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Abstract 
 
We present Swarm-CG, a versatile software for the automatic parametrization of bonded parameters in 
coarse-grained (CG) models. By coupling state-of-the-art metaheuristics to Boltzmann inversion, Swarm-
CG performs accurate parametrization of bonded terms in CG models composed of up to 200 pseudo-
atoms within 4h-24h on standard desktop machines, using an AA trajectory as reference and default 
settings of the software. The software benefits from a user-friendly interface and two different usage 
modes (default and advanced). We particularly expect Swarm-CG to support and facilitate the 
development of new CG models for the study of molecular systems interesting for bio- and nano-
technology. Excellent performances are demonstrated using a benchmark of 9 molecules of diverse 
nature, structural complexity and size. Swarm-CG usage is ideal in combination with popular CG force 
fields, such as e.g. MARTINI. However, we anticipate that in principle its versatility makes it well suited for 
the optimization of models built based also on other CG schemes. Swarm-CG is available with all its 
dependencies via the Python Package Index (PIP package: swarm-cg). Tutorials and demonstration data 
are available at: www.github.com/GMPavanLab/SwarmCG. 
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1. Introduction 
 
In many research fields, innovation passes through the design and development of new types of functional 
materials and molecular systems with controllable properties. The shape and functions of such complex 
nanostructures typically originates from the collective behavior of a large number of interacting molecules, 
as it is the case e.g. in lipid membranes,1,2 supramolecular polymers,3–5 crystals,6–8 cages,9–11 etc. The 
investigation of these molecular systems at a sufficiently high (submolecular) resolution is most often a 
prohibitive task both experimentally and computationally, especially when these are composed of large, 
soft and flexible macromolecules in solution.  
Alongside with experimental studies, molecular modeling techniques such as Molecular Dynamics (MD) or 
Monte-Carlo simulations have turned out to be cornerstone tools to this purpose.12–20 Recent advances in 
computational hardware and simulation software have made possible to study and model increasingly 
larger molecular systems, allowing the investigation of their structural properties with great (atomistic-
level) detail. However, the large number of degrees of freedom of these calculations still limits classical 
all-atom MD simulations (AA-MD) to the study of systems with a maximum of ~106 atoms (including the 
solvent, in e.g. explicit solvent simulations) and within the timescales of nano- to microseconds.12,13 
Furthermore, AA-MD may typically suffer of limited sampling, especially in the simulation of complex 
molecules, with the risk of entrapment and oversampling of local minima and metastable states.21,22 As a 
consequence, AA-MD simulations cannot be practically employed for the observation of many crucial 
phenomena and molecular events occurring on long characteristic timescales. 
A typical approach to overcome these limitations is coarse-graining, which consists in simplifying the 
description of the molecular model, reducing the resolution by grouping several atoms in coarse-grained 
(CG) beads (aka pseudo-atoms). The objective of CG modeling is to reduce the number of degrees of 
freedom to be treated in the simulations, while still providing a physically-relevant representation of the 
molecular systems. Different CG frameworks have gained popularity by allowing to simulate complex 
molecular systems, and their dynamical properties, such as lipid bilayers,23,24 vesicles,24–26 proteins,27–29 
and various types of nanomaterials.14,30 Perhaps one of the most widely used CG schemes is the MARTINI 
force field,31 which maps molecular fragments composed of ~3-4 heavy atoms into each CG bead. In 
principle, in this scheme each CG bead interacts with the others in the system (solute-solute and solute-
solvent interactions) via a non-directional 12-6 Lennard-Jones (LJ) potential, parametrized according to 
the estimated partitioning of its associated molecular fragment between aqueous and hydrophobic 
environments. MARTINI provides a predefined set of CG beads spanning a range of polarities, together 
with a matrix of LJ interactions between bead types (i.e. the MARTINI force field). This offers a relative 
transferability of the FF, which is useful to create CG molecular models for various types of molecules, 
from biomolecules such as lipids,32–34 peptides and proteins,35,36 to synthetic molecules such as 
polymers,37,38 fullerenes,39,40 etc.  
In the MARTINI scheme, building an adequate CG model for a molecule of interest requires to map the 
constitutive molecular fragments in the AA model to CG beads, which types are opportunely chosen based 
on chemical analogy and polarities of the groups, setting up the non-bonded interactions in the CG model. 
The non-bonded parameters can then be refined to obtain accurate pairwise interactions between the 
molecular species in the system. For example, enhanced sampling methods such as umbrella sampling41,42 
or metadynamics43,44 can be applied to calculate dimerization free-energies between pairs of molecular 
species in the CG vs. AA models, which allows to optimize the CG models by matching the two 
observables.14,30,45 When available, experimental data can also be exploited.12,46 Then, the user has to 
determine appropriate intramolecular bonded interactions between CG beads, namely the bonds, angles 
and dihedrals parameters, in terms of equilibrium values and force constants.31,46 Noteworthy, while the 
optimization of bonded parameters may seem to some extent less important than that of non-bonded 
ones for the correct modeling of inter-molecular interactions, it is in principle just as relevant, since 
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properties such as molecular flexibility, shape and size (directly controlled by the bonded terms) are crucial 
for how the molecules interact between them and with the surroundings (also solvent).  
The MARTINI force field requires users to manually tune the bonded parameters specifically for their 
molecular models.12,46 To optimize the bonded interactions of a CG model, usual practice is to first perform 
a (well-sampled) AA-MD simulation of the molecule at the relevant conditions of temperature, pressure, 
solvent, etc., using a reliable AA force field.12,31,46 The resulting AA-MD trajectory can then be mapped to 
CG beads (hereinafter referred to as the “AA-mapped” trajectory) and used as a reference to tune bonds, 
angles, and dihedrals parameters in the CG model, to ensure that the geometric features (i.e. bonds, angles 
and dihedrals distributions) are consistent with the AA model. To this purpose, multiple MD simulations 
of the CG model are performed iteratively, while manually tuning the bonded parameters in a trial-and-
error approach. This task makes the development of reliably CG models a time-consuming process, 
especially for complex molecular architectures.12,46 For molecules composed of 20 to 200 CG beads and 
containing symmetrical, partially symmetrical, flexible or planar parts, efficient and automatic tools for the 
parametrization of bonded terms would be of great help, making the process more robust and reliable.12,47 
Recent efforts towards automatized CG models parametrization have mostly focused on the refinement 
of non-bonded parameters,48–50 leveraging on the current diffusion of machine learning techniques. To the 
best of our knowledge, at present only two software implement automatic approaches to assist the 
bonded parametrization of CG models: AutoMARTINI51 and PyCGTOOL.52 Although these tools are well 
suited to treat small, drug-like molecules, they suffer of limited applicability to larger molecular systems. 
AutoMARTINI51 can be applied to molecules up to 20 heavy atoms maximum. PyCGTOOL52 does not suffer 
from such a strict limitation, but relies exclusively on a single-pass Boltzmann inversion,53,54 which 
considerably limits its accuracy when applied to larger complex molecules. 
Here we introduce Swarm-CG, a general and easy-to-use tool that combines Boltzmann inversion53,54 (BI) 
and Particle Swarm Optimization55,56 (PSO) to automatically parametrize bonded interactions in CG 
models, within CG frameworks such as the MARTINI force field. The methods need only a reference AA-
MD trajectory and a preliminary mapped CG model of the molecule of interest. Swarm-CG makes a first 
guess of the equilibrium bonded parameters via a single-pass BI, then automatically refines them via 
iterative CG-MD runs and PSO, until the distributions of the bonds, angles and dihedrals in the CG model 
are in good agreement with those of the AA model. To prove the robustness of this approach, we 
challenged Swarm-CG on a diverse molecular dataset including small to large molecules of different nature 
and shape: (i) flexible and symmetric self-assembling monomers generating supramolecular polymers in 
solution: water-soluble 1,3,5-benzenetricarboxamide (BTA) with amphiphilic side chains,57 C3-symmetric 
benzotrithiophene (BTT) decorated by L-phenylalanine (BTT-F) and octaethylene glycol side-chains,58 

napthalene diimide (NDI)59 and Zn-porphyrin based self-assembling monomers,45 (ii) cyclic structures: β-
Cyclodextrin60 and pillar[5]arene,61 and (iii) complex hyper-branched polymers: a spermine dendron62 and 
poly(amidoamine) dendrimers of generation 1 and 2 (PAMAM G1 and G2)63–66 (Figure 1). Benchmarking 
results demonstrate that Swarm-CG readily performs comparably to expert molecular modelers and 
systematically yields CG models that exhibit reliable behavior in solvent environment, within 4h-24h on 
standard desktop machines (wall time). Notably, such execution times allow to quickly explore different 
CG representations of the molecule of interest using different AA-to-CG (atoms-to-beads) mappings and 
topologies. The approach is perfectly suited for building and optimizing CG models based on widely used 
CG frameworks such as MARTINI. At the same time, Swarm-CG workflow is general and can be applied in 
principle to any CG framework and any CG passage through scales.   
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Figure 1. Molecules used to benchmark Swarm-CG. Each molecule is represented by its molecular structure and AA 
model with superimposed CG MARTINI beads mapping. (a) Flexible and symmetric molecular structures generating 

supramolecular polymers: water-soluble 1,3,5-benzenetricarboxamide (BTA) with amphiphilic side chains,57 C3-

symmetric benzotrithiophene (BTT) decorated by L-phenylalanine (BTT-F) and octaethylene glycol side-chains,58 

naphtalene diimide (NDI)-based59 and Zn-porphyrin-based molecules.45 (b) Examples of cyclic structures: β-
Cyclodextrin60 and a pillar[5]arene.61 (c) Complex hyper-branched polymer structures: spermine dendron62 and 

poly(amidoamine) dendrimers of generation 1 and 2 (PAMAM G1 and G2).63–66 Each panel indicates the color coding 

of the CG MARTINI beads types (see SI for exact mapping data). 
 

