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Abstract

Using a comprehensive set of recently published experimental results for training

and validation, we have developed computational models appropriate for simulations

of aqueous solutions of poly(ethylene oxide) alkyl ethers, an important class of micelle-

forming nonionic surfactants, usually denoted CnEm. These models are suitable for

use in simulations that employ a moderate amount of coarse graining and especially

for dissipative particle dynamics (DPD), which we adopt in this work.

The experimental data used for training and validation were reported earlier and

produced in our laboratory using dynamic light scattering (DLS) measurements per-

formed on twelve members of the CnEm compound family yielding micelle size dis-

tribution functions and mass weighted mean aggregation numbers at each of several

surfactant concentrations. The range of compounds and quality of the experimental

results were designed to support the development of computational models. An es-

sential feature of this work is that all simulation results were analysed in a way that

is consistent with the experimental data. Proper account is taken of the fact that a

broad distribution of micelle sizes exists, so mass weighted averages (rather than num-

ber weighted averages) over this distribution are required for the proper comparison of

simulation and experimental results.

The resulting DPD force field reproduces several important trends seen in the exper-

imental critical micelle concentrations and mass averaged mean aggregation numbers

with respect to surfactant characteristics and concentration. We feel it can be used to

investigate a number of open questions regarding micelle sizes and shapes and their

dependence on surfactant concentration for this important class of nonionic surfactants.

1 Introduction

Surfactants are amphiphilic molecules that play important roles in science and industry with

uses that vary widely and include key components for soap, detergent and toothpaste for-

mulations, emulsifiers and stabilizers for food products, and even aircraft deicing agents. In
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cellular biology, surfactants are used to break up cell membranes, and in the pharmaceutical

industry they are used to stabilize drug formulations and facilitate drug delivery.

Surfactant molecules have solvophobic and solvophilic components that allow them to

form aggregates in solution that are stabilized by solvophobic interactions: the aggregates

are structured with the solvophobic components of the molecules clustered together to avoid

solvent and the solvophilic components organized to be in contact with solvent. The smallest

of these structures are the spherical micelles, which can form even under dilute conditions.

However, under various other thermodynamic conditions (e.g., solvent composition, higher

surfactant concentration, temperature, salt content, pH) larger, more complex, structures

can form such as micellar rods, long linear or branched wormlike micelles, vesicles, and

micellar aggregates. At higher concentrations some surfactants can even form interesting

phases with large scale lamellar or hexagonal structures.

As one of the simplest self-assembling structures, spherical micelles have received a lot of

scientific scrutiny. Experimental techniques for studying micelles include static light scatter-

ing (SLS), measurement of diffusion constant by dynamic light scattering (DLS) and nuclear

magnetic resonance (NMR) methods, surface tension (ST) measurements, careful volumet-

ric measurements, measurements of sedimentation rates, and fluorescence spectroscopy per-

formed on dyes included with the solvent-surfactant mixture. Studies usually attempt to

determine the structural features (size and shape) of micelles as well as the lowest con-

centration in solvent at which they begin to form, and the thermodynamic and molecular

attributes that affect these micellar characteristics. Since micelles are dynamic structures,

the kinetics of micelle equilibration and the determination of time scales for structural reor-

ganization are also of keen interest.

The two most basic micellar properties are the lowest surfactant concentration at which

micelles first begin to form, known as the critical micelle concentration (CMC), and the

average number of surfactant molecules in the micelles, known as the mean aggregation

number (Nagg). In spite of extensive experimental work performed over approximately 60
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years, there is often disagreement among research groups using, perhaps, different experi-

mental techniques about even these basic properties. Many reasons for these discrepancies

exist and have been discussed extensively in our previous1 work. These reasons include

the sensitivity of many of the results to compound and solvent purity and thermodynamic

conditions, such as temperature, surfactant concentration, and the presence of salt. Also,

different experimental techniques measure slightly different properties and with differing de-

grees of accuracy. For example, micelle sizes can be measured by SLS, producing a radius

of gyration, or by DLS, producing a hydrodynamic radius. These size metrics have very

different meanings and must be compared with caution. Attempts to produce the quantities

of interest, such as mean aggregation numbers, from micelle size measurements involve nu-

merous assumptions, such as the amount of water loading in the micelles, and so aggregation

numbers from different research groups are rarely in close agreement. Many experimental

results are interpreted assuming that all the micelles in the sample are spherical, although

some work2–5 suggests this is not universally true. DLS measurements have shown that

for many compounds, there is actually a very broad distribution of micelle sizes, yet the

interpretation of most experiments assumes this distribution is narrow. This matters be-

cause some experimental techniques report an average size that is number averaged over the

micelle size distribution, whereas others report a size that is mass weighted or z-averaged

over this distribution. The different weightings are inherent in the experimental method and

associated data analysis. The average micelle sizes reported from different methods might

be numerically similar if the size distribution is sufficiently narrow. However, we have seen

that the width of the distribution depends on the chemical nature of the surfactant and can

vary widely even within a closely related family of surfactants. All these issues can make it

very difficult to compare results from different experimental techniques on a given compound

and, especially, over a range of compounds.

The state of the experimental literature, coupled with the scientifically rich phenomenol-

ogy and industrial significance of surfactants suggests that computer simulations could be
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valuable in contributing to a deeper understanding of micellar behavior. Computer sim-

ulations can provide molecular level detail that is usually lacking in experiments on large

ensembles of molecules. Two barriers exist in this effort. First, simulations of micelles and

micellar phenomena are very computationally demanding. Since micelles form at low sur-

factant concentrations (typically near 1% surfactant, by weight), simulations that capture

micelle formation need to be very large, and most of the material in the simulation must be

solvent. If one wants to observe micelle formation in a simulation with the size distribution

one might see in a real system, one must have enough surfactant material to be able to form

several micelles. Furthermore, micelles form slowly on a computer simulation time scale, so

not only do the simulations require large numbers of molecules, they must run for a very

long time in order to reach an equilibrium with respect to the distribution of micelle sizes

and shapes. Although detailed all atom simulations6–14 have been made with some success,

they are usually considered too expensive for a thorough investigation of micellar behavior.

Currently, these performance challenges are met through the use of coarse grained models

for the surfactant, such as united atom or beaded string models, whereby a single particle in

the simulation actually represents several atoms of a surfactant molecule, or even multiple

molecules of the solvent. These approaches also use reduced complexity in the interaction

potentials (force fields), which tend to be softer and smoother than their all-atom counter-

parts, thereby permitting the use of larger time step sizes in the simulation. A common such

approach is dissipative particle dynamics15–18(DPD), which is the method employed here.

The second barrier to the use of computer simulations to study micellar phenomena is

in finding validated and tested force fields that are sufficiently accurate for the materials,

conditions, and phenomena of interest. Although some efforts have attempted to address

this in the context of coarse grained simulations, they are often developed and validated to

replicate known behavior for a single compound or a couple of compounds, or to capture the

behavior for one compound over a range of concentrations or temperatures. These models

can be very useful for studying many aspects of micellar phenomena. However, since they
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were developed to model a small number of compounds, the parameters are often not useful

for making predictions about compounds or behavior outside of their training set. The

ability of a force field description to provide sufficiently accurate descriptions for a range of

molecules (usually at the expense of any particular one of them) is known as transferability.

Generally, this feature has to be designed into the parameter set through training with a

range of molecules and an approach that balances the accuracy over the set of molecules.

Some efforts19–21 have attempted to address the need for general purpose coarse grained

force fields, but a generally accepted set of parameters for most molecules of interest is

lacking. Such a set of parameters would depend on the nature of the molecule, the degree

of coarse graining, and on the number of types of sites (number of bead types) used to

represent the molecule. Furthermore, there are a number of functional forms available to

describe interactions between coarse grained sites, each with its own set of parameters. At

best, any such description might be limited to a small set of molecules, a specific range of

thermodynamic conditions such as concentration, density, temperature and solvent, and it

may provide an accurate description for only a limited set of properties and phenomena.

In spite of all these caveats and potential limitations one would hope that a force field

developed to accurately reproduce experimental observables for a range of related physical

properties and for a suitably small set of closely related compounds should be useful for the

prediction and study of these and similar properties for other similar compounds. Systematic

force field development, therefore, requires 1) a choice of what type(s) of compounds for which

one wishes to have accurate models, 2) a choice of what observables one wishes to be able

to model with accuracy, 3) sufficiently accurate experimental data on a range of compounds

that span the desired types of compounds that can be used for training and validation of the

force field model, and 4) a procedure for systematically improving the force field parameters

so that computational results are brought into best agreement with experimental ones.

In this work we will describe the development of a set of parameters we feel are appro-

priate for the computational study of micellar phenomena for a simple family of nonionic
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surfactants, the poly(ethylene oxide) alkyl ethers, with formulas H(CH2)n(OCH2CH2)mOH,

usually denoted CnEm. Although we optimized parameters to reproduce experimentally ob-

served micellar behavior for a small family of compounds, we hope they are useful for the

study of micellar behavior for closely related molecules with similar chemical functionality.

Notably, we used experimental data generated in our lab especially for this effort, and we

adopted Force Balance22 for use in systematically optimizing the parameters. Force Balance

has been used extensively23,24 to generate and improve all atom force fields. Finally, we

compare our final force field with a similar one produced previously25 in our laboratory that

was designed with different experimental observables in mind.

