and 3, with total 
separation becoming unattainable when it is removed. Therefore, PCA performed on the 48 sparkler 
samples using a 7-element profile consisting of V, Co, Ni, Sr, Sn, Sb and W was found to be the most 
effective at discriminating the eight sparkler brands. 

3.3 Supervised classification of refined elemental profile  

It has been shown that all eight brands can be fully discriminated into visual clusters using PCA. To 
further assess the degree to which the samples have been separated, LDA was performed using the 
selected seven elements. LDA is a supervised classification technique in which a discrimination 
function is constructed to maximise separation between the selected classes. In this case, an LDA 
model was built using the first three components from the 7-element PCA with each sparkler brand 
being treated as a separate class. Two samples from each class were randomly removed to be used 
within the validation set, with the remaining four samples from each class used to build the LDA 
model. The validation set is used to assess how effective the model is at classifying the unknown 
samples into the correct class. Additionally, cross-validation was performed internally by the system 
to build the model. The constructed LDA model successfully produced a classification accuracy of 100% 
for the sparkler samples. While full separation was visualised in the final PCA scores plot (Figure 2b), 
four of the eight brands clustered closely together along the PC2 and PC3 axis. Nonetheless, the LDA 
model was still able to successfully classify all the data and achieve a 100% accuracy. 

Table 4 details the average discriminant values of the samples within the calibration set. These values 
describe the separation between classes and reinforces how the model achieved a 100% classification 
accuracy. The brands ‘T2P’, ‘FC’, and ‘Firefox’ are well separated from the rest, which highlights how 
visual interpretation of the scores plot could be misleading. In Figure 3b, while the ‘Firefox’ samples 
are clustered far from the rest, there appears to be minimal separation between the ‘FC’ and ‘T2P’ 
clusters. Table 4 also shows that the ‘Wizard’ and ‘Party Central’ samples had the lowest amount of 
separation. Again, this could not easily be concluded from visualisation of the scores plot. The samples 
from the ‘Wizard’ brand appear to be closer to the ‘T2P’ cluster. The differences seen between the 
LDA and PCA results is likely attributed to the large contribution from PC1. As the variation along this 
PC is considerably larger than the others, it is difficult to visualise the differences in the position along 
the PC1 axis compared to the PC2 and PC3 axis. This reinforces the importance of performing 
discriminant analysis in conjunction with PCA to verify results as it removes subjective interpretation.  
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Table 4: Average discriminant values of the validation samples 

 Average discriminant value 

 WL2P Artwrap T2P WPB PC FC Firefox Wizard 

WL2P -3.6 -171 -2620 -74.1 -55.2 -314 -431 -89.1 

Artwrap -170 -2.2 -2348 -149 -131 -693 -391 -96.6 

T2P -2621 -2350 -4.7 -2060 -2665 -4310 -1313 -2570 

WPB -72.9 -149 -2057 -2.4 -44.7 -678 -157 -47.8 

Party Central -53.8 -131 -2662 -44.4 -2.2 -526 -318 -9.8 

FC -313 -694.0 -4309 -679 -527 -3.3 -1462 -629 

Firefox  -429 -391 -1310 -156 -318 -1461 -2.3 -281 

Wizard -90.5 -99.3 -2570 -50.4 -12.5 -631 -284 -4.9 
 

Now that a discriminant model has been constructed, it can be used to assign the unknown samples 
within the validation set to the most probable class. The model was able to correctly match 100% of 
the samples to their source (Table 5). This was expected as even though samples used within the 
validation set were selected at random and some brands appeared to be less separated than others, 
there was minimal variation between samples within each brand. However, even though no samples 
were misclassified, the predictive accuracy may be over-estimated as a small data set was used to 
build and validate the model. A more rigorous test with additional samples from a variety of brands is 
required. It is possible that including a wider variety of brands within the model will no longer result 
in full separation. Ultimately, a larger number of distinct brands as well as the different products within 
a singular brand and batches of manufacture need to be analysed to truly assess the discriminatory 
and predictive power of this model.  

Table 5: Number of correct and incorrect classifications of samples within the validation set. 

Class Correct Incorrect % correct 
We love 2 party 2 0 100 
Artwrap 2 0 100 
Time 2 party 2 0 100 
Whiz pop bang 2 0 100 
Party central 2 0 100 
Fun and creative 2 0 100 
Firefox 2 0 100 
Wizard 2 0 100 

 

4.0 Conclusions  

The characterisation and discrimination of a variety of party sparklers available within Western 
Australia was explored. ICP-MS analysis was used to determine the concentrations of 50 elements in 
party sparklers from eight unique brands. Experiments were first performed in which the extraction 
time, solvent, dilution factor and solvent concentration were varied. The most efficient extraction was 
observed when 100 mg of sparkler residue was extracted in 10 mL 10% nitric acid solution for 24 hours. 
A wide range of bulk and trace elements were found to be present within sparkler residue which varied 
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greatly across the different brands. Although each sparkler contained barium nitrate as its primary 
oxidiser, impurities from additional components used and contamination from the manufacturing 
process clearly alter the elemental composition of sparklers across brands.  

Principal component analysis was then used to visualise the distribution of the sample data by 
generation of scores plots using up to five PCs. ANOVA based feature selection was used to calculate 
f-ratios for each analyte. Analytes which had the lowest f-ratios were removed from the data set and 
subsequent score plots were generated. Total separation of classes was achieved at a f-threshold of 
300. The refined elemental profile used to classify samples into their distinct clusters included a total 
of 7 elements, which included; V, Co, Ni, Sr, Sn, Sb, W. The discriminatory and predictive power of the 
elemental profile was further assessed using LDA. A discriminant model was constructed using four 
out of six samples from each brand, with the remaining samples used for validation. LDA yielded a 
100% calibration accuracy and was subsequently used to correctly match 100% of the samples within 
the validation set to their respective brand.  

This work illustrates the potential for the source attribution of party sparkler residue as physical 
evidence. Elemental analysis in combination with PCA and LDA has been demonstrated as an effective 
approach to discriminate between different party sparkler brands. However, the sample size is limited 
and so analysis of additional sparkler brands as well as similar pyrotechnic products is needed to 
further assess the model’s effectiveness at discriminating different products. Projection of post-blast 
data from the same sparkler brands onto the model is also necessary to determine whether post-blast 
residue can be linked to its pre-blast residue and therefore its original source. 
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