2. Algorithm 
 
The algorithm implemented in Swarm-CG is designed to automatically optimize the parameters of bonded 
interactions in a CG molecular model, namely the parameters of the potential functions used by the force 
field for bonds, angles and dihedrals in a user-provided CG molecular topology file. The software needs 
the user to preliminary define the AA-to-CG mapping and choose the CG bead types (defining the non-
bonded interactions). The functional form of bonded interaction potentials can generally be described as: 
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𝑉𝑏𝑜𝑛𝑑𝑒𝑑 = ∑
1

2
𝑘𝑏𝑖(𝑙𝑖 − 𝑙0𝑖)

2

𝑏𝑜𝑛𝑑𝑠

𝑖

+ ∑
1

2
𝑘𝑎𝑗(𝜃𝑗 − 𝜃0𝑗)

2

𝑎𝑛𝑔𝑙𝑒𝑠

𝑗

+ ∑
1

2
𝑘𝑑𝑘(1 ± cos(𝑛𝑘𝜙𝑘 − 𝜙0𝑘))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

𝑘

 (1) 

where the first term is the potential associated to the length 𝑙𝑖 of each bond, the second term is the 
potential of the angles 𝜃𝑗 and the third term is the potential of the dihedral angles 𝜙𝑘. 𝑘𝑏𝑖, 𝑘𝑎𝑗 and 𝑘𝑑𝑘 

are respectively the bond, angle and dihedral force constants, 𝑙0𝑖 indicates the equilibrium bond lengths, 
𝜃0𝑗 the equilibrium angle values, 𝑛𝑘 the periodicity and 𝜙0𝑘 the phase shift of each dihedral. 

In the MARTINI framework, an AA-mapped trajectory of the target molecule in the solvent, at a chosen 
thermodynamic state (given conditions of temperature, pressure, etc.), is used as reference to tune 
bonded parameters (BP), namely the parameters in Eq. 1, and to obtain matching distributions of the bond 
lengths, angle values and dihedral torsions (hereafter referred to as “geoms”) in the CG representation. 
Usually, the tuning of BP in the CG models is performed manually, by repeating simulations of the CG 
system until the agreement between CG and AA-mapped models is deemed satisfactory. 
Provided that a well-sampled AA-MD reference trajectory is available, the bonded parametrization of CG 
models is essentially an optimization problem, which requires to iterate CG-MD while the BP are 
optimized. To free molecular modelers from manually performing this time-consuming operation, Swarm-
CG is built around a state-of-the-art metaheuristic, Fuzzy-Self Tuning Particle Swarm Optimization (FST-
PSO),67 which is employed to iteratively tune the BP to improve geometrical features of the CG model 
throughout successive CG-MD simulations. At each iteration step (i.e., in each successive CG-MD run), a 
scoring function evaluates the current set of BP by comparing the resulting geoms distributions with those 
of the AA-mapped reference trajectory. After a defined number of iteration steps, the best matching set 
of BP is selected. The workflow implemented in Swarm-CG is summarized in Figure 2. The following 
sections describe the protocol and heuristics implemented in Swarm-CG that allowed to make the 
software parameters-free and versatile to deal with different modeling requirements and designs. 
 

 

Figure 2. General workflow of Swarm-CG. This can be schematized into three phases. (i) Preparation of the input: the 
software requires a reference AA-MD trajectory, a pre-defined AA-to-CG mapping and a preliminary CG model, where 
the non-bonded interactions are pre-defined (CG bead types and interactions), (ii) Pre-processing: an AA-mapped 
reference model is built, computing the bond, angle and dihedral distributions of the reference AA-mapped MD 
trajectory, and an initial guess of bonded CG parameters is made (to be then optimized). (iii) Optimization process: 
Iterative CG-MD simulations are performed, while at each iteration Swarm-CG, starting from a “swarm particle” (a 
set of BP), changes the BP to optimize the consistency with the reference AA-MD trajectory. The resulting set of CG 
bond parameters is then obtained as the output. 
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2.1. Input 
Swarm-CG is designed for usage with the GROMACS68,69 MD engine. In this paper we demonstrate Swarm-
CG performances to optimize CG models built based on the well-known MARTINI force field. However, the 
workflow of Swarm-CG is general and it can be used for refining basically any CG model, provided that 
non-bonded parameters and a mapping scheme are defined, and a reliable reference trajectory is 
available. The necessary input can be divided in two groups: (i) AA data used to define the target of the 
optimization and (ii) preliminary CG data used to perform the model optimization.  
The AA input data (i) include a well-sampled MD trajectory of the AA molecular model to be used as 
reference and its pre-defined mapping to CG beads. We note that while a few automatic AA-to-CG 
mapping schemes have been already proposed (e.g. in the MARTINI formalism),51,52 these typically work 
only for small molecules. The search of methods suggesting the best CG representation for accurately 
treating the dynamics and structural features of molecules is a subject of great scientific debate.70–73 Here, 
for sake of a broader practical utility of Swarm-CG, we preferred to leave the AA-to-CG mapping to the 
user, who is free to choose the preferred CG scheme (the MARTINI force field or other pre-set 
schemes),18,74,75 while the software will optimize the bonded terms accordingly.  
Input CG data (ii) include a preliminary CG model, together with its non-bonded force field parameters, 
and simulation setup for the iterative MD simulations that will be used for the model refinement: i.e. the 
starting molecular configuration and the MD parameter files (cf. section 6.1). The starting molecular 
configuration will be minimized and pre-processed at each iterative MD simulation step using new sets of 
BP. The preliminary CG model needs to contain relevant information on the CG beads (e.g. type, charge, 
mass), the bonded potential topology and functional forms (which define the form of Eq. 1), while 
equilibrium values and force constants are arbitrarily initialized (e.g. to 0). Symmetries of the CG topology 
can be specified in the preliminary model file to improve the quality of the reference AA sampling and to 
reduce the number of free parameters to optimize. To this end, the bonds (or angles, dihedrals) that are 
structurally equivalent due to molecular symmetries can be gathered in “groups” so that: (i) their 
distributions are averaged in the analysis and (ii) they share the same BP (cf. section 6.1). Groups of geoms 
are directly indicated by the user in the preliminary model file. Swarm-CG provides detailed 
documentation and uses a set of default filenames for easier arguments handling. 
 
2.2. Scoring function 
To attribute a score to the BP set of a CG model (namely, how good/bad this performs compared to the 
reference AA model), the reference AA trajectory is first mapped to its CG representation to generate a 
“target/reference” AA-mapped trajectory, that the optimized CG model aims at reproducing. In this 
perspective, the geometrical features of the CG model can be evaluated by comparing the CG-MD 
trajectory to the AA-mapped, on two scales: (i) “global” structural molecular properties, e.g. the radius of 
gyration (Rg) and solvent accessible surface area (SASA) and (ii) “local” conformation and flexibility, which 
can be assessed via the distributions of geoms. Since multiple sets of BP can produce similar Rg or SASA 
values, it is not possible to directly use such global structural properties as feedback for the optimization 
process, as the results would be locally inaccurate. Therefore, Swarm-CG uses a scoring function based on 
the differences between the corresponding geoms distributions obtained from the CG and AA-mapped 
trajectories (reported in Figure 3a). Differences are evaluated using the Earth Mover’s Distance76 (EMD, 
aka Wasserstein metric), which solves the optimal transport problem77 to quantify the amount of “work” 
necessary to transform one distribution into another. The set of BP selected by Swarm-CG as the outcome 
of the optimization process is the one that minimizes the scoring function, while Rg and SASA are 
monitored during the execution and ultimately used for a posteriori model validation. 
In the present context, using the EMD offers several advantages over other f-divergences. Notably, the 
EMD: (i) quantifies the difference between geoms distributions in interpretable units (Å, degrees), (ii) is 
well suited for comparison of multimodal distributions in this application case and (iii) it allows to correctly 
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handle dihedrals distributions by using a periodic distance matrix. A scaling factor C is applied to EMD 
obtained for bonds distributions to allow comparison with EMD obtained for angles and dihedrals, since 
units are different.  
 