The structure of the paper is as follows: Section 2, Methods, discusses the approaches

and procedures used in this work. Section 2.1, Experimental Data, discusses the choice of

molecules, the properties selected for study, and the experimental data set used for force field

development and testing. Section 2.2, Force Field, discusses the force field functional form

used in simulations of these compounds and how the parameters in these functional forms

were optimized to reproduce the experimental results. Note that some of the parameters

were optimized to reproduce experimental densities for related materials, and the others were

optimized to reproduce experimental CMC and Nagg data. Section 2.3 describes the Choice

of Data for Training and Validation of the force field. Section 2.4, Computed Observables,

discusses how the CMC and Nagg are computed from simulations. Section 2.5, Objective

Function, discusses the construction of the function that was optimized with respect to force

field parameters in order to align the computed and experimental observables. Section 2.6,

Simulation Properties, discusses the simulation protocols, including how the system sizes

were determined and how equilibration was established. Section 3, presents the Results.

Section 4, Discussion, compares the quality of this force field with that of a different one,

recently developed in our lab, and it examines the extent to which the new force field

captures important experimental trends observed in the data. Finally, Section 6 provides a

short Summary and Conclusion. An Appendix describes how the derivatives of observables
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with respect to the force field parameters were computed through the computation of cross

correlation functions.

2 Methods

2.1 Experimental Data

The choices of compounds and observables, as well as the development of a data set of ex-

perimental results were the subject of a previous1 paper. These are for the simple nonionic

surfactant family of poly(ethylene oxide) alkyl ethers, denoted CnEm (Table 1). These are

fairly simple short diblock polymers with essentially two types of functional groups: a hy-

drophobic region consisting of the aliphatic block of the chain and a hydrophilic region that

is a hydroxyl terminated polyether block. These constitute a good first choice to develop

parameterization methodology. Because of their chemical simplicity, one might hope a very

simple force field could be adequate for capturing much of the relevant behavior. We also

hoped that the parameters we developed would be useful in the context of other surfactant

compounds, many of which have structural components in common with the CnEm family.

The micellar observables that were available from experiments and could also be computed

from simulations included CMC and Nagg.

An extensive body of experimental literature exists for the CnEm compounds. However,

there is often not consensus on even basic properties. Table 1 gives the range of CMC values

seen in the literature. (Unless otherwise noted, these and all other properties are measured

at 25 ◦C, our temperature of interest for this study. We note that both CMC and Nagg

are temperature sensitive to varying degrees for compounds in this family.) After a careful

review of the literature, target values for the CMC were selected to be used in the force field

parameterization effort. For C12E6 and C12E8, the literature values for the CMCs fell into

two distinct ranges so it was not possible to select a single target value. For C12E6 the CMC

values were near to either 0.072 mM or 0.082 mM; and for C12E8 they were near to either
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0.084 mM or 0.109 mM. The table shows only the larger value for each. (See the previous

work1 and extensive discussion in its Supporting Information about how the choices were

made for these target CMC values.)

Table 1 shows other physical properties for the compounds selected. The compounds

have a critical concentration (cc) and temperature (Tc) from Schubert26 (for LCST behavior)

above which they phase separate into solvent-rich and surfactant-rich phases. There is also a

value for the cloud temperature (Tcloud), the temperature of phase separation at a surfactant

concentration of 10 g/L, from a compilation27 of experimental results by Berthod. Note that

Tc ≈ Tcloud and the phase separation behavior is very sensitive to the length of the hydrophilic

block. This information is not used in the parameterization effort, but is included here since

it is recognized that these surfactant compounds can exhibit unusual aggregation even 20 ◦C

below the cloud temperature, suggesting that the C12E5 data should be used with a great

deal of caution in parameterization since we are interested in micellar behavior rather than

phase separation. Finally, the densities for pure surfactant are from a fit27 to experimental

density data at 25 ◦C, ρn,m = (14n + 44m + 18)/(18.3n + 39.13m) (g/mL). These densities

were used along with the density of water (0.997040 g/mL at 25 ◦C) to estimate aggregation

numbers from hydrodynamic diameters, and also to convert between concentrations reported

in mole fraction, mass fraction, and molarity (see Supporting Information for details).

An extensive review of the literature for Nagg values for these compounds, however, did

not yield a coherent data set for force field development purposes. One needs values produced

from a single experimental method, of consistent and known accuracy, and over the range

of compounds to be used in the force field development. What exists, however, has been

performed using about a dozen different experimental techniques, over an approximately 60

year time period, by different research groups, and with different assumptions employed in

the data analysis. Coverage over the set of compounds has been inconsistent, with some

compounds relatively unstudied and with others having scores of measurements performed.

The values found and an extensive discussion about their unsuitability are in the Supporting
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Table 1: Properties of molecules used in this study

Literature Target CMC cc Tc Tcloud ρ
Compound CMC, mM mM wt% mM C C g/mL

C6E326,28–31 68-105 100. 2.35 624 46.0 45 1.030
C6E426,31–35 72-106 106. 2.96 592 66.1 1.044
C6E529–33,35,36 75-115 113. 3.65 75 1.054
C8E426,30,37,38 6.5-11.7 8.0 0.246 230 40.8 40 1.010
C8E526,38–40 6.0-11.0 9.0 0.316 270 61.7 60.4 1.023
C8E628,29,39,41 7.6-10.8 9.9 0.392 310 74.4 74 1.034
C10E533,34,39 0.68-1.00 0.86 0.0327 44 0.998
C10E628,34,39,40,42–44 0.46-0.95 0.90 0.0381 1.010
C10E839,40,42,43,45–48 0.28-1.15 1.00 0.0512 85 1.028
C12E526,33,34,39,49–53 0.035-0.071 0.064 0.00261 37 32.0 31.7 0.978
C12E626,28,34,39,40,51,53 0.060-0.087 0.082* 0.00371 55 51.3 52 0.990
C12E839,40,45–47,52–55 0.056-0.109 0.109* 0.00589 78 1.010

Information of our previous1 paper.

Table 2: Size results for C6Em and C8Em from DLS

Compound Conc, mM Conc, wt% Conc/CMC ncut 〈DH〉M , nm 〈Nagg〉M
128. 3.01 1.28 4.54(0.02) 81(1)C6E3
171. 4.01 1.71

8
4.65(0.03) 100(2)

270. 7.51 2.55 3.999(0.004) 46.3(0.1)C6E4
360. 10.01 3.40

10
4.02(0.01) 47.2(0.6)

266. 8.56 2.35 3.747(0.003) 31.8(0.1)C6E5
354. 11.4 3.14

8
3.718(0.008) 30.5(0.3)

18.2 0.558 2.27 5.56(0.08) 110(4)C8E4
24.2 0.744 3.03

9
5.94(0.04) 153(2)

33.0 1.16 3.67 5.01(0.03) 65(1)C8E5
55.0 1.93 6.11

8
5.10(0.08) 77(3)

29.7 1.17 3.00 4.484(0.005) 44.8(0.4)C8E6
49.5 1.96 5.00

10
4.64(0.02) 54(1)

Therefore, new DLS measurements were performed for each of twelve CnEm compounds

that produced mass weighted mean hydrodynamic diameters (〈DH〉M) as well as mass

weighted micelle size distributions as functions of the hydrodynamic diameters. (See Tables 2

and 3.) Experiments were performed for each compound over a wide range of concentrations,

from below the CMC of the compound up to as much as 70 times the CMC. The tables give

data for each compound at some of the concentrations where we believe micelles were present

10



Table 3: Size results for C10Em and C12Em from DLS

Compound Conc, mM Conc, wt% Conc/CMC ncut 〈DH〉M , nm 〈Nagg〉M
4.29 0.163 4.99 6.62(0.1) 158(5)

C10E5 8.59 0.326 9.99 11 6.61(0.04) 198(7)
17.2 0.652 20.0 7.28(0.08) 280(5)
4.50 0.191 5.00 5.61(0.01) 74.4(0.4)

C10E6 9.00 0.381 10.0 10 5.52(0.01) 75.4(0.3)
18.0 0.763 20.0 5.55(0.05) 90(3)
4.19 0.215 4.19 5.52(0.05) 61(1)

C10E8 5.24 0.268 5.24 8 5.80(0.01) 66.8(0.4)
10.47 0.536 10.47 5.21(0.03) 57(2)

1.92 0.0784 30.0 6.35 143
C12E5 2.56 0.105 40.0 11 6.38 143

3.20 0.131 50.0 5.95 101
1.78 0.0803 21.7 7.08(0.14) 186(11)
2.66 0.120 32.4 6.40(0.05) 142(6)

C12E6 3.55 0.161 43.3 9 7.59(0.2) 257(20)
6.22 0.281 75.9 6.53(0.2) 155(22)
8.88 0.401 108.3 6.92(0.03) 158(3)
2.18 0.118 20.0 6.20(0.01) 82.3(0.3)
3.27 0.177 30.0 6.15(0.02) 80.9(0.4)C12E8
4.36 0.236 40.0

8
6.14(0.01) 80.5(0.4)

5.45 0.295 50.0 6.19(0.01) 81.3(0.3)
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and that are appropriate for the parameterization effort. Although surfactant molecules ag-

gregate to form micelles, these coexist with smaller clusters of surfactant molecules that we

refer to as submicellar aggregates. Submicellar aggregates could not be detected by our DLS

instrumentation because their scattering cross section is too small compared to that of any

actual micelles that were present. The columns in the tables labeled ncut give an estimate of

the largest aggregate size that is not visible to our instrument and can serve as an operational

definition in the analysis of computer simulations for the cutoff between aggregates that are

too small to be considered micelles (N ≤ ncut) and those that are large enough (N > ncut).

Note that these cutoff values are all in the range of 8 to 11. Our earlier work56 used values

for this cutoff based on the size of aggregate clusters corresponding to the first minima in

the cluster size distribution functions that were observed in simulations. Those were 13, 10

and 5 for C6E4, C8E4 and C12E6, respectively. Our experimental work suggests 10, 9 and 9,

for these compounds, respectively, values which are actually quite similar to what was used

earlier.

The tables also give the mass weighted mean aggregation number which is obtained using

the following equation that was derived and discussed1 earlier.