 

Figure 3. Overview of the scoring function and iterative optimization procedure used in Swarm-CG to automatically 
tune the BP of a preliminary CG model (using illustrative data). (a) Single model scoring: the scoring function evaluates 
the matching between pairwise distributions of N groups of bonds, M groups of angles and L groups of dihedrals from 
CG vs. AA models trajectories using the Earth Mover’s Distance. C is a scaling factor applied to EMD of bonds. (b) 
Iterative model optimization: The procedure generates new sets of BP to minimize the differences between CG and 
reference AA-mapped distributions. (c) Quality control: Radius of gyration (Rg) and solvent accessible area (SASA) 
monitored during optimization. 
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By default, we set C = 50, meaning that an EMD of 0.4 Å between bond distributions is equivalent to an 
EMD of 20 degrees between angle or dihedral distributions. To better penalize large mismatches between 
distributions and respect the weight of each geom, we do not normalize score components by the number 
of geoms defined in the topology. Therefore, it is important to note that the scores can be compared 
exclusively between trajectories of CG models generated in similar conditions (i.e., identical topology and 
non-bonded interactions parameters, but also simulation parameters) and with respect to a (well-
sampled) reference AA-mapped trajectory. The components of the scoring function can be considered 
separately to exclusively evaluate the matching of bonds, angles or dihedrals distributions during the 
optimization procedure. Swarm-CG performs EMD calculations via PyEMD.76,78 
 
2.3. Iterative optimization procedure 
PSO55,56 is a population-based global optimization algorithm (aka metaheuristic) inspired by the collective 
movement of birds flocks and fish schools. In PSO, a swarm of individuals (referred to as “particles”, each 
representing a set of values to be optimized) moves iteratively inside a bounded search space and 
cooperates to identify the best solution for a problem, according to an objective function. Usually, there 
are two groups of settings in PSO that control the cooperation within the swarm: (i) social attraction, which 
favors the collaboration among particles and (ii) cognitive attraction, which prompts a particle to rely on 
its individual experience. The swarm of particles can be initialized either randomly or from known 
approximate solutions. Metaheuristics such as PSO are particularly suited for solving black-box 
optimization problems and effectively handle noisy data. 
To refine BP of CG models, Swarm-CG relies on FST-PSO,67 a recently introduced PSO variant. FST-PSO 
exploits fuzzy logic to dynamically adjust PSO settings independently for each particle during optimization, 
making it a more efficient, parameters-free and versatile PSO variant.67 Nonetheless, the performance of 
all PSO algorithms is greatly affected by the initial positioning of the swarm in the search space.56 If the 
initial candidate solutions are positioned close to the basin of attraction of a local minimum of the 
objective function, the swarm might converge prematurely and be unable to move out of that region. To 
systematically achieve global optimization while minimizing execution times, Swarm-CG uses an iterative 
procedure that include 3 successive optimization cycles calibrated to complement each other (Figure 3b). 
Notably, BP of the CG model are optimized from higher to lower geoms vibrational frequencies. Exclusively 
bonds and angles are tuned in cycle 1. Angles and dihedrals are then optimized in cycle 2. Finally, all 
parameters are refined altogether in optimization cycle 3 (see Table 1). Accordingly, the scoring function 
is adapted for each cycle to include relevant components exclusively. Swarm-CG also calibrates each 
initialization of the swarm of particles to maximize FST-PSO performances. At start of cycle 1, initialization 
is performed using a single-pass BI (cf. SI section 1.1) to guess BP of the CG model, for one swarm particle, 
which is used as a reference to generate variations and initialize the rest of the swarm. At start of cycles 2 
and 3, the best set of BP obtained in previous cycles is chosen as a reference particle to generate the rest 
of the swarm. For each bonded parameter, variations around the reference particle are generated 
randomly within adaptive ranges, which are decreased as the procedure progresses through optimization 
cycles (Table 1). Adaptive ranges also take into account the EMD previously obtained for each pairwise CG 
and AA-mapped geoms distributions, which directs the optimization procedure towards reducing first the 
largest discrepancies between models (cf. SI section 1.2). The two first optimization cycles allow a quick 
exploration of relevant sets of BP using short simulation times (10 ns by default), while the third 
optimization cycle uses longer simulation times to perform a final merging and refinement step (25 ns by 
default). 
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Table 1. Default settings used to perform 3 cycles of bonded parameters optimization of a CG model in Swarm-CG.  
 

Opti. 
cycle 

Geoms optimized Reference swarm 
particle 

initialization 

Variations around 
reference swarm 

particle 

Simulation time of 
production runs(c) Bonds Angles Dihedrals 

1 Yes Yes No(b) BI Large 10 ns 

2 No(a) Yes Yes(b) Best from cycle 1 Medium 10 ns 

3 Yes Yes Yes(b) Best from cycle 2 Small 25 ns 
(a) In cycle 2, bonds parameters are fixed to those of the best scored model obtained during cycle 1. 
(b) Dihedral parameters are applied for simulation and optimized only in cycles 2 and 3, if dihedrals topologies are 
provided in the input preliminary CG model. 
(c) Default settings, simulation times can be increased by the user for very large molecules. 

 
In all PSO algorithms, the procedure terminates after a pre-defined number of steps or when 
improvements over the objective function become minimal. To allow a parameters-free usage of Swarm-
CG, simple heuristics enable automatic selection of a relevant swarm size and number of swarm iterations 
to perform in each cycle of optimization. Swarm size (𝑆𝑠𝑖𝑧𝑒) is defined according to the dimension (𝐷) of 

the search space as 𝑆𝑠𝑖𝑧𝑒 = 2 + √𝐷 and number of swarm iterations (𝑆𝑖𝑡𝑒𝑟) as 𝑆𝑖𝑡𝑒𝑟 = 8 + √𝐷 2⁄ . An 
optimization cycle is terminated prematurely if no improvement occurred within 6 swarm iterations. 
Default settings readily allow to perform accurate bonded parametrization of virtually any CG model, as 
long as the provided topology and potential functions are relevant. The accuracy and execution times of 
Swarm-CG are expected to satisfy molecular modelers requirements for optimization of up to 
approximately 100 free parameters,67 which represent approximately 50 groups of bonds, angles and 
dihedrals (i.e., many more geoms in symmetrical molecules). Beyond that, users can easily access Swarm-
CG parameters, for example, to increase the number of optimization steps or add more optimization 
cycles. 
 
2.4. Execution modes 
The software provides two execution modes, which conform to two different CG modeling philosophies. 
Using execution mode 1, all equilibrium values (𝑙0𝑖, 𝜃0𝑗 and 𝜙0𝑘 in Eq. 1) are optimized together with the 

force constants (𝑘𝑏𝑖, 𝑘𝑎𝑗 and 𝑘𝑑𝑘 in Eq. 1), for each group of bonds, angles and dihedrals. This procedure, 

based on the BI philosophy, allows for a fully automatic and relatively easy usage of the software, which 
precisely reproduces geoms distributions from an AA-mapped reference trajectory. However, using 
Swarm-CG in execution mode 1 as a black box may also have undesired effects. For instance, an insufficient 
conformational sampling in the reference AA-MD trajectory may automatically introduce artifacts in the 
optimized CG model. Indeed, poor sampling can attribute excessive statistical weight to some molecular 
conformation, which will affect the resulting CG model and limit its accuracy. For example, the folding of 
flexible hydrophobic molecules in polar solvents into metastable compact conformations may be typically 
oversampled in AA-MD simulations. While the folding is a consequence of solvophobic interactions, it may 
result in a CG model in which the output BP encode the bending of straight linear chains (e.g. long alkyl 
groups, formed by a straight chain of CG beads) in the form of spurious angles equilibrium values (different 
from e.g. 180°), producing shorter bonds, etc. Similarly, limited sampling can affect the modeling of 
symmetric molecules (e.g. the branched molecules of Figure 1), by enforcing non-symmetric parameters 
that emerge by oversampled local minima, in contradiction with the chemical structure of the molecule. 
In such cases, this may eventually result into having an “effect” emerging from the AA models and encoded 
into the bonded parameters of the CG models, which may then affect the way molecules interact between 
them, their flexibility, transferability across different molecular environments, etc. However, Swarm-CG is 
well equipped to mitigate such spurious effects of limited MD sampling, by averaging in the AA-mapped 
reference the distributions obtained for structurally symmetric/identical parts of the molecule. It is also 
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worth underlining that such possible issues emerging from using a not properly sampled AA-MD trajectory 
as the reference is not specific of Swarm-CG, but rather a general drawback of the BI approach. Therefore, 
while BI is standard and widely used, one should always be careful and check that the AA-MD trajectory is 
sufficiently well-sampled to ensure that the observed properties of the optimized CG models are reliable. 
While enhanced sampling approaches such as Replica Exchange Molecular Dynamics (REMD)79,80 and 
metadynamics43,44 may be useful in this sense, said issues can be mitigated by using the second execution 
mode (mode 2) of Swarm-CG.  
Execution mode 2 is identical to mode 1, with the exception that equilibrium values for angles and 
dihedrals can be pre-defined in the preliminary CG model and conserved during the optimization, while 
only their force constants are optimized (along with all bonds parameters). For example, in the case of 
flexible molecules containing long solvophobic chains (e.g. alkyl chains in water), execution mode 2 allows 
to manually pre-define chemically-relevant equilibrium angles values between the alkyl CG beads (e.g. 
180°) and to obtain an accurate folding propensity of the molecule (i.e. the correct folding effect) 
exclusively by softening angles force constants, without biasing the equilibrium conformation (and without 
encoding such bias in the optimized CG models). Compared to mode 1, mode 2 requires more experience 
of the user and some knowledge of the molecular system, as well as an initial hands-on setup. 
 
2.5. Usage 
Swarm-CG allows users to quickly verify the setup and progress of an optimization procedure. At the outset 
of an optimization, Swarm-CG produces a graphical summary of the geoms distributions used as target for 
optimization, notably allowing to verify the consistency of the mapping and choice of potential functions. 
At any point during the iterative execution process, the best identified set of BP is readily provided as an 
output in a CG model ITP file, while the progress of the procedure can be monitored by producing a 
graphical summary similar to the one presented in Figure 3. Separate modules allow to perform these 
actions independently from the optimization. For manual editing of models, such as further modifying CG 
bead types and evaluating impact on bonded parametrization, the routine for model evaluation via scoring 
function is also available as a separate module. 
 

3. Results 
 

The following sections describe the results obtained for automatic bonded parametrization of CG models 
included in the Swarm-CG benchmark (Figure 1), using default settings of the program. Here we focus on 
synthetic structures as: (i) being the core activity of our group, we have a good amount of available data 
to test the performance and accuracy of Swarm-CG and (ii) because it is for the simulation of synthetic 
molecular systems that the development of de novo AA and CG models from scratch is most often 
required, while the accuracy of such models is clearly critical for the reliability of the results that these can 
provide. This can be a time-consuming activity, in which the advantages of an automatic tool such as 
Swarm-CG combined with a general CG force field such as MARTINI are more evident. The benchmark 
synthetic molecules that we use herein were selected for their structural diversity in terms of molecular 
flexibility, symmetry and complexity (cf. section 6.2). We first created AA models and generated AA-MD 
trajectories (up to 1 µs of simulation) for each single molecule in explicit solvent (while most of the cases 
studied herein are in water, the approach is versatile to treat molecules in various solvents, as it is shown 
in the case of the NDI and porphyrin based structures of Figure 1, studied in methyl cyclohexane),45 
guaranteeing well-sampled references for the automatic bonded parametrization of the CG models. CG 
models were already available from the literature for 7 of the 9 benchmarking molecules (BTA,57 BTT,58 
NDI,59 Zn-porphyrin based molecule,45 β-Cyclodextrin,60 PAMAM dendrimers of generation G1 and G263), 
which allowed us to challenge Swarm-CG performances with respect to manually parametrized CG-models 
previously developed by expert molecular modelers. To this end, we used the available CG models as 
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provided (notably for what pertains to mapping and non-bonded interactions) and allowed Swarm-CG to 
modify exclusively the equilibrium values and force constants of each bonded potential function defined 
in the available CG topology (cf. section 6.2). For the 2 other molecules (pillar[5]arene61 and spermine 
dendron62), CG models were built in the framework of MARTINI and optimized using AA models previously 
reported by our group (cf. section 6.2). For all models, bonded parametrizations were evaluated using: (i) 
Swarm-CG scoring function, which assesses the local geometrical features of a CG model, together with 
(ii) Rg and SASA, which provide a global evaluation of its molecular dynamics.  
We first tackle relatively small and flexible molecules forming supramolecular polymers in solution, that 
we use as examples to discuss in detail the differences between execution mode 1 vs. mode 2. Then we 
report the results of Swarm-CG for the parametrization of relatively rigid cyclic molecular structures. 
Finally, we increase molecular complexity by parametrizing complex hyper-branched directional and non-
directional macromolecules, such as dendrons and dendrimers. Since the simulation times used in the 
optimization runs (10-25 ns by default in the examples reported herein) might be insufficient in some cases 
to get well-converged Rg and SASA data at each step of the optimization process, Rg and SASA values 
presented for the selected (i.e. best scored) set of BP are all issued from 200 ns validation simulations that 
are conducted at the end of the optimization procedure. This also allowed to verify that all optimized 
models are stable in CG simulation using a standard integration time step of 20 fs. All average Rg values 
obtained for optimized CG models using execution mode 1 are summarized in Table 2 and compared to 
the available manually parametrized CG models. The number of iterative optimization steps used for each 
model is determined according to the formula previously described in section 2.3, while execution times 
are reported in Table 2 (hardware is detailed in Table S2). 
 

3.1. Small flexible molecules generating supramolecular polymers 
Since we have a good benchmark of AA and CG models for (relatively) small and flexible molecules that 
generate supramolecular polymers in different environments,30,45,57–63,81 we started from here in showing 
the potential of Swarm-CG. We chose the examples reported in Figure 1a. These are relatively flexible 
molecules that generate supramolecular structures in water (e.g. BTA and BTT)57,58 or in organic solvents 
(e.g. BTA, Porphyrin, NDI-based units).30,45,58,59 These molecules show an intrinsic symmetric character, 
having three (BTA and BTT), two (NDI) or four (Porphyrin) structurally identical arms originating from the 
molecule center. Thus, these are the typical motifs which, in a blind BI approach, may suffer of a spurious 
different parametrization of identical groups given by insufficient sampling. In this sense, they represent 
the ideal ground to test Swarm-CG. For these systems, we compared the results obtained using Swarm-
CG execution modes 1 vs. mode 2. As previously mentioned (cf. section 2.4), execution mode 2 allows the 
user to pre-set conserved equilibrium values for angles and dihedrals, while Swarm-CG then optimizes the 
corresponding force constants to have the CG model behaving consistently with the reference AA model.  
For the CG modeling of BTA, BTT, NDI and porphyrin-based motifs, we relied on previously developed AA 
and CG models, where intramolecular non-bonded interactions were accurately tuned using state-of-the-
art enhanced sampling techniques.14,30,45,57–59 Considering the non-bonded parameters of these CG models 
as reliable, we used Swarm-CG exclusively to optimize their bonded terms.  
 
3.1.1. BTA 
We first comment the optimization case of the CG model of the water-soluble BTA.57 The main results of 
both execution modes are reported in Figure 4a. Geometrical features of the optimized models are 
compared to both those calculated from AA-mapped data and from the literature CG model30 (cf. section 
6.2). 
Using execution mode 1, the single-pass BI coupled to distributions averaging within groups of similar 
geoms yielded an already appropriate set of BP at the very first step of the optimization process (Figure 
S2), here also validated by additional 200 ns of MD simulation. For BTA, which can be considered a 
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structurally (relatively) “simple” case with respect to the rest of the benchmark (i.e. composed of 3 core 
CG beads, linear side arms and a 3-fold symmetry), the BI implemented in Swarm-CG with geoms averaging 
proved very efficient. Optimization still reduced small mismatches in geoms distributions (Figure S4) and 
BP scores decreased from 23.3 to 16.1 without modifying average Rg of the CG model, which was found 
in good agreement with AA-mapped data for both sets of BP (i.e. both errors < 5%). The set of BP which 
obtained the lowest score during the optimization procedure is considered as the most relevant (Figure 
4a, yellow diamonds), with respect to AA-mapped reference data, and was further validated in a 200 ns 
simulation. This longer simulation validates that the optimized CG model correctly reproduces both local 
and global geometrical features calculated from the AA-mapped trajectory. BP optimization converged 
within 257 steps (Table 2). 
 

 

Figure 4. Results of Swarm-CG for the optimization of bonded parameters of two C3-symmetric flexible structures 

using execution modes 1 (M1) and 2 (M2) with default settings: (a) BTA model.57 (b) BTT model.58 From left to right 

we report: (i) the molecular structure, (ii) the evolution of the scoring function, where green lines show the score 
attributed to candidate BP during optimization. Yellow diamonds indicate the score of the selected model. (iii) the 
evolution of Rg, in which blue lines show average Rg estimates at each iteration of the CG model optimization (light 
blue intervals represent +/- standard deviation), and red horizontal lines show the average Rg of AA-mapped 
reference trajectories (light red intervals represent +/- standard deviation). Yellow diamonds and lines show averages 
and standard deviations obtained from 200 ns simulations. (iv) the comparison of Rg and BP errors in different models 
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in 200 ns simulations (BI: step 1, Opti: selected model). Boxplots and whiskers display percentiles 5, 25, 50, 75 and 
95 of Rg values. Black dots show average Rg values. Stacked barplots show each component of the scoring function, 
the sum of which amounts to the BP score. 

 
We also tested the manually parametrized CG model of BTA57 in a 200 ns simulation. BP score and average 
Rg error for this model were 43.2 and 4.5% with respect to AA-mapped data (Figure 4a, right plots). Both 
BP sets obtained via BI and optimization using execution mode 1 fixed small mismatches observed in local 
geometrical features of the manually parametrized model (Figure S6), without substantially improving the 
average Rg error. 
Using execution mode 2, all equilibrium values for the angles between the CG beads representing the three 
side chains of the BTA were fixed at 180°. As expected, the BI initially produced an imperfect set of BP 
(Figure S3 and cf. SI section 1.1), which were quickly tuned as the optimization approached convergence. 
BP scores decreased from 52.2 to 20.0. The optimized set of BP produced more “loosely” adjusted overlap 
of the distributions for some angle groups that used equilibrium values at 180° (Figure S5, angle groups 7, 
8 and 9), providing increased flexibility of the CG molecular model with respect to the optimized BP 
obtained via execution mode 1 and AA-mapped data (i.e. average Rg increased just by 0.65 Å, or 7 points, 
reaching 10.1 Å). BP scores first decreased slowly during optimization cycle 1, then only angles 
distributions were further optimized during cycle 2 and all BP were refined during cycle 3 using longer 
simulation times. At start of cycles 2 and 3 the swarm is reinitialized around the best scored set of BP 
obtained in previous cycles, using calibrated variations (cf. section 2.3) which allowed to escape a local 
minima of the objective function and produced the fluctuations of BP scores observed after steps 95 and 
160. BP optimization converged within 209 steps. The selected maximum number of optimization steps is 
reduced compared to execution mode 1 because equilibrium angle values are provided by the user, 
reducing the dimensionality of the problem. 
It is worth re-underlining that in this case (mode 2), the BTA folding is not pre-encoded in the CG model as 
bonded terms, but it is exclusively a consequence of the spontaneous collapse of the molecule in the 
solvent (hydrophobic effect, bead-bead interactions), which, in a sense, is more physically correct. 
However, it is also worth noting that such a comparison between mode 1 and mode 2 shows that the two 
modes work substantially the same in these cases, demonstrating that the behavior of these CG models is 
mainly controlled by the non-bonded interactions between the CG beads in the models more than by the 
bonded terms, so that the difference between the 2 execution modes is globally negligible in this case (see 
Figure 4). 
 