〈Nagg〉M =
π

6

〈
D3
H

〉
M

(
1

ρS
+
mnW
ρW

)−1

(1)

Note that in this equation the mass weighted average over the particle size distribution of

D3
H is used rather than the cube of the average over this distribution of DH itself. 〈Nagg〉M

cannot be computed directly from 〈DH〉M . The equation also uses the number density of

water, ρW , and of pure surfactant, ρS, as well as the number of water molecules, nW , assumed

to be bound to each of the m hydrophilic repeat units on the CnEm surfactant molecule.

Throughout this work we have consistently used nW = 4.

Unless otherwise stated, we will assume in the following that mean aggregation number,

Nagg, refers to the mass weighted mean aggregation number, sometimes denoted 〈Nagg〉M , as
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produced from the analysis of the DLS measurements.

2.2 Force Field

Coarse graining scheme

This work uses the DPD method for simulation. There are many features relevant16 to this

method which will not be reviewed here, but the essential elements for the current discussion

are the coarse graining of the molecular structure into a set of interacting beads, use of a small

number of bead types, and the simple functional form for the interactions between beads.

The level of coarse graining used here involves two to three heavy (non Hydrogen) atoms per

bead and is illustrated in Figure 1. A solvent bead (type W) represents some number (here,

two) of water molecules, a hydrophobic tail bead (type T) represents an ethylene repeat

unit, and a hydrophilic head bead (type H) represents an ethylene oxide repeat unit. Some

workers use greater or lesser degrees of coarse graining. We feel our approach captures most

of the benefits of coarse graining without removing too much chemical detail. We also chose

to use only three bead types in order to explore whether a model this simple is capable of

describing the micellar behavior we have seen experimentally. Other approaches25 might

introduce, for example, additional terminal bead types for the hydrophobic end, such as a

CH3– or CH3CH2–, and/or a terminal bead type for the hydrophilic end, such as a hydroxyl

–OH, methanol –CH2OH, or diethoxy –OCH2CH2OH bead type. The LogP force field25

against which we compare our results, uses a slightly different coarse graining strategy as

well as additional bead types to describe the terminal groups.

Force field functional form

Although other functional forms can be used, it is common in DPD simulations to use an

interaction energy between all pairs of beads that produces a pairwise additive conservative
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Figure 1: Coarse graining of two water molecules into a W-type bead and C6E4 into H4T3,
a representation of the molecule with 3 hydrophobic T-type beads and 4 hydrophilic H-type
beads.

force with a simple short ranged functional form.

Fi,j(rij) =


AIJ (1− rij/Rc,IJ) r̂ij rij < Rc,IJ

0 rij ≥ Rc,IJ

(2)

where Fi,j is the contribution to the vector force on a bead i due to its interaction with a

bead j, which depends on rij = ri − rj, the vector displacement that points from bead j to

bead i. We use lower case (i, j) to designate bead indices and upper case (I, J) to indicate

their bead type. Hence, in this work I and J can each be any of W, H or T. rij = |rij| is

the scalar distance between the beads, and r̂ij = rij/rij is a unit vector that points from

bead j to bead i. The force decreases linearly with the distance between the beads from a

maximum of AIJ at rij = 0 to zero for rij ≥ Rc,IJ . The force depends parametrically on

an amplitude, AIJ , and a range or cutoff distance, Rc,IJ , that both depend on the types of

beads involved. This functional form for the force corresponds to the following contribution
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to the energy from the interaction between particles i and j:

Uij(rij) =


1
2
AIJRc,IJ (1− rij/Rc,IJ)2 rij < Rc,IJ

0 rij ≥ Rc,IJ

(3)

This energy is repulsive for all interactions between beads. In DPD simulations, an external

pressure is applied to establish and maintain a desired mean density.

Beads within a molecule also interact through an intramolecular potential that includes

bond stretching Ub(rij) and angle bending Ua(θijk) contributions with the following functional

forms:

Ub(rij) =
1

2
κb(rij − r0)2

Ua(θijk) =
1

2
κa(θijk − θ0)2

(4)

where r0 and θ0 are the equilibrium separation between bonded beads and the equilibrium

angle between sets of three beads that share two bonds, respectively. The bead model

representations used here for the CnEm molecules use κb = 150 (kBT/R
2
DPD), for all bonds

and κa = 5 (kBT/(radian)2), for all angles. RDPD is the DPD unit of length and kBT is the

DPD unit of energy. The equilibrium angles are all θ0 = 180◦. Values for the equilibrium

bond lengths, r0, were determined by considering all atom representations of the molecules

in low energy, all trans, conformations. If T beads are placed at the centers of mass of

successive -CH2CH2- groups and H beads are placed at the centers of mass of successive -

OCH2CH2- groups, the distance between neighboring T beads is 2.50Å, between neighboring

H beads is 3.84Å, and between a T bead and an H bead to which it is bonded is 3.17Å. If

we use RDPD = 5.641Å (see below) to convert these distances to DPD distance units, they

are 0.443RDPD, 0.68RDPD and 0.562RDPD, respectively.

The contribution to the total potential energy from these conservative interactions is a
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sum of such terms, as follows:

Utotal =
N∑

sites,i<j

Uij +
∑

molecules,i

(Ub,i + Ua,i) (5)

where the first sum is over all pairs of beads, and the second sum is over all molecules, with

Ub,i the total of all bond energies in molecule i, and Ua,i the total of all angle energies in

molecule i. (Note that all pairs of beads within each molecule also are included in the first

sum and, therefore, interact through the repulsive DPD potential used for the intermolecular

interactions.) For the parameter optimization procedure, we also require the derivative of

the total potential energy, Utotal, with respect to each of the parameters being optimized,

∂Utotal/∂AIJ and ∂Utotal/∂Rc,IJ which are easily obtained by differentiating Eqn. 3. For the

three bead types used in this work, there are six values of AIJ and six values of Rc,IJ , corre-

sponding to IJ = WW,WH,WT,HH,HT, TT . And there are six corresponding derivatives

of the total energy with respect to the force amplitude parameters and six for the range pa-

rameters. In this work, the six ranges Rc,IJ were held fixed at Rc,IJ = Rc,WW = RDPD and

were not optimized, so only the six derivatives with respect to the interaction strengths AIJ

were computed.

Parameters determined using compound densities

In the early work16 of Groot and Warren, simulation protocols and parameters were estab-

lished that were appropriate for DPD simulations of water under ambient conditions. These

used DPD beads interacting with AWW = 25 (kBT/RDPD), and used the range of this in-

teraction as the DPD unit of length (Rc,WW/RDPD = 1). Under thermodynamic conditions

where this material behaves as a dense liquid like water, the resulting density was ρ = 3

(DPD beads)/R3
DPD, under a control pressure in NpT simulations of P ≈ 23.7 kBT/R

3
DPD.

These parameters are often used25 in DPD simulations to represent water and we will follow

this practice here, thereby fixing AWW and Rc,WW . However, one has some flexibility in
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deciding how many water molecules such a DPD bead represents in these simulations. It

has been standard in our work and that of others56–58 to let a DPD bead represent two

water molecules. With this assignment and the actual density of water we can establish

the DPD unit of length in our simulations. Using a mass density of 1000 kg/m3 and a

molar mass of 18.02528 g/mole for water, one obtains a number density of ρw = 0.03343

(water molecules)/Å
3
. If this number density for water molecules corresponds to a bead

density of ρ = 3 beads/R3
DPD and we assign two water molecules per bead, it establishes the

DPD length scale as RDPD = 5.641Å.

With the DPD length scale so determined, we can use it, along with experimental den-

sities for alkanes, to establish the TT bead interaction parameters, and with experimental

densities for polyethylene glycol to establish the HH bead interaction parameters. For the TT

interactions we use the experimental mass density of dodecane, C12H26, 0.7495 g/cm3, which

implies a number density of ρC12H26 = 0.002650 molecules/Å
3

= 0.4757 molecules/R3
DPD.

Using the coarse graining strategy that lets a T bead represent an ethyl unit, dodecane

molecules are represented by chains of six T beads, resulting in a desired bead density of

2.854 (DPD T beads)/R3
DPD. DPD simulations were performed under the control ForceBal-

ance22, which iteratively adjusted ATT to obtain this target density. These simulations used

Rc,TT/RDPD = 1 with 32000 molecules of six T beads each and the NpT ensemble with

p = 23.8 kBT/R
3
DPD. Each of these simulations was for one million time steps, using a time

step size of 0.04 DPD time units. The density equilibrated very early, usually during the first

100000 steps of the simulation, but the average density was computed in each case using data

from the last 750000 steps. After a few iterations, ForceBalance converged to ATT = 37.325

to yield the target T bead density of 2.854 (DPD T beads)/R3
DPD.

For the HH interactions, we use the mass density of 1.128 g/cm3 for PEG400, a well char-

acterized and commercially available narrow dispersity polymer mixture of molecules with

an average molar mass of 400 g/mole that is a liquid under ambient conditions. This implies

a number density of ρPEG400 = 0.001698 molecules/Å
3

= 0.3048 molecules/R3
DPD. Molecules
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with an average molar mass of 400 g/mole have an average of 9.035 ethyl units, so we would

like a value for AHH that gives an average bead density of 2.754 (DPD H beads)/R3
DPD.

As above for the T bead interactions, DPD simulations were performed under the control

ForceBalance, which iteratively adjusted AHH to obtain this target density. These simula-

tions used Rc,HH/RDPD = 1 with 21333 linear molecules of nine H beads each and the NpT

ensemble with p = 23.8 kBT/R
3
DPD. Densities were averaged in each case using the last

750000 steps of one million step simulations, with a time step size of 0.04 DPD time units.

After a few iterations, ForceBalance converged to AHH = 34.193 to yield the target H bead

density of 2.754 (DPD H beads)/R3
DPD.

Parameters determined using CMC and Nagg data

The remaining three parameters, AWT , AWH , AHT , were iteratively optimized to best repro-

duce experimental CMC and Nagg values. The column labeled Start in Table 4 summarizes

the values for AWW and Rc,WW = RDPD established from convention, and those for AHH and

ATT established along with the use of Rc,HH = Rc,TT = RDPD to reproduce experimental

densities for alkane and polyethylene glycol. Also shown in the column labeled Previous are

the values used in our earlier56 work, where one can see that the older values for AHH and

ATT are significantly smaller. We started our iterative optimization of AWH , AWT , and AHT

with values that were somewhat increased compared with what was used earlier in order

keep them somewhat balanced. The ranges Rc,IJ were not optimized.

Table 4: DPD interbead interaction parameters

Bead Type Pair Previous Start Final
I–J Pair AIJ Rc,IJ AIJ Rc,IJ AIJ Rc,IJ

W–W 25 1.00 25 1.00 25 1.00
H–H 25 1.00 34.193 1.00 34.193 1.00
T–T 25 1.00 37.325 1.00 37.325 1.00

W–H 25 1.00 32.10 1.00 29.49 1.00
W–T 45 1.00 52.15 1.00 51.547 1.00
H–T 30 1.00 37.15 1.00 40.45 1.00
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The LogP force field

For comparison, we also performed simulations using a different recently derived25 DPD

model, also developed in our lab for nonionic surfactants. This model uses a slightly different

coarse graining strategy (see Figure 2) as well as two additional bead types: one, to describe

the terminal methyl unit on the hydrophobic region, and another, to describe the terminal

hydroxyl group on the hydrophilic region. The parameters for this model were optimized to

reproduce experimental water-octanol partition coefficient data, so we refer to it here as the

LogP parameter set. The optimization procedure that produced this model adjusted both

interaction strengths and the ranges, although the WW interactions were the same as ours.

These parameters are included in Table 5 along with ours for comparison in the six places

where such a comparison is meaningful. One can see that there are interesting similarities

and differences.

Figure 2: Coarse graining of two water molecules into a W-type bead and C6E4 into eight
beads of four different types as given by an alternative25 (LogP) coarse graining scheme,
with a methyl and two ethyl beads used for the hydrophobic region and 4 dimethoxy ether
beads and a methanol bead used for the hydrophilic region.
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Table 5: DPD interbead interaction parameters

Bead Type Pair LogP This Work
I–J Pair AIJ Rc,IJ AIJ Rc,IJ

W–W 25.0 1.0000 25.000 1.00
W–[CH2OH] 14.5 0.9900
W–[CH2CH2] 45.0 1.0370 51.547 1.00
W–[CH3] 45.0 0.9775
W–[CH2OCH2] 24.0 1.0580 29.49 1.00

[CH2OH]–[CH2OH] 14.0 0.9800
[CH2OH]–[CH2CH2] 26.0 1.0270
[CH2OH]–[CH3] 26.0 0.9675
[CH2OH]–[CH2OCH2] 25.0 1.0480

[CH2CH2]–[CH2CH2] 22.0 1.0740 37.325 1.00
[CH2CH2]–[CH3] 23.0 1.0145
[CH2CH2]–[CH2OCH2] 28.5 1.0950 40.45 1.00

[CH3]–[CH3] 24.0 0.9550
[CH3]–[CH2OCH2] 28.5 1.0355

[CH2OCH2]–[CH2OCH2] 25.5 1.1160 34.193 1.00

2.3 Choice of Data for Training and Validation

The entire experimental data set1 consists of CMC values for twelve compounds (Table 1) as

well as mean aggregation numbers (Tables 2 and 3) and particle size distribution functions

for them at each of several concentrations at which spherical micelles were thought to form.

From this we selected training and validation data sets. The goal was to have enough training

data to represent important trends and enough validation data to test for transferability of

the resulting model, all while keeping the effort computationally tractable. Data for one

of the compounds, C12E5, was omitted because the temperature of the measurements was

close to the cloud temperature, and it appeared in the experiments that large aggregates

of micelles, rather than isolated micelles, might have been forming. (However, this would

be a very interesting case for simulation with a validated force field.) For the C6E3, C8E4,

C10E5 and C12E6 compounds (CnEm with n=2m), we noticed there was an unusually strong

dependence of micelle size on surfactant concentration, and it also appeared that there were

longer tails in the particle size distribution functions. Our criteria (see below) for establishing
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the appropriate size of simulations for modeling these compounds suggested extremely large

simulations were required. In order to keep the effort tractable we included only the smaller

two of these four, C6E3 and C8E4, omitting C10E5 and C12E6. The compound with the smaller

suggested simulation size of these was C6E3, and it was included at two concentrations in

the training set. C8E4 was also included, but only as a validation set compound and at only

one concentration. (Compounds in the validation set are only simulated once, using the final

optimized force field, whereas those in the training set have to be simulated dozens of times

as the force field is iteratively optimized.)

In the C6 series, data from C6E5 was used along with that from C6E3 as training set

data, and data from C6E4 (between them) was used for validation. In the C8 series, data

from C8E5 was used for training, and from C8E6 data at one concentration was used for

training and a different one for validation. In the C10 and C12 series, the simulation sizes

needed were quite large. Data from C10E6 at one concentration was used for training, and

a different one for validation. Data from C10E8 and C12E8 were used (two concentrations

each) only for validation due to tractability concerns.

The training set, therefore, included representatives of two C6 compounds, two C8 com-

pounds, and one C10 compound, with the C12 compounds excluded from the training set

due to tractability concerns, but with C12E8 included in the validation set. We hoped that

the training molecules and concentrations selected could adequately serve to capture spe-

cific observed trends seen in the target CMC and Nagg values as a function of surfactant

concentration, and of the hydrophobic and hydrophilic chain lengths. The two surfactant

concentrations chosen for each compound were both low enough to expect spherical micelles

to be the predominant aggregate, but different enough to capture the general size depen-

dence with respect to concentration seen in the data. The success of the final force field at

reproducing several trends is discussed in the Discussion section.

The resulting CMC data consisted of five values for training (C6E3, C6E5, C8E5, C8E6,

C10E6) and six values for validation (C6E4, C8E4, C8E6, C10E6, C10E8, C12E8). For the

21



micelle size data, two concentrations were simulated for all compounds (except only one for

C8E4) resulting in eight training values (two concentrations each for C6E3, C6E5, C8E5, and

one each for C8E6 and C10E6), and nine validation values (two each for C6E4, C10E8, and

C12E8, and one each for C8E4, C8E6, and C10E6). We hoped that the five CMC values and

eight 〈Nagg〉M values would be sufficient to determine optimal values for the three force field

parameters, AWT , AWH , AHT , without overfitting.

2.4 Computed Observables

In this work we develop parameters that can be used in simulations of micelles and are

capable of reproducing experimental CMC and Nagg values. In this section we explain how

these are computed. During each simulation at regular intervals particle coordinates are

saved. Similar to previous56 work, the particle coordinates are analysed by the UMMAP59

software package that partitions the surfactant molecules into clusters. Two molecules are

considered to be in the same cluster if any of the hydrophobic sites of one of them are within

a DPD distance unit of any of the hydrophobic sites of the other. The result of such an

analysis on a set of coordinates, say from a particular point in time during a simulation, is

the number of clusters, and various attributes for each, such as the number and identity of

constituent surfactant molecules and various shape attributes. Some of these clusters may

consist of only a single molecule. We will represent by MN,i the number of clusters with N

surfactant molecules seen in frame i, captured at time ti = i∆t during the simulation over

total time T , which has had analyses performed at regular intervals of ∆t. Clusters having

more constituent molecules than some critical number, ncut, are considered to be micelles. If

they are that size or smaller, they are considered to be submicellar-sized clusters, and their

constituent molecules are treated as free (i.e., unbound) molecules. The ncut parameter of

this analysis depends on the compound, but is approximately 10. (See Tables 2 and 3 and

associated discussion.)

The CMC is computed using the time average number of free surfactant molecules, given
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by the following expressions:

CMC =
〈NF〉
〈V 〉

(6)

〈NF〉 = (T/∆t)−1

T/∆t∑
i=1

[ ∑
N≤ncut

NMN,i

]
(7)

The sum is over cluster sizes that are submicellar. All time averages are performed using

simulation results after equilibration has been achieved. Since simulations are performed

in the NpT ensemble, 〈V 〉 is the mean volume of the simulation cell. Similarly, the time

average of the number of surfactant molecules that are in micelles, and the time average of

the number of micellar sized clusters are given by the following expressions:

〈NMic〉 = (T/∆t)−1

T/∆t∑
i=1

[ ∑
N>ncut

NMN,i

]
(8)

〈MMic〉 = (T/∆t)−1

T/∆t∑
i=1

[ ∑
N>ncut

MN,i

]
(9)

Note that at all times during the simulation, NF +NMic = N , where N is the total number

of surfactant molecules. Since N is constant during a simulation, only one (e.g., NMic) needs

to be measured. The number averaged mean aggregation number would be given from these

by the following expression:

〈Nagg〉N =
〈NMic〉
〈MMic〉

(10)

Of greater interest in this work, however, is the computation of the mass averaged mean

aggregation number. For this, we note that the fraction, fN , of the total mass of micellar

surfactant molecules that are in clusters with exactly N molecules (where N > ncut) is given
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by the following expression:

fN =
(T/∆t)−1

∑T/∆t
i=1 NMN,i

(T/∆t)−1
∑T/∆t

i=1

∑
L>ncut

LML,i

(11)

The numerator is the time average of the number of molecules in clusters of size N , and the

denominator is the time average of the number of molecules in all micellar clusters, which is

equal to 〈NMic〉, defined above. The distribution function, fN , is normalized to unity when

summed over all N > ncut. The computation of the mass averaged mean aggregation number

uses this as the weighting function to yield the following:

〈Nagg〉M =
∑

N>ncut

N fN (12)

=
∑

N>ncut

(T/∆t)−1
∑T/∆t

i=1 N2MN,i

(T/∆t)−1
∑T/∆t

i=1

∑
L>ncut

LML,i

(13)

= 〈NMic〉−1 (T∆t)−1

T/∆t∑
i=1

[ ∑
N>ncut

N2MN,i

]
(14)

In these expressions, we see that the time averages of three quantities are of interest:

x1,i =
∑

N>ncut

MN,i (15)

x2,i =
∑

N>ncut

NMN,i (16)

x3,i =
∑

N>ncut

N2MN,i (17)

The time average of x2 is used to obtain 〈NMic〉 (Eqn. 8) and 〈NF〉 = N − 〈NMic〉, which is

then used to compute the CMC (Eqns. 6 and 7). The time average of x1 is used to obtain the

average number of micelles, 〈MMic〉 (Eqn. 9), and along with 〈NMic〉 to obtain the number

averaged mean aggregation number, 〈Nagg〉N (Eqn. 10). The time average of x3 is used along

with 〈NMic〉 to obtain the mass averaged mean aggregation number, 〈Nagg〉M (Eqn. 14).