3.1.2. BTT 
We then optimized the CG model of the three-branched BTT58 motif, again using both execution modes. 
The main results are reported in Figure 4b. Geometrical features of the optimized models are compared 
to both those calculated from AA-mapped data and from the literature CG model58 (cf. section 6.2).  
Using execution mode 1, the BI again yielded an appropriate set of BP at the very first step of the 
optimization process, with essentially a single group of dihedrals for which distributions were not perfectly 
adjusted (Figure S8). These were fixed during optimization (BP scores down from 31.7 to 20.8) and allowed 
to retrieve a correct planar geometry of the core of BTT, along with slightly better adjusted geoms 
distributions (Figure S10). Notably, the average and spread of Rg values obtained for the optimized CG 
model are just slightly larger respect to those of the AA-mapped reference trajectory (Figure 4b: ΔRg of 
0.7 Å). Although the error is substantially negligible, this is consistent with the higher dynamicity of CG 
models compared to the AA ones82 (this is more evident in BTT, as this motif allows stronger core-to-arms 
and arms-to-arms interactions compared to e.g. BTA). BP optimization converged within 282 steps (Table 
2).  
We tested the manually parametrized CG model of BTT in a 200 ns simulation. BP score and average Rg 
error for this model were 87.4 and 10.5% with respect to AA-mapped data. The set of optimized BP 
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obtained using execution mode 1 fixed small mismatches observed in local geometrical features of the 
manually parametrized model (Figure S12), while producing a very similar average and spread of Rg values. 
Using execution mode 2, as expected the BI initially produced an inaccurate set of BP (Figure S9 and cf. SI 
section 1.1) which was then tuned during optimization. BP scores decreased from 95.6 to 38.0. Again, the 
optimized BP produced more “loosely” adjusted distributions overlap for angle groups that used 
equilibrium values at 180° (Figure S11, angle groups 3 to 8), providing increased flexibility of the CG 
molecular model with respect to the model optimized via execution mode 1 and AA-mapped data (i.e. 
average Rg increased by 1.10 Å or 12 points, reaching 10.3 Å). BP optimization converged within 261 steps. 
 
3.1.3. NDI 
We performed the same study for the NDI-based molecules, the results of which are reported in Figure 5a 
and compared to the CG model available from the literature.59 Using execution modes 1 and 2, the initial 
BIs yielded inappropriate sets of BP, notably due to the several dihedral potentials used to maintain the 
planarity of the molecular core (Figures S14, S15). During optimization with mode 1, BP scores decreased 
from 182.2 to 41.3 and allowed to retrieve a correct planar geometry of the core of NDI, with correctly 
adjusted geoms distributions (Figure S14). Average Rg value of the optimized model is in perfect 
agreement with the AA-mapped reference trajectory (Figure 5a: ΔRg = 0.5 Å or 4.8%). BP optimization 
converged within 395 steps (Table 2). As a comparison, the manually parametrized CG model of NDI 
yielded a higher BP score of 74.42 in a 200 ns simulation, indicating some geoms distributions could be 
better adjusted (Figure S18), although average Rg was correct at 11.7 Å (ΔRg = 0.7 Å or 6.8%). 
Using execution mode 2, BP scores went down from 350.2 to 52.4 and produced geoms distributions 
almost indistinguishable from those obtained using mode 1, since only the hinge junctions between core 
and arms (Figures S17, angle groups 10 and 11) used angles at 180° and those where already “loosely” 
adjusted with mode 1 (although Swarm-CG selected an equilibrium value at 120°). In both resulting 
models, the low force constant associated to the hinge junctions should not restrict the full extension of 
the arms, and thus is not expected to significantly affect assembly simulations, but these specific 
flexibilities must be considered carefully. Average Rg was 11.8 Å (ΔRg = 0.8 Å or 7.8%). BP optimization 
converged within 301 steps. 
 

3.1.4. Porphyrin 
Lastly, we optimized the CG model of the porphyrin-based molecule of Figure 5b, which possesses four 
arms originating from a central core according to a square symmetry, as we did for the previous cases 
(Figure 5b). Again we compared the geometrical features of the optimized models with those calculated 
from AA-mapped data and the literature CG model.45 Using execution mode 1, the BI initially produced 
inappropriate BP and mismatches between CG and AA-mapped geoms distributions were effectively 
reduced during optimization (Figure S20), notably allowing to obtain a relevant geometry of the porphyrin 
core in this more “complicated” case (i.e. nested network of bonds). BP scores went down from 45.2 to 
32.6. Average Rg was also found in good agreement with the AA-mapped trajectory (ΔRg = 0.4 Å or 3%). 
The averaging of distributions within groups of similar geoms, coupled to CG modeling, produced a planar 
geometry of the porphyrin core which reduced the spread of Rg values with respect to AA-mapped data 
(Figure 5b, boxplots). BP optimization converged within 392 steps (Table 2). Using execution mode 2, as 
expected the BI initially produced an inaccurate set of BP (Figure S21 and cf. SI section 1.1) which was 
tuned during optimization. BP scores decreased from 80.6 to 40.2. Once again, optimized BP produced 
more “loosely” adjusted distributions overlap for angle groups that used equilibrium values at 180° (Figure 
S23, angle group 3 in particular), providing increased flexibility of the CG molecular model with respect to 
the optimized BP obtained via execution mode 1 and AA-mapped data. In this case, this allowed the model 
to adopt more folded conformations in solvent (i.e. average Rg decreased by 1.20 Å or 10 points, reaching 
12 Å). BP optimization converged within 322 steps. 
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Figure 5. Results of Swarm-CG for the optimization of bonded parameters of other symmetric flexible structures in 
the benchmark, using execution modes 1 (M1) and 2 (M2) with default settings: (a) NDI model.59 (b) porphyrin-based 
monomer model.45 From left to right we report: (i) the molecular structure, (ii) the evolution of the scoring function, 
where green lines show the score attributed to candidate BP during optimization. Yellow diamonds indicate the score 
of the selected model. (iii) the evolution of Rg, in which blue lines show average Rg estimates at each iteration of the 
CG model optimization (light blue intervals represent +/- standard deviation), and red horizontal lines show the 
average Rg of AA-mapped reference trajectories (light red intervals represent +/- standard deviation). Yellow 
diamonds and lines show averages and standard deviations obtained from 200 ns simulations. (iv) the comparison of 
Rg and BP errors in different models in 200 ns simulations (BI: step 1, Opti: selected model). Boxplots and whiskers 
display percentiles 5, 25, 50, 75 and 95 of Rg values. Black dots show average Rg values. Stacked barplots show each 
component of the scoring function, the sum of which amounts to the BP score. 
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3.2. Cyclic structures 
We also challenged Swarm-CG in treating different types of molecular architectures – i.e. cyclic and 
symmetric molecules with a more rigid architecture, namely cyclodextrins and pillar[5]arene. In such 
cases, we report the results of execution mode 1 (as for such relatively simple and rigid motifs, execution 
mode 2 reported identical results).  
 
3.2.1. β-Cyclodextrin 
We first comment the optimization case of the CG model of β-Cyclodextrin,60 which main results are 
reported in Figure 6a. Geometrical features of the resulting CG model are compared to both those 
calculated from AA-mapped data and from the CG model available from the literature60 (cf. section 6.2).  
The mismatches between CG and AA-mapped geoms distributions were effectively reduced during 
optimization (Figure 6a, green line). However, in the 200 ns validation simulation, geoms distributions of 
the optimized CG model did not perfectly reproduce those calculated from the AA-mapped trajectory 
(Figure S27). A small issue in the topology of the model, related to the size of CG beads used in the MARTINI 
framework, prevents proper closing of angles between P4-P2-P2 beads (i.e. maroon-pink-pink and Figure 
S27, angle 4) and slightly affects other geoms distributions. These small mismatches in local geometry are 
acceptable at CG resolution, in the context of this molecular structure. According to the MARTINI 
framework, fixing them would require modifications such as scaling the bonds lengths between P4-P2 
beads (i.e. maroon-pink), which would introduce other forms of error in the CG model, notably related to 
non-bonded parametrization. Nonetheless, the optimization process yielded appropriate BP in the context 
of the CG topology provided for β-Cyclodextrin and average Rg and SASA are in very good agreement with 
the AA-mapped trajectory (i.e. both errors < 1%). BP optimization converged within 206 steps (Table 2). 
We tested the manually parametrized CG model of β-Cyclodextrin in a 200 ns simulation. Swarm-CG 
scoring function yielded a BP score of 71.9 for this model, indicating larger discrepancies in local 
geometrical features (Figure S29) compared to the optimized CG model which obtained a BP score of 28.2, 
with respect to the AA-mapped reference trajectory. BP optimization produced marginal improvements 
on average Rg error (0.2 Å or 3.5 points) for this small and cyclic molecule, with respect to the available 
manual bonded parametrization (Table 2).  
 

 

Figure 6. Results of Swarm-CG for the optimization of bonded parameters of two cyclic structures using execution 
mode 1 with default settings. (a) β-Cyclodextrin model.60 (b) Pillar[5]arene model.61 From left to right we report: (i) 
the molecular structure, (ii) the evolution of the scoring function, where green lines show the score attributed to 
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candidate BP during optimization. Yellow diamonds indicate the score of the selected model. (iii) the evolution of Rg, 
in which blue lines show average Rg estimates at each iteration of the CG model optimization. (iv) the evolution of 
SASA, in which blue lines show average SASA estimates at each iteration of the CG model optimization. Light blue 
intervals represent +/- standard deviation), and red horizontal lines show the average Rg/SASA of AA-mapped 
reference trajectories (light red intervals represent +/- standard deviation). Yellow diamonds and lines show averages 
and standard deviations obtained from 200 ns simulations. 
 
3.2.2. Pillar[5]arene  
Next, we optimized the CG model of a pillar[5]arene, for which main results are reported in Figure 6b. 
Geometrical features of the resulting CG model are exclusively compared to those calculated from AA-
mapped data,61 since no manually parametrized CG model was available from the literature for this 
molecule. The mismatches between CG and AA-mapped geoms distributions were effectively reduced 
during optimization (Figure 6b, green line). The optimized CG model was further validated in a 200 ns 
simulation, in which geoms distributions correctly overlapped with those calculated from the AA-mapped 
trajectory (Figure S31). Average Rg and SASA values were also found in good agreement (errors: 1% and 
5%). Since the CG model of the pillar[5]arene was prepared according to the MARTINI framework, bonds 
were rescaled between SC5 and EO beads (i.e. cyclic core to arms junctions) and the average Rg of the AA-
mapped reference was rescaled accordingly (cf. SI section 2.2), while no transformation was applied to its 
average SASA value. Therefore, the small discrepancy observed between average SASA of the optimized 
CG and AA-mapped models is expected and the rescaled, average Rg is a better reference to assess this 
model’s bonded parametrization. BP optimization converged within 230 steps (Table 2). 
 

3.3. Complex hyper-branched macromolecules 
Finally, we challenged Swarm-CG for the optimization of CG models of complex macromolecules, for which 
we use as case study a spermine-based dendron (flexible, small and directional branched macromolecule), 
and PAMAM dendrimers generations 1 (G1, symmetric/non-directional, small and flexible branched 
macromolecule) and 2 (G2, large, symmetric/non-directional and complex branched macromolecule). For 
these cases, only the results of execution mode 1 are reported, as execution mode 2 provided an analogous 
picture. In fact, while these complex architectures could suffer of reduced sampling at AA-MD level, their 
highly symmetric hyperbranched structure allows for a good analysis of the geoms, as Swarm-CG averages 
the behavior the identical/symmetric side branches. 
 
3.3.1. Directional dendrons 
We first comment the optimization case of the CG model of a spermine-functionalized dendron reported 
in Figure 7a, as an example of flexible, branched and directional molecule.62,81 Geometrical features of the 
resulting CG model are exclusively compared to those calculated from AA-mapped data, since no manually 
parametrized CG model was available from the literature for this molecule. 
As depicted by the decreasing scores attributed to candidate sets of BP during optimization (Figure 7a, 
green line), the process effectively minimizes mismatches between CG and AA-mapped geoms 
distributions, which were reduced by a factor of 2 when comparing the initial set of BP (step 1) to those of 
the optimized model (step 249). BP optimization converged within 255 steps (Table 2). The optimized CG 
model was further validated in a 200 ns simulation. Distributions of the bonds and angles correctly overlap 
between the optimized CG and AA-mapped models (Figure S34) and, on a larger scale, average Rg and 
SASA values are also in very good agreement (i.e. both errors < 3%). Average SASA of the optimized CG 
model is slightly increased with respect to that of the AA-mapped, which is due to the scaling of bonds 
lengths between CG beads of the aromatic ring and is inherent to the MARTINI framework (cf. SI section 
2.2). This scaling has little incidence on Rg values in this model and the AA-mapped average Rg was 
calculated without considering any offset.  
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Figure 7. Results of Swarm-CG for the optimization of bonded parameters of three types of hyper-branched 
macromolecules (i.e. dendrons and dendrimers) using execution mode 1 with default settings. (a) Spermine dendron 
model.62 (b) PAMAM G1 model.63 (c) PAMAM G2 model.63 From left to right we report: (i) the molecular structure, 
(ii) the evolution of the scoring function, where green lines show the score attributed to candidate BP during 
optimization. Yellow diamonds indicate the score of the selected model. (iii) the evolution of Rg, in which blue lines 
show average Rg estimates at each iteration of the CG model optimization. (iv) the evolution of SASA, in which blue 
lines show average SASA estimates at each iteration of the CG model optimization. Light blue intervals represent +/- 
standard deviation), and red horizontal lines show the average Rg/SASA of AA-mapped reference trajectories (light 
red intervals represent +/- standard deviation). Yellow diamonds and lines show averages and standard deviations 
obtained from 200 ns simulations. 
 
3.3.2. PAMAM G1 dendrimer 
Next, we optimized the CG model of a G1 PAMAM dendrimer, a small structural variant belonging to a 
well-known family of dendrimers,63,65,66 here used as an example of relatively flexible and small symmetric 
branched macromolecule, for which main results are reported in Figure 7b. Notably, a MARTINI CG model 
for PAMAM G5 is available from the literature63 and could be adapted (truncated) to obtain a smaller 
PAMAM G1. Geometrical features of the resulting CG model are compared to both those calculated from 
AA-mapped data and from the CG model adapted from the literature63 (cf. section 6.2). We show that 
Swarm-CG is capable of optimizing the CG parametrization for such type of molecules, which performs 
even better vs. AA models compared to the CG parameters available in the literature, and adapted for 
smaller dendrimer generations, in terms of behavior of the dendrimer in the solvent (water). In particular, 
the simple truncation to G1 of the available MARTINI model for G5 PAMAM dendrimers (maintaining the 
very same bonded and non-bonded literature parameters)63 results into an overestimation of the Rg and 
SASA of the dendrimer in explicit water, which could be somewhat expected considered that Lee and 
Larson also highlighted similar slight size overestimations for G5 PAMAM when the model was 
developed.63 By providing the same non-bonded terms as an input, however, here we show that Swarm-
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CG is capable of easily optimizing the CG models to successfully improve the agreement with AA models 
for these branched macromolecules.  
The mismatches between CG and AA-mapped geoms distributions were again reduced by a factor of 2 
during optimization, when comparing the initial set of BP to those of the optimized CG model (Figure 7b, 
green line). The optimized CG model was further validated in a 200 ns simulation, in which geoms 
distributions correctly overlapped with those calculated from the AA-mapped trajectory (Figure S37). 
Average Rg and SASA values were also in perfect agreement (i.e. both errors < 2%). BP optimization 
converged within 182 steps (Table 2). 
We then tested the available manually-parametrized CG model of PAMAM G163 via a 200 ns CG-MD 
simulation. The Swarm-CG scoring function yielded a BP score of 123.7 for this CG model (Figure S38). 
Noteworthy, the discrepancy in the local geometrical features with respect to the AA-mapped reference 
MD trajectory is considerably reduced in the optimized CG model produced by Swarm-CG, which yielded 
a BP score as low as 9.0 (Figure S37). With respect to manual parametrization, the average Rg error in the 
optimized CG model provided by Swarm-CG (calculated respect to the AA reference model) is also reduced 
by 2.5 Å (~25%) using the optimized set of BP (see Table 2).  
 
3.3.3. PAMAM G2 dendrimer 
We then optimized the CG model of PAMAM G2, for which main results are reported in Figure 7c. PAMAM 
G2 is here used as an example of a more complex, symmetric branched macromolecule. As for PAMAM 
G1, a MARTINI CG model for PAMAM G2 was adapted from the literature63 and used for comparison. Also 
in this case, we show that Swarm-CG is capable of retrieving a reliable parametrization for such type of 
molecules, which performs even better vs. AA models compared to the existing CG parameters in terms 
of behavior of the G2 PAMAM dendrimer in the water, obtaining an improvement in the CG model 
performance in line with those discussed above for G1 PAMAM. Geometrical features of the resulting CG 
model are compared to both those calculated from AA-mapped data and from the CG model adapted from 
the literature63 (cf. section 6.2). 
The mismatches between CG and AA-mapped geoms distributions were effectively reduced during 
optimization (Figure 4c, green line). Geoms distributions of the optimized CG model correctly overlapped 
with those calculated from the AA-mapped trajectory in a 200 ns validation simulation (Figure S41). 
However, average Rg and SASA values were approximately 1.3 Å (10%) and 8 nm2 (16%) lower with respect 
to the AA-mapped reference (all values are reported in Table 2). In this case, we can safely assume that 
the CG topology is valid. Thus, as we proved BP are correctly tuned according to a reference AA-mapped 
trajectory, the cause of the residual Rg and SASA offset cannot be directly attributed to errors in the 
bonded parametrization. In this perspective, this can be imputed: (i) to the non-bonded interaction 
parameters, which could possibly slightly underestimate interactions of the molecule with solvent or 
overestimate intramolecular interactions, or (ii) to sampling limitations in the AA-MD trajectory 
(oversampling of determined molecular configurations, possible for particularly complex molecules). We 
also underline that, since non-bonded terms used for the optimization of PAMAM G1 and G2 are identical, 
in the case of sub-optimal non-bonded parametrization Swarm-CG consequently adjusts the bonded terms 
to compensate and to reproduce at best in the CG model the behavior of the AA reference, exclusively 
based on geoms distributions. These observations highlight the potential of Swarm-CG as a diagnostic tool 
for CG modeling, which provides hints for model refinement beyond its primary purpose of automatic 
bonded parametrization. 
We compared the automatically optimized CG model of G2 PAMAM with the manually parametrized one 
obtained using parameters available from the literature63 via a 200 ns CG-MD simulation. Swarm-CG 
scoring function yielded a BP score of 123.8 for the manually optimized CG model. Again, the discrepancies 
in local geometrical features calculated with respect to the AA-reference trajectory were considerably 
reduced in the Swarm-CG optimized CG model (Figure S42), which provides a BP score of 23.0 (Figure S41). 
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With respect to manual CG parametrization, the average Rg error is also reduced by ~15 points using the 
optimized set of BP provided by Swarm-CG (see Table 2). BP optimization converged within 182 steps 
(Table 2). The selected maximum number of optimization steps is identical as for the optimization of 
PAMAM G1 owing to the hyper-branched structures of PAMAM molecules, for which topologies can be 
considered identical once similar bonds and angles have been grouped together. This is also why the 
manually parametrized models of PAMAM G1 and G2 obtained very similar BP scores (123.7 and 123.8), 
which are not exactly identical only due to the intrinsic statistical variability associated to the MD sampling. 
All these results provided for such a diverse set of different molecules, including these branched 
dendrimers, demonstrate that Swarm-CG has great potential to treat also molecular architectures of 
considerable complexity in an efficient and reliable way. 
 