From these three time series one also obtains estimates of the variances, time correlation
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functions, and resulting statistical uncertainties for the CMC and 〈Nagg〉M quantities. The

statistical uncertainties are computed as described previously56 and account for the temporal

correlation in the simulation data. Through the cross correlation functions of the xi time

series with the time series that describes the derivatives of the energy with respect to the

force field parameters (see Appendix A), one also obtains the derivatives of the CMC and

〈Nagg〉M with respect to the force field parameters.

Some of the quantities being computed are ratios of two ensemble averages. Derivatives

of these quantities with respect to force field parameters are required for the force field

optimization procedure. The following expression gives, for example, the derivative of the

mass weighted aggregation number with respect to some force field parameter, α:

∂ 〈Nagg〉M
∂α

=
∂ (〈X3〉 / 〈X2〉)

∂α
(18)

=
1

〈X2〉
∂ 〈X3〉
∂α

− 〈X3〉
〈X2〉2

∂ 〈X2〉
∂α

(19)

= 〈Nagg〉M

[
1

〈X3〉
∂ 〈X3〉
∂α

− 1

〈X2〉
∂ 〈X2〉
∂α

]
(20)

(21)

The procedure for the computation of derivatives of ensemble averages with respect to the

force field parameters is described in Appendix A.

2.5 Objective Function

Systematic force field optimization involves defining a positive definite objective function of

the force field parameters which describes the deviation of observables computed in simula-
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tions that use the model from target (experimental) values.

F (α, β, . . . ) = wN
∑
ij

[
N

(sim)
ij (α, β, . . . )−N (expt)

ij

σN,ij

]2

+wC
∑
i

[
log

(
C

(sim)
i (α, β, . . . )

C
(expt)
i

)]2

(22)

Here we represent by (α, β, . . . ), the force field parameters that we seek to vary in order to

minimize the objective function, F . For notational convenience we use Nij to represent mass

weighted mean aggregation numbers, (〈Nagg〉M), for compound i measured at concentration

j, allowing for the fact that the experimental aggregation numbers are not constant, but

tend to grow with concentration for this class of compounds. The superscripts expt and sim

indicate whether the value is obtained from experiment, making it, therefore, part of the

training data, or, rather, from a simulation, in which case its value depends on the force

field parameters being considered for optimization. The variable σN,ij is an estimate of the

experimental uncertainty in the aggregation numbers, which depends on the compound and

concentration. This value serves to amplify the contribution to the objective function when

the difference between simulation and experiment (training) is larger than this experimental

uncertainty. Similarly, we use C
(expt)
i and C

(sim)
i to represent the experimental values and

simulation results for the CMC of compound i, and indicate through arguments on C
(sim)
i

that the simulation result depends on the choice of the force field parameters. Where there

were multiple concentrations simulated for a compound, as there were for most, the CMCs

measured at each concentration were averaged to produce a single value for that compound

for use in the objective function.

Values for σN,ij were the uncertainties in experimental 〈Nagg〉M values from Tables 2 and

3 unless they were less than 5, in which case 5 was used. Given all the assumptions and

approximations in the interpretation of the experimental results, we felt that for the purposes

of the fitting exercise that uncertainties in the aggregation numbers should be at least this
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large.

The use of the log function in the treatment of the CMC contribution to the objective

function allows for the fact that the experimental CMC values and their uncertainties for

this family of compounds have a very wide dynamic range and supports the goal that we are

aiming to minimize relative (i.e., percent) errors in the CMC. (Experimental CMC values

for these compounds range over three orders of magnitude and are typically reported with

only one significant digit.) Use of the logarithm allows an equal contribution to the objective

function to be made when the CMC from the simulation is off by a factor of two, say, from

the corresponding experimental value regardless of whether the experimental value itself is

nearer to 100 mM or 0.1 mM. On the other hand, experimental aggregation numbers have a

much smaller dynamic range (30-200) and uncertainties are fairly constant (of order unity),

and so we aim to minimize their absolute errors.

The wN and wC parameters are used to weight the relative importance of fitting each

type of observable. Since the objective function cannot be optimized to zero, the values of

these weights affect the final results. We established a heuristic rule for setting these weights

that reflects the degree of experimental uncertainty typical in the observables. Namely,

for each term in the summations, if the deviation between the simulation result and the

experimental value is comparable to the experimental uncertainty, a value of 10 is contributed

to the objective function. Specifically, for the contributions related to aggregation numbers,

we assumed σN ' 5, a value that roughly captures typical variation in the experimental

values among the concentrations for a given compound. Consequently, wN = 10. For the

contributions related to the CMC values, we observed relative variations in experimental

CMCs from the literature (see the Supporting Information in the previous1 paper) to be

approximately 25% of their value for many compounds in this study. If the CMC value

from simulation differs by this much from its corresponding experimental value, C
(sim)
i =

C
(expt)
i +0.25C

(expt)
i , this results in a contribution of wC [log(1.25)]2 to the objective function.

Equating this to 10 determines wC = 1065. That is, with these choices of wN = 10 and
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wC = 1065, when the aggregation number from simulation is different from the experimental

target value by 5, one gets a comparable contribution to the objective function as when the

CMC from simulation differs from the experimental target value by 25%.

The experimental values used in the objective function are listed in Table 1 for the CMC

and in Tables 2 and 3 for the 〈Nagg〉M . Tables 6 and 7 also include these values and indicate

which data were used as part of the training data (T) and which were used for validation (V)

to determine how well the resulting model performed for compounds and/or concentrations

that were not in the training set.

For the parameter optimization itself we made extensive use of an existing force field

optimization framework, ForceBalance22 which we have adapted for use in our micellar based

calculations. Our main changes have been to: 1) implement the objective function described

above; 2) incorporate analytic derivatives of this objective function with respect to force

field parameters, and 3) interface the code with DL MESO60, the simulation engine used in

this work for the DPD simulations. The latter was facilitated by integrating ForceBalance

with our locally developed workflow software that manages job submission and control of the

highly compute intensive DPD simulations, parses results, invokes the clustering analyses,

computes observables (CMCs and aggregation numbers) and their statistical uncertainties

and their derivatives with respect to the force field parameters. These simulations need to be

performed at multiple concentrations for each compound of the training set. The quantities

needed to evaluate the objective function and its gradients are then passed to ForceBalance,

which computes them and returns a new set of (hopefully) improved force field parameters.

This process is repeated with adequate convergence after 12-15 iterations.

To perform the local minimization we used the quasi-Newton optimizer implemented in

ForceBalance with the Gauss-Newton approximation, which constructs the Hessian using

first order derivatives of the observables. The BFGS algorithm was also tried but was

found to be less effective for our application. A trust radius setting of 1.0 was also used in

ForceBalance.
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2.6 Simulation Properties

System Sizes

Experimental results1 suggest there are rather broad distributions of micelle sizes for these

nonionic surfactants. Obviously, the size of micellar aggregates seen in a simulation, how-

ever, is bounded by the amount of surfactant present in the simulation. Since we are hoping

to develop force field parameters for a surfactant model that can reproduce mass weighted

aggregation numbers averaged over these broad distributions, it is important that the simu-

lations be large enough to produce in sufficient numbers some of the larger micelles observed

in the experimental distributions. In particular, simulations may have to be large enough to

be able to form micelles potentially several times larger than suggested by the mass weighted

mean aggregation number itself. Similarly, to reproduce the experimental CMC accurately

we require the simulations to be large enough to also have a reasonable amount of free

surfactant for precise estimates of the free surfactant concentration.

We used the CMC values from the literature, and the mean aggregation numbers and

micelle size distributions from the DLS measurements for guidance to establish reasonable

sizes for the simulations. For each compound and concentration simulated, we established

two different system sizes, a basic size used for most of the simulations and a larger refinement

size used for just the final stages of the parameter optimization. For the basic size, we

required simulations to be large enough for each compound and concentration to be able to

produce at least (1) five free surfactant molecules based on the target CMC; (2) five micelles

with an average size equal to that of the experimental 〈Nagg〉M ; and (3) two micelles with an

average size of N99, corresponding to the size for which 99% of the total micellar mass is from

micelles of this size or smaller, as indicated by the mass weighted particle size distribution.

The refinement sizes were roughly twice as large as the basic sizes and determined as above,

but with requirements for ten free surfactant molecules and ten micelles with an average size

equal to the experimental aggregation number.
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The last criterion addresses those compounds with a very slowly decaying particle size

distribution. Typically, N99 is four to six times the value of the mass weighted aggregation

number, but the factor can be as large as nine for some compounds. (See Supporting

Information for tabulated values of N99.) Depending on the compound and concentration,

different of these three criteria establish the minimum reasonable system size, but usually it

is requirement (2), to have at least a minimum number of micelles with an average size of

〈Nagg〉M .