Table 2. Average Rg obtained for CG models of the benchmark optimized using execution mode 1 and Swarm-CG 
default settings, the reference AA-mapped trajectories and manually parameterized CG models from the literature. 
All data points were obtained in 200 ns simulations. (+) Minimal bonds rescaling. (++) Important bonds rescaling. 
(+++) All bonds rescaled. 

 

Molecule 
Bonds 
scaling 

Radius of gyration (Rg) 
Optimization 
wall time(a) Ref. AA 

model [Å] 
Optimized CG model 

error [ΔÅ] (Δ%) 
Manually parametrized 

CG model error [ΔÅ] (Δ%) 

BTA ++ 9.07 0.37 (4.1%) 0.41 (4.5%)57 6 h 

BTT ++ 8.45 0.73 (8.6%) 0.89 (10.5%)58 7 h 

NDI +++ 10.98 0.53 (4.8%) 0.75 (6.8%)59 16.5 h 

Porphyrin ++ 13.58 0.40 (3.0%) 0.60 (4.4%)45 15.5 h 

β-Cyclodextrin n/a 5.71 0.15 (2.6%) 0.35 (6.1%)60 5 h 

Pillar[5]arene  + 6.43 0.07 (1.1%) n/a 6.5 h 

Spermine dendron + 9.50 0.27 (2.8%) n/a 12 h 

PAMAM G1 n/a 9.95 0.12 (1.2%) 2.62 (26.3%)63 5 h 

PAMAM G2 n/a 13.61 1.26 (9.3%) 3.32 (24.4%)63 5.5 h 
(a) Using standard desktop machines, see SI and Table S2 for simulations parameters and hardware specifications. 
 
 

4. Methodological considerations 
 

To ease the development of CG models and increase their physical relevance and accuracy, we used a 
benchmark of wide structural diversity to demonstrate that Swarm-CG can be employed with default 
settings for tuning BP of a variety of CG models of diverse levels of complexity. Swarm-CG systematically 
yields appropriate sets of BP in the context of the provided model topology and reference AA trajectory, 
within wall times compatible with molecular modelers’ requirements. Using execution mode 1, Rg values 
of the optimized models were systematically in agreement with the reference AA trajectory. 
Importantly, Swarm-CG produces sets of BP via an optimization process which objective function is 
exclusively based on the user-provided AA reference trajectory. Therefore, the BP produced by Swarm-CG 
are optimized exclusively to reproduce the geometrical behavior observed in the AA trajectory for the 
molecule of interest. The process of averaging distributions within geoms groups does improve the quality 
of the reference sampling for large symmetrical molecules and yielded particularly accurate BP in the 
present benchmark. To this end, the step of defining relevant geoms groups in the preliminary CG model 
file is crucial. On the other hand, as mentioned before, care must be taken to provide AA reference 
trajectories that correctly sample the desired geometrical behavior of the molecule in solvent, or other 
environments. 
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For molecules that adopt folded conformations in AA-MD simulations, execution mode 2 typically provides 
increased flexibility in the optimized CG models, which allows to reproduce the dynamical properties of 
the molecules as an “effect” rather than a pre-encoded condition in the models. This is particularly 
important when one may want to develop models for molecules composed of rather flexible groups, which 
then are supposed to interact between them or with other molecules in the simulations. In fact, this may 
limit spurious effects arising from too rigidly parametrized BP (eventually coming from the reduced 
timescales accessible by common AA-MD simulations) that may then affect how molecules interact 
between them. Although less automatic, mode 2 has the advantage of not using the software as a black 
box, but at the same time it requires a prior knowledge of the molecular system that is not always 
accessible. In such a case, the user can always use Swarm-CG in mode 1, which in principle should provide 
the best accessible bonded parametrization. We included the option to select either usage mode to leave 
maximum freedom to the user, with standard or more advanced usage of the software.  
All CG models resulting from the present benchmark could be run in 200 ns simulations using time steps 
of 20 fs. By default, Swarm-CG uses conservative maximum values for force constants, which maximizes 
the stability of the optimized models for usage in assembly simulations. To this end, the iterative 
optimization process aims at identifying an appropriate balance of force constants between all elements 
of the topology while reproducing AA-mapped geoms distributions in the CG model. For special needs, all 
parameters of the software can be modified, notably allowing users to increase the range of the force 
constants to be explored during optimization, although this might be detrimental to the model stability 
and should be used carefully. Simulations instabilities in optimized models would most likely be caused by 
issues in the topology definition (e.g. geoms or bond lengths scaling). 
Interestingly, we demonstrated that Swarm-CG can also be used as a diagnostic tool, notably for large 
molecular structures for which both bonded and non-bonded parametrizations, as well as obtaining a 
sufficient AA-MD sampling to produce a reliable reference trajectory can be particularly complex (cf. 
section 3.3.3).  
In principle, Swarm-CG can also be employed for tuning BP in higher-scale CG models (e.g. lower coarse-
graining resolution, mapping more atoms into each CG bead).18,83,84 While demonstrating such a usage of 
the software is outside the scope of this paper, the workflow would remain substantially unchanged, 
except for: (i) the non-bonded parameters provided, (ii) the mapping file that would group multiple atoms 
into each larger CG bead and (iii) the number of CG beads and swarm iterations used for optimization, 
which could potentially be decreased to minimize execution times, without affecting the accuracy of the 
results. Moreover, in such a case the user would not be restricted to using an AA-MD trajectory as the 
reference, but also a finer CG-MD trajectory would work to this purpose (with the advantage of a speed 
up in the process and of an overall improved dynamical sampling). In this sense, the successive higher-
scale parametrizations (finer-to-coarser CG optimization) would be less computationally expensive than 
the first one (AA-to-CG), while the user should at the same time consider that approximations intrinsically 
accompany every CG step, and that in multi-step approaches accuracy is key to avoid sum of errors. 
Swarm-CG could also be applied to the bonded parametrization of polarized CG models or elastic networks 
used in CG models of proteins (e.g. MARTINI),85 via limited additional code developments. The code has 
been developed for immediate usage with the MARTINI CG force field (it works with both explicit and 
implicit solvent environments), although it is easily adaptable to be used also in combination with other 
CG frameworks, and as said potentially across various CG scales.  
 

5. Conclusion 
 

Leveraging FST-PSO,67 an efficient PSO variant that frees users from parametrizing the optimization 
algorithm, here we designed Swarm-CG, a software that automatizes the parametrization and 
optimization of bonded parameters in CG molecular models within CG frameworks such as MARTINI. We 
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took particular care to provide a versatile software capable of systematically producing reliable results for 
virtually any CG model, from simple to complex molecular architectures, using default Swarm-CG settings. 
The software is versatile and can be used to cross different CG scales, provided that a well-sampled 
reference trajectory is available for the molecule to be coarse-grained. Swarm-CG can satisfy molecular 
modelers’ requirements for routine building of CG models composed of up to 200 CG beads (in the 
MARTINI framework, this corresponds to molecular architectures containing at least ~600-800 heavy 
atoms), and possibly more, both in terms of accuracy and execution times. We particularly expect this tool 
to support the development of new CG molecular models for the study of synthetic molecular systems and 
their interaction with other (bio/non-bio) molecular targets, as it is becoming increasingly crucial in the 
various bio- and nano-technology fields. Swarm-CG is available via PIP (package: swarm-cg) with all its 
dependencies. Tutorials and demonstration data are also available at 
www.github.com/GMPavanLab/SwarmCG.  
 

6. Methods 
 
6.1. Input details 
AA data used to set the target of the optimization procedure include a structure and trajectory files. The 
AA structure with atom types, connectivity, masses and charges can be provided via a GROMACS portable 
topology file (.tpr). The AA trajectory can be provided in any GROMACS format accepted by MDAnalysis86,87 
(.xtc, .trr or else). Periodic boundary conditions (PBC) are handled internally if the trajectory file includes 
position and size of the simulation box at each time step. Otherwise, it is assumed PBC have already been 
handled and a warning is displayed at start of the program. The AA trajectory is mapped on-the-fly to allow 
faster experimentation with different mapping schemes. The mapping of atoms to CG beads must be 
provided as a GROMACS index file (.ndx). The weight of atoms that would be mapped to multiple CG beads 
will be split accordingly when performing the mapping and calculating all AA-mapped reference geoms 
distributions. 
The preliminary CG model to be optimized must be provided as a GROMACS topology file (.itp), along with 
the non-bonded interactions force field to be applied in MD simulations. To better handle sampling in 
symmetrical molecules, users can easily form groups of bonds, angles and dihedrals in this topology file 
(using line returns or comments). AA-mapped distributions will be averaged within groups to create the 
references used as target of the optimization procedure, and shared parameters will be used and 
optimized for the geoms of each group. This also makes the optimization process more efficient by 
reducing the number of free parameters. For example, grouping 5 angles together reduces the number of 
associated free parameters from 10 to 2 when using execution mode 1 and GROMACS angles functions 2. 
Swarm-CG requires users to provide a GROMACS structure file (.gro) to be used as the starting 
conformation of each simulation step during the iterative optimization process. This structure will be (i) 
minimized and (ii) pre-processed before gathering data from the production run (iii), using three user-
provided GROMACS MD parameters files (.mdp), one for each step. Only the simulation parameters of the 
production run will be modified to adapt its number of steps and the number of frames of the output 
trajectory to be analyzed, according to software parameters (1000 frames by default, within 10 or 25 ns). 
Although the starting conformation does not have to be perfectly accurate, as it will be minimized and 
pre-processed at start of each iteration, this conformation must allow running stable simulations while 
exploring different sets of bonded parameters. For example, molecular modelers can make use of an initial 
set of MARTINI bond parameters just stable enough to obtain a preliminary CG model file and a starting 
conformation to be used for the optimization phase. 
The following GROMACS bonded potential functions68,69 are implemented, which should be necessary and 
sufficient for building CG models: constraints function 1, bonds function 1, angles functions 1 and 2, and 
dihedrals functions 1, 2, 4 and 9. Swarm-CG can effectively optimize parameters for dihedrals potential 
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functions with multiplicity greater than one, although these may be used carefully as they are known to 
easily trigger instabilities in simulations. During optimization, sets of BP (i.e. particles of the swarm) that 
cause simulations to terminate abruptly gets attributed the worst possible score the scoring function can 
yield, according to given topology and geoms domains. 
 