These criteria produced mathematical expressions and the simulation system sizes that

are reported in the Supporting Information. Size characteristics of the systems actually

simulated, Nused, are in a table in Supporting Information. (Sizes are also included as

recommendations for compounds and concentrations that were not included in this study.)

In order to shorten the parameter optimization process, the strategy was to optimize the force

field parameters first using simulations with the smaller basic sized systems, then use the

resulting parameter values as starting values in a second optimization that used simulations

with the refinement sized systems. Simulations on the validation compounds also used the

basic sizes.

We should note here that the surfactant concentrations used in the simulations do not

exactly match the ones used in the experiments that yielded the target 〈Nagg〉M values (Tables

2 and 3). When constructing systems for simulation one must convert from experimental

concentrations expressed in units of molarity to mole fraction, or mass fraction as used in

system setup for the simulations. These conversions require assumptions about ideal mixing

and require the experimental mass density of the pure surfactants. At early stages of the

project we used experimental mass densities for some of the compounds, but could not obtain

them for every compound in the entire set. Therefore, we switched to using the densities

from the Berthod27 fit for all such concentration conversions. This change caused apparent

minor differences (usually less than 6%) between the concentrations used in the experiments

to obtain the target data and those of the simulation, once the latter were converted back
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to molarity. This difference just reflects experimental uncertainty in the measured mass

densities for these compounds. We do not expect these discrepancies to affect our training

or validation results. Supporting Information presents a more detailed discussion and a table

with the actual concentrations used.

Simulation Parameters

Simulations were performed using the DL MESO software package in the NpT ensemble using

the standard DPD thermostat and a Langevin barostat61,62, with a control temperature,

T = 1, and pressure p = 23.8, in DPD units. With the potential in use, these conditions

correspond roughly to dilute aqueous solutions at 25◦ C and 1 atm. The time step size for

all simulations was 0.04 DPD time units, except for simulations that used the LogP force

field, where a time step size of 0.02 was used. (The smaller time step size is more in keeping

with what was used in the development of the LogP force field. Since they represent fewer

atomic sites, the terminal beads in this model have a smaller mass than the rest, resulting

in higher frequency motion. This, in turn, necessitated a smaller time step size to produce

comparably accurate simulation trajectories.) The equations of motion were integrated using

the Velocity Verlet algorithm63. Other conditions are consistent with and described in earlier

work56.

Simulations were run from system setup for a minimum of 120,000 DPD time units,

corresponding to 3 million time steps (dt = 0.04) for all simulations in both developing and

using our force field parameters, and 6 million time steps (dt = 0.02) for all simulations using

the LogP force field, yielding the same amount of simulated time. Coordinates were saved to

disk every 500 time steps. The determination of how much of the beginning of each simulation

represented equilibration and what part was used for computing time averages (production)

was determined on a case by case basis. Each of the saved coordinates of a simulation was

analyzed and the temporal behavior of nine observables was monitored until there was no

observed systematic drift in any of their behaviors. These observables were relevant to the
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study and included the number of free surfactant molecules (in submicellar-sized clusters) and

the number of bound surfactant molecules (in micellar-sized clusters), the maximum micelle

size, the per frame number-averaged and weight-averaged cluster size, the sum of the squares

of the sizes of all micelle-sized clusters, and the sum of the cubes of the sizes of all micelle-

sized clusters. (These last metrics are relevant to detecting equilibration with respect to the

numbers of the larger clusters in the size distribution.) For each simulation, the equilibration

continued until all observables met the criteria for absence of systematic drift. Therefore,

the amount of time spent during equilibration was different for each compound and at each

of its concentrations, and for each iteration of the force field optimization. However, the

median equilibration length was 79260 DPD time units, and the median production time

was 40160 DPD time units. Our earlier work56 describes this approach in greater detail.

Figure 3 shows a flow chart that gives an overview of the force field parameter optimiza-

tion process.

3 Results

Representative results of the force field optimization process are shown in Figure 4. Two dif-

ferent optimizations were performed starting with different choices for the three parameters

(AWH , AWT , and AHT ) being optimized. We observed that within the three dimensional

space of the force field parameters being optimized there was a distinct and roughly planar

region where micelles formed. On one side of this plane the parameters were such that the

surfactant molecules were so soluble that no micelles formed, and on the other side they were

so insoluble that the surfactant material phase separated without forming micelles. Within

the planar region of parameter space where micelles were produced, different places on the

plane produced micelles with different size characteristics. Away from this planar region, the

objective function gradients were large and the optimization algorithm readily moved the

search to the planar region. However, once on the planar region, the gradients were much
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Figure 3: Flow Chart showing iterative optimization of the force field parameters using
ForceBalance. Each iteration involves simulations of each molecule and at each of its con-
centrations in the training set. After analysis, each simulation produces CMC and Nagg

values, as well as derivatives of these with respect to the force field parameters being opti-
mized. These are used to obtain the objective function and its gradients with respect to the
force field parameters.
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smaller and the search became more difficult.

Figure 4: Paths in 3D parameter space for optimizations from two different starting points.
Points are color coded based on the value of the objective function. The region of parameter
space with relatively low objective function values corresponds to micelle-forming models
with roughly correct CMC and 〈Nagg〉M trends and falls close to the plane depicted by the
orange dots.

The resulting parameters are shown in Table 4 under the column labeled Final. The CMC

and 〈Nagg〉M results for the training (T) and validation (V) simulations produced using these

parameters (This FF) and using the LogP force field parameters (LogP FF) are tabulated

in Tables 6 and 7. Also included in these tables is the Target data from experiment and

the compound concentrations in the experiments that produced these. The CMC values in

Table 6 are averages from simulations of each compound at the concentrations simulated as

listed in Table 7.

4 Discussion

The results in Tables 6 and 7 are shown graphically in Figure 5 where simulations results

are plotted against experimental results. The CMC results show four clusters of data, repre-
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Table 6: Results of CMC obtained with optimized force field parameters

Target This FF LogP FFCompound Model T/V
CMC, wt% CMC, wt% CMC, wt%

C6E3 H3T3 T 2.35 1.304(0.005) 0.892(0.004)
C6E4 H4T3 V 2.96 1.83(0.02) 1.13(0.02)
C6E5 H5T3 T 3.65 2.26(0.01) 1.38(0.01)
C8E4 H4T4 V 0.246 0.412(0.003) 0.121(0.003)
C8E5 H5T4 T 0.316 0.421(0.007) 0.152(0.003)
C8E6 H6T4 T 0.392 0.51(0.01) 0.179(0.004)
C10E6 H6T5 T 0.038 0.11(0.01) 0.034(0.01)
C10E8 H8T5 V 0.051 0.138(0.001) 0.035(0.001)
C12E8 H8T6 V 0.0059 0.029(0.001) 0.009(0.001)

Table 7: Results of Nagg obtained with optimized force field parameters

Expt Expt Target This FF LogP FFCompound T/V
Conc, mM Conc, wt% 〈Nagg〉M 〈Nagg〉M 〈Nagg〉M

T 128 3.01 81(1) 74(2) 26.7(0.1)C6E3
T 171 4.01 100(2) 97(2) 28.0(0.1)
V 270 7.51 46.3(0.1) 55(1) 27.6(0.5)C6E4
V 360 10.01 47.2(0.6) 66(1) 30.2(0.4)
T 266 8.56 31.8(0.1) 40.4(0.2) 25.8(0.1)C6E5
T 354 11.4 30.5(0.3) 45.5(0.3) 28.0(0.1)

C8E4 V 24.2 0.744 153(2) 63(3) 37.1(0.4)
T 33.0 1.16 65(1) 60(1) 36.2(0.5)C8E5
T 55.0 1.93 77(3) 66.4(0.7) 36.5(0.9)
V 29.7 1.17 44.8(0.4) 49(1) 30(1)C8E6
T 49.5 1.96 54(1) 58.1(0.6) 31.9(0.7)
V 4.50 0.191 74.4(0.4) 71.5(0.7) 26.81(0.02)C10E6
T 9.00 0.381 75.4(0.3) 64.8(0.2) 23.6(0.8)
V 5.24 0.268 66.8(0.4) 51.4(0.1) 24.3(0.3)C10E8
V 10.47 0.536 57(2) 51.3(0.2) 26.6(0.2)
V 3.27 0.177 80.9(0.4) 60.8(0.3) 24.2(0.1)C12E8
V 5.45 0.295 81.3(0.3) 60(1) 24.13(0.02)
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senting C12E8 on the left (smallest CMC), to C10Em, C8Em, and C6Em on the right (largest

CMC). One can see that the training (black squares) and validation (red triangles) cases do

comparably well at tracking the experimental data, but the slope is a bit too small, with the

force field producing too low a CMC for the C6Em, and too high for the C12Em. We note

that the LogP (blue circles) force field also performs very well at tracking the experimental

CMC.

As can be seen from Figure 5 the aggregation number results were much more difficult

to fit. It is clear that the training set data does a bit better at tracking the experimental

results than the validation set data. However, both do much better than the LogP force

field, which shows almost no sensitivity with respect to compound or concentration, with all

sizes falling in a narrow range near 30.

One data point on Figure 5 that deserves discussion is the 〈Nagg〉M outlier for C8E4 with

the experimental value of 153. Our optimized force field gives a value of 63 ± 3 for this.

Our earlier work1 included an extensive literature survey of experimental results from other

workers and found aggregation numbers for this compound in the unusually wide range of

23 to 147, from a variety of different types of experiments. However, there were a couple

of very credible values reported near 80. Our own DLS experiments, performed over a wide

range of concentrations, showed the sizes for this compound to be a very sensitive function

of concentration, possibly accounting for the wide disparity in the literature results. For

example, we saw monotonic growth in aggregate size from 1X CMC (0.246 % wt; 〈Nagg〉M =

81) to 20X CMC (4.92 % wt; 〈Nagg〉M = 380), with no plateau in the size at concentrations

just above the CMC, as one might expect, and as we saw in the behavior of most of the

other compounds of that study. We did not believe the very large clusters to be spherical

micelles, but, perhaps, worm-like micelles or aggregates of spherical micelles. For most of

the compounds in that study aggregation numbers from experiments with concentrations in

the range of 2X to 3X CMC exhibited a plateau, so we chose to interpret the aggregation

numbers for this compound at concentrations of 2.27X CMC (0.558 % wt; 〈Nagg〉M = 110)
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Figure 5: Comparison of simulation and experimental values for CMC and 〈Nagg〉M obtained
for the training set (black squares), the validation set (red triangles), and from an alterna-
tively optimized (LogP) force field (blue circles). The black lines are for reference and have
unit slope and go through the origin in each case. Uncertainty estimates would produce
error bars that are comparable to the sizes of the symbols. The outlier in the 〈Nagg〉M graph
has prompted a reexamination of the experimental result.
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and 3.03X CMC (0.744 % wt; 〈Nagg〉M = 153) as the sizes representative of spherical micelles,

but recognized at the time that the lack of a plateau was suspicious. With this in mind, the

outlier on the graph could shift significantly to the left, perhaps as far as to correspond with

an experimental value of 〈Nagg〉M = 80, but it will still fall somewhat below the diagonal

line.

We actually see this as a very positive result that illustrates the power of this force field

and simulations in general. The experimental aggregation number for C8E4 was not used in

training the model, so the value of 〈Nagg〉M = 63 ± 3 is actually a prediction that forced a

more careful look at the experimental data, and is causing us to adjust our interpretation of

the experimental results.

We note that some of the results we report for the LogP force field are in disagreement

with what was originally25 reported for that force field. In Table 6 of the original publication,

there are CMC and 〈Nagg〉M values for several CnEm compounds, four of which are also in our

set. The originally reported CMC values for C6E4, C8E4, C10E6, and C12E8 are, respectively,

2.1 ± 0.7, 0.2 ± 0.1, 0.03 ± 0.03, and 0.006 ± 0.005. These compare favorably with our

measurements using the LogP field, which are 1.13 ± 0.02, 0.121 ± 0.003, 0.034 ± 0.01 and

0.009 ± 0.001. In each case the differences are comparable to or less than the uncertainty

estimates of the original paper. The original 〈Nagg〉M results for C6E4 and C8E4, 33 ± 7

and 40± 5, respectively, also agree pretty well with ours, which fall in the range of 28− 30

for the former and near 37 for the later. However, for C10E6 the original work reports an

aggregation number of 57±7, whereas we get values in the range of 24 to 27. And for C12E8

the original work reports 64± 8, whereas we now get values near 24. Both studies used the

UMMAP analysis software and were careful to report mass averaged aggregation numbers.

We feel our newer values might be more reliable reflections of the LogP force field. Results

in the original paper were produced using simulations at a concentration of 5 (% wt), which

is 131X CMC for C10E6 and 850X CMC for C12E8. Our simulations were at much lower

relative concentrations corresponding to 5X and 10X CMC for C10E6, and to 31X and 53X

38



CMC for C12E8. At the higher concentrations we were concerned there might be objects

forming other than spherical micelles, such as worm-like micelles or aggregates of micelles,

resulting in an artificially large value for the aggregation number. We, therefore, preferred

to simulate at lower concentrations, but still significantly above the CMC. Our simulations

were also performed using much larger system sizes and longer simulation times. The original

simulations all used 325000 DPD beads, whereas our newer ones used 3779130 and 1265623

for the two concentrations of C10E6, and 5055463 and 5055468 for the two concentrations

of C12E8. (See Supporting Information.) The equilibration and production simulation times

in the original work, 10000 and 20000 DPD time units, respectively, were also much shorter

than in our newer simulations. Our simulations were four times longer in overall length, and

much of this effort went to equilibration, which we found to be slow for these compounds.

Our simulations of C10E6 had equilibration/production times of 111000/9000 DPD time units

at the lower concentration and 27140/92860 at the higher concentration. Our simulations

of C12E8 had times of 104540/15460 DPD time units at the lower and 111830/8170 at the

higher concentration.

Reproducing trends

Finally, we feel that a good model should be able to reproduce several notable trends seen

in the experimental data set for the CnEm family of compounds as a function of surfactant

concentration and as a function of the lengths of the hydrophobic (n) and hydrophilic (m)

chains. These trends were discussed in the earlier1 experimental study. Reproducing these

trends is important if a model is to be useful for any kind of prediction of micellar properties

of new compounds. Even with our limited data set, consisting of only nine compounds

simulated at 17 concentrations we can check to see if these trends are observed. The trends

seen in the CMC data are 1) that the CMC decreases by an order of magnitude with each

addition of two carbon atoms to the hydrophobic block while keeping the length of the

hydrophilic block fixed; 2) increasing the length of the hydrophilic block while keeping the
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hydrophobic block length fixed leads to a slight increase in the CMC, and 3) the amount of

the increase is smaller with increasing hydrophobic length.

With respect to the CMC trends, we note, first, that the force field models do not

reproduce the absolute CMC values, often being off by a factor of 2-3. This is true for our

optimized force field as well as for the LogP force field (Table 6 and Figure 5). However,

the dynamic range of these results is three orders of magnitude, so errors of this size are

possibly acceptable if the right trends are observed. Notably, both models get the first trend

very well, seeing reduction in the CMC with lengthening of the hydrophobic chain, but the

reduction is less than an order of magnitude with the addition of two carbon atoms that is

seen in the experimental data. (This is apparent since the slopes in the CMC are less than

unity in Figure 5.) The optimized force field shows reductions by factors of 4-5 instead of 10;

the LogP force field does a bit better showing reductions by factors of about 6-8. The second

CMC trend is also exhibited by both force fields, showing slight increases in the CMC with

increases in the length of the hydrophilic chain, while holding the hydrophobic chain length

fixed. With respect to the third CMC trend, for both force fields, these CMC increases

become less significant with increasing hydrophobic chain length. However, the support for

this is weak because the number of comparisons is small and the sizes of the differences are

often close to the statistical uncertainties in the CMC values themselves.

The trends seen in the experimental 〈Nagg〉M values are 1) that they increase with in-

creasing hydrophobic block length while keeping the length of the hydrophilic block fixed; 2)

that they decrease with increasing hydrophilic block length while keeping the hydrophobic

block fixed; and 3) there is a tendency for the aggregation numbers to increase for each

compound as the surfactant concentration is increased. (This third trend is seen in all of the

experimental data, except for minor violations in the cases of C6E5 and C10E8.)

With respect to the aggregation number trends, we see that the optimized force field

shows the correct first trend, showing increases in aggregation number with increasing hy-

drophobic chain length while holding the hydrophilic chain length fixed. For the LogP force
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field, this trend is seen in only two out of the four cases, passing for the smaller C6Em and

C8Em compounds, but not for the larger C10Em and C12Em. The optimized force field also

shows the desired behavior with respect to the second trend, showing decreases in aggrega-

tion number with increasing hydrophilic chain length for a given hydrophobic chain length.

The LogP potential misses this trend. The last trend, showing increases in aggregation

number for each compound when the surfactant concentration is increased, is seen in nearly

all of the results from the optimized force field (except for C10E6), but only in some of the

results from the LogP force field.

For some of these compounds we have also performed preliminary investigations using

the new force field of the rate of aggregation number growth with respect to surfactant

concentration. These simulations used a wider range of concentrations than are in the

training and validation sets. We have found, fully consistent with our experimental results,

that there are much higher rates of growth for C6E3 and C8E4 (CnEm with n=2m) than for

the other C6 and C8 compounds.

Reproducing size distribution functions

Two representative micelle size distribution functions from DLS measurements and simula-

tions are shown in Figure 6 for C6E3 (experiment concentration 128 mM, or 3.01 wt%) and

for C10E8 (experiment concentration 10.47 mM, or 0.536 wt%). Although mass weighted

aggregation numbers, which are averages over these distribution functions, are used in the

force field training and validation, the distribution functions themselves are not. Therefore,

it is possible for the model to reproduce experimental aggregation numbers but not the

underlying micelle size distribution. We see that for C6E3, there is actually very good quali-

tative agreement between the simulated and experimental distribution functions, producing

mean aggregation numbers of 74 and 81, respectively. However, we see that for the larger

C10E8, the agreement is not as good, even though the aggregation numbers are in quite good

agreement, at 54.1 and 57. Generally, the agreement in distribution functions is good for the
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smaller molecules and gets progressively worse with increasing molecule size, even though the

mean aggregation numbers remain in good agreement. One can see for the larger molecule

that the simulated distribution function is narrower and centered near its mean, whereas the

experimental one is peaked at smaller sizes and achieves nearly the same mean by virtue of

a longer more slowly decaying tail, indicating the presence of smaller numbers of very large

micelles that are heavily weighted in the mass average aggregation number reported by the

DLS measurement. This illustrates that getting good fits to aggregation numbers does not

guarantee that the size distribution itself is accurate.