6.2. Benchmarking data and models 
To compare the performance of Swarm-CG for bonded parametrization with respect to manually 
parametrized CG models, we first collected several MARTINI models available from the literature and from 
previous results of our group. We selected the following molecular dataset based on CG data availability 
and structural diversity: 1,3,5-benzenetricarboxamides57 (BTA) and benzotrithiophene (BTT) decorated by 
L-phenylalanine (BTT-F) and octaethylene glycol side-chains,58 naphthalene diimide (NDI),59 Zn-porphyrin 
based molecule,45 β-Cyclodextrin60 and poly(amidoamine) dendrimers of generation 1 and 2 (PAMAM G1 
and G2).63 Their CG topologies, selected bead types and non-bonded interactions force field were used as 
provided, except for β-Cyclodextrin and PAMAM G1 and G2 for which CG topologies were built by 
truncating the existing CG models of β-Cyclodextrin dimer60 and PAMAM G5 models.63 Additionally, two 
last molecules expand the benchmark and improve its structural diversity: a pillar[5]arene61 and spermine-
functionalized branched dendron.62 For the spermine dendron and pillar[5]arene, we built CG models from 
scratch in the framework of MARTINI using the CG bead types presented in Figure 1. For the pillar[5]arene 
and the dendron there are no previously developed manually-optimized CG models to compare with, and 
the performance of Swarm-CG has been evaluated exclusively with respect to data from the AA-mapped 
trajectories in these cases. 
For these 9 molecules, we created AA models and generated trajectories for each single molecule in 
solvent using time steps of 2 fs and extensive sampling (Table 3 and SI section 2.1), which are used as a 
trusted reference for bonded parametrization of CG models and benchmarking of Swarm-CG. 
 

Table 3. Data used for the benchmarking of Swarm-CG using default settings. 
 

Molecule 

Reference AA trajectory 

Solvent 
Non-bonded 

parametrization(a) 

Used for manual 
parametrization 

evaluation Simulation 
time 

Number of 
frames 

Force field 

BTA 1 μs 5000 
GAFF88 + 
TIP3P89 

Water MARTINI 2.257 Yes 

BTT 1 μs 5000 
GAFF88 + 
TIP3P89 

Water MARTINI 2.258 Yes 

NDI 1 μs 5000 GAFF88 Cyclohexane MARTINI 2.259 Yes 

Porphyrin 1 μs 5000 GAFF88 Cyclohexane MARTINI 2.245 Yes 

β-Cyclodextrin 1 μs 5000 
q4md-CD90 
+ TIP3P89 

Water MARTINI 2.160 Yes 

Pillar[5]arene  1 μs 5000 
GAFF88 + 
TIP3P89 

Water MARTINI 2.291 No 

Spermine 
dendron 

1 μs 5000 
GAFF88 + 
TIP3P89 

Water MARTINI 2.291 No 

PAMAM G1 1 μs 5000 
GAFF88 + 
TIP3P89 

Water MARTINI 2.263 Yes 

PAMAM G2 1 μs 5000 
GAFF88 + 
TIP3P89 

Water MARTINI 2.263 Yes 

(a) Where present, non-bonded interactions were further tuned as described in associated literature, starting from 
the cited force field. 
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All topologies defined for the CG models of the benchmark use exclusively bonds and angles defined 
between CG beads that are closely located on the AA molecular graph (i.e. no long-range bonds and angles 
between CG beads were used to artificially constraint flexibility of the CG models), except for molecules 
that contain flat cores and for the cyclic structures. For the BTT and porphyrin-based molecular models, 
longer range angles and dihedrals were defined to obtain flat structures of the cores. For β-Cyclodextrin 
and pillar[5]arene, longer-range angles were also used to obtain correct geometries of the central cyclic 
structures. 
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1. Algorithm details 
 
1.1. Boltzmann inversion 

To initialize a first swarm particle at the very first step of the PSO process, bonded parameters (BP) 

are estimated via BI to obtain initial values for bond, angle and dihedral equilibrium force constants. 

Bond lengths, angle values and dihedral torsions are set to their average values calculated from the 

AA-mapped MD trajectory. When using execution mode 2, force constants guessed via BI are applied 

together with angles and dihedrals equilibrium values defined in the preliminary CG model file. 

Accordingly, execution mode 2 produces more flexible CG models with respect to the AA-mapped 

trajectories (i.e. CG distributions are typically broader than the AA ones with large Rg fluctuations) and 

models are corrected during optimization to reach appropriate average Rg value. Potential functions 

used for BI and optimization are all user-specified via the preliminary model file. Histograms are 

generated using 50 bins on the domains of bonds and angles, and 100 bins for dihedrals domains. For 

bonds and angles, three steps of exponential smoothing are applied using an alpha parameter of 0.55 

and a window of 5 bins, while no transformation is performed for dihedrals. These histograms are 

then transformed using Boltzmann inversion1,2 as 𝐵𝐼(𝑣) = −𝐾𝐵𝑇 log(𝑣), with 𝐾𝐵 the Boltzmann 

constant, 𝑇 the temperature and 𝑣 as bins values. GROMACS potential functions are then fit using 

SciPy3 to obtain guesses of the force constants. To ensure these initial guesses of bonded parameters 

will produce a stable enough model to initialize the optimization procedure, force constants are 

capped to 17000 kJ.mol-1 for bonds using function 1, 1200 kJ.mol-1 for angles function 2, 3.5 kJ.mol-1 

for dihedrals functions 1, 4 and 9 and 250 kJ.mol-1.rad-2 for dihedrals function 2 (see GROMACS 

manual4 sections 4.8 “Bonded interactions” and 5.2 “File formats”). 

1.2. Iterative optimization process 

Distributions of the bonds, angles and dihedrals calculated to apply the scoring function are obtained 

using bandwidths of 0.2 nm, 5 degrees and 5 degrees (Swarm-CG default settings). At the beginning 

of each optimization cycle, the swarm of particles is initialized in a supervised fashion to maximize 

FST-PSO5 performances. Variations around parameters included in the reference particle (i.e. the 

current best set of BP) are reduced as the optimization progresses through cycles. Additionally, the 

matching error (EMD distance) between CG and AA-mapped geoms distributions is taken into account 

in the calculation of the range allowed for random initialization of each parameter of each particle of 

the swarm at the beginning of cycles 2 and 3 (Table S1). 

 
Table S1. Ranges of variations used for swarm initialization in the 3 cycles of optimization in Swarm-CG.  

Opti. 
cycle 

Geoms optimized Variations around reference swarm particle 

Bonds Angles Dihedrals(a) 
Geoms equilibrium values 

range modifier 
Force constants modifier 

1 Yes Yes No ± 100%(b) x EMDbest/n(c) ± 40% x EMDbest/n(c) 

2 No(d) Yes Yes ± 25%(b) x EMDbest/n(c) ± 30% x EMDbest/n(c) 

3 Yes Yes Yes ± 15%(b) x EMDbest/n(c) ± 20% x EMDbest/n(c) 
(a) Dihedrals parameters are optimized only in cycles 2 and 3, if dihedrals topologies are provided in the input 
preliminary CG model. 
(b) Applied to values of 0.025 nm for bonds or 10° for angles and dihedrals, to define the lower/higher range of 
variations around previous equilibrium values during swarm initialization (for optimization cycle 1, those are 
obtained via BI). 
(c) EMDbest is the EMD score obtained for a given geom in the previously obtained best scored model, while n=2 
for bond and angle groups and n=5 for dihedral groups. 
(d) In cycle 2, bonds parameters are fixed to those of the previously obtained best scored model. 
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Additionally, one special particle is initialized at start of optimization cycles 2 and 3. Across 

optimization steps, each time the EMD score of an independent geoms group distribution improves, 

its associated subset of parameters is recorded (i.e. equilibrium value and force constant of the geoms 

group). For swarm initialization of the next optimization cycle, these are combined into a single special 

particle. This heuristic, which works like a “memory of independent best”, is expected to accelerate 

convergence of the iterative optimization procedure by providing either a new best solution, or useful 

information to the rest of the swarm. 

 

2. MD Simulations 
 
2.1. Parameters of MD simulations 

All AA-MD simulations were performed by means of GROMACS 2018.6,7 The dynamics was integrated 

with a standard timestep of 2 fs. The temperature was maintained at T=300 K and the pressure at P=1 

atm by coupling the dynamics with the V-rescale thermostat8 and the Berendsen barostat,9 with 

isotropic pressure scaling, respectively. Both algorithms were applied with a coupling time of 1 ps. 

Before the production runs all the systems were energy-minimized via steepest descent algorithm, 

and then a brief equilibration cycle of 200 ps, with an integration step of 1 fs, was performed to relax 

the initial configuration. Long range electrostatics is handled by means of Particle Mesh Ewald 

method.10 

All CG-MD simulations were performed by means of GROMACS 2018.6,7 The dynamics was integrated 

with a standard timestep of 20 fs. The temperature was maintained