Caveat

A possible challenge with the approach used here for fitting CMC and aggregation number

data deserves discussion. We are using the concentration of submicellar clusters as a surro-

gate for the CMC, as is commonly done, and we are using the properties of the larger clusters

as if they were representative micelles. One should recall, however, that micelles would only

be expected to form at all if the simulation is being performed at concentrations sufficiently

above the CMC of the force field model. Normally, this is not a problem, but while one is

doing force field optimization, it may be that at times one is using parameters for which the

concentration being simulated is below the CMC of the model. In this case, the submicellar

concentration will be below the CMC and is not a good surrogate for it. Also, any larger

aggregates, if they form at all, are probably not good representative micelles in terms of their

shape, stability or, in particular, aggregation number. In this case, the aggregates will likely

be too small. Even if one is simulating at a concentration equal to the CMC, it is unlikely

that any micelles will form. As a rule of thumb, we feel one should try to be simulating at

concentrations of at least twice the CMC of the model. At this concentration, approximately

half of the surfactant will be in micellar aggregates and half in free or submicellar aggregates.

Of course, one usually does not know the CMC of a model being used during a force field

optimization effort, but it should be verified at the end of the optimization exercise that
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Figure 6: Comparison of micelle size distributions seen in simulation and experiment for
C6E3 (top figure experiment concentration 128 mM, or 3.01 wt%) and for C10E8 (bottom
figure, experiment concentration 10.47 mM, or 0.536 wt%). The figures show distributions
from experiment (black) and from simulation (red). The curves represent mass weighted
probability densities; P (n) dn is the fraction of the total mass of micellar material that is
from micelles with sizes between n and n+ dn. Mass weighted aggregation numbers, which
are averages over these distribution functions, are used in the training and validation.
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all the simulations for all of the compounds in the test and training sets were performed at

sufficiently high concentrations.

Usually, one selects concentrations for the training and validation simulations that are in

the safe range of at least twice the experimental CMC, and hopes that after the optimization

exercise is complete, the model CMC is close to the experimental CMC. One should be

concerned, however, if the CMC of the final force field model ends up being higher than

the experimental value. This was the case for six of the nine compounds of our study.

The lowest concentrations selected for C8E4, C8E5, C8E6, C10E6, C10E8, and C12E8 were at

least three times their respective experimental CMC. However, since the CMCs of the final

models ended up being greater than the experimental values, these concentration ended up

being, respectively, only factors of 1.9, 2.8, 2.4, 1.8, 1.9, and 6.0 times the CMC of the

force field model. Fortunately, even the three lowest of these relative concentrations were

high enough that we believe fully formed micelles were were produced in the simulations.

This is somewhat corroborated in the cases of C10E6 and C10E8 where simulations were also

performed for each at higher concentrations, and consistent aggregation number results were

observed. In fact, we performed this kind of test for all of the surfactants of this study with

simulations at higher concentrations (e.g., at concentrations of at least twice the CMC of the

model) and checked for consistency of the aggregation numbers with those from the training

and validation sets.

5 Summary and Conclusions

Using experimental results on micellar properties developed especially for this purpose, we

have optimized force field parameters in the context of a coarse grained model of the CnEm

surfactant molecules and a DPD functional form. These are extreme simplifying assumptions

and part of the exercise was to determine if such a simple model could produce satisfactory

results. We found that the resulting model captures important trends seen in the experi-
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mental data in terms of the behavior of the CMC and aggregation numbers with respect to

molecular attributes (lengths of the hydrophobic and hydrophilic components) and surfactant

concentration. We compared the optimized force field with the LogP force field produced

earlier in our laboratory and found that the new one yielded better micelle size properties.

As such, it should be useful as a starting point for the study of micelles where size and

shape characteristics are important. We also hope that these parameters are transferable,

i.e., useful for the study of other surfactant compounds having chemically similar functional

groups: alkane chain components and poly-ethyleneoxide components.

Our force field optimization approach used analytic gradients of the CMC and mean

aggregation number simulation observables with respect to the force field parameters being

optimized. These were produced during the simulation using analytic expressions, and time

averaged, but are, nonetheless, subject to the usual uncertainties due to finite time sampling.

The objective function we sought to optimize incorporated both data with experimental

uncertainty, and simulation data with statistical uncertainty.

The objective function that was optimized to train the force field balanced the reproduc-

tion of experimental CMC data against that for the aggregation number data. We compared

our optimized force field with the LogP force field, which was trained to reproduce exper-

imental water-octanol partition coefficient data. We showed that that procedure does a

very good job at reproducing experimental CMC values, but is not good at reproducing

aggregation number values or trends.

Our study made extensive use of ForceBalance, which performed pretty well. However,

we observed several situations where the optimization algorithm got stuck and needed to

be restarted. This was often due to the algorithm taking too large of a step in force field

parameter space that resulted in a large increase in the objective function. This could happen

after several smaller successful steps. Then, sensing that the step was too large caused the

algorithm to backtrack and explore its local parameter space with very small steps. Also, it

is not surprising that statistical uncertainty in the objective function and the components of
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its gradient created challenges to the optimization process, especially near convergence when

the gradients and/or successive changes to the objective function were numerically small. We

encountered several cases where the optimization algorithm suggested a move in parameter

space that appeared to have improved the objective function, but, in fact, produced an

increase in the objective function that had been masked by statistical uncertainty. Such

situations are difficult for an automated optimization algorithm to detect and to recover

from. This might be addressed by a procedure that enforces stronger requirements on the

equilibration and statistical sampling in each simulation as convergence is approached in

the parameter optimization. We feel that more experience with ForceBalance could help

one better control or prevent these situations. Our typical solution was to manually restart

the parameter search from the best previous set of values. We are also exploring the use of

different optimization algorithms.

Some compounds (C10E5, C12E5, C12E6) included in the experimental study1 were not

included in the parameterization effort because they exhibited interesting or unusual behav-

ior, or because a thorough investigation would require unusually large simulations. We feel it

would be fruitful to apply the optimized force field to these compounds. For example, C12E5

at room temperature happens to be close to a phase transition. It would be very interesting

to see if a force field trained on molecules and conditions far from a phase transition could,

nonetheless, replicate some of the observed behavior for this compound. Similarly, the CnEm

compounds with n = 2m show pronounced aggregate size growth with respect to increasing

concentration and the others do not. Also, for a few of the C12Em molecules, various ex-

periments are in disagreement about the value of the CMC, and simulations might suggest

an explanation for this. Many of these compounds have micellar properties that show in-

teresting temperature-dependent behavior, and it would interesting to see if this model can

capture that even though it was not trained to.
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Appendix: Derivatives of computed observables with

respect to force field parameters

To perform the force field parameter optimization, we need derivatives of the ensemble

averages of specific observables with respect to the force field parameters being optimized.

These observables include the average number of micellar clusters within a specific size range,

or the average number of surfactant molecules that are in clusters of submicellar size. In

practice these derivatives can be obtained by finite difference calculations, or by the use the

following analytical expressions, where the derivatives are expressed as ensemble averages of

cross correlation functions. Consider the canonical ensemble average of an observable, X(r),

that is a function of particle coordinates, r, for which we have the following:

〈X〉 =

∫
dr X(r) e−βU(r)∫
dr e−βU(r)

(23)

where β = 1/kBT is the inverse temperature and U(r) is the potential energy. In this

expression, only the potential energy depends on the force field parameters. We use α to

represent a generic force field parameter, note that U = U(r;α), and differentiate to obtain

the following:

∂ 〈X〉
∂α

=

∫
dr X(r) e−βU(r)

(
−β ∂U(r)

∂α

)
∫
dr e−βU(r)

−

(∫
dr X(r) e−βU(r)

) (∫
dr e−βU(r)

(
−β ∂U(r)

∂α

))
(∫

dr e−βU(r)
) (∫

dr e−βU(r)
)

=

〈
−βX∂U

∂α

〉
− 〈X〉

〈
−β∂U

∂α

〉
= −β

〈
(X − 〈X〉)

(
∂U

∂α
−
〈
∂U

∂α

〉)〉
(24)

This expression reduces the computation of the required derivatives to the evaluation of

a fluctuation cross correlation function between the observable of interest and potential

energy derivatives. It is trivial to extend the above derivation in the canonical ensemble to

the isobaric-isothermal ensemble, which leads to equivalent expressions.
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In application, we approximate the ensemble averages in these expressions as time aver-

ages over a sufficiently long production (i.e., post equilibration) phase of a simulation:

〈X〉 ≈ X = (T/∆t)−1

T/∆t∑
i=1

X(r(ti)) (25)

〈
∂U

∂α

〉
≈ ∂U

∂α
= (T/∆t)−1

T/∆t∑
i=1

∂U(r(ti);α)

∂α
(26)

∂ 〈X〉
∂α

≈ (−β)(T/∆t)−1

T/∆t∑
i=1

[
X(r(ti))−X

] [∂U(r(ti);α)

∂α
− ∂U

∂α

]
(27)

Here we have assumed that particle coordinates, r(t), and values for ∂U(r(t))/∂α have been

saved at times ti = i∆t, at regular intervals over the length T of the production phase of the

simulation. The cluster analysis is applied to each of the T/∆t sets of coordinates to give

the times series X(r(ti)), where X represents one of the observables needed to compute the

CMC and 〈Nagg〉M for the compound and composition being considered.

Use of this analytic expression has several advantages over, say, a finite difference ap-

proach. First, during a single simulation, derivatives with respect to all force field parameters

of interest may be evaluated. Second, it is easy to implement in a standard MD software

package and imposes almost no computation or storage penalty since the information needed

to compute the energy derivatives is already available where the forces are evaluated. Third,

if the energy derivatives, ∂U/∂α, are written out at the same time as and along with the

coordinates, these gradient expressions may be evaluated even for complex properties that

require post processing by an external software package.

We note, however, that the use of this approach necessitates longer simulations than are

required to converge the observables themselves in order for the statistical uncertainty on

their gradients to be small enough for the optimization algorithm. We have found that early

in the optimization process this is not a problem, since the gradients are large compared

to their uncertainties. But as one approaches a minimum in the objective function and

the gradients get smaller in magnitude, longer simulations may be required to obtain the
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required precision in the gradients.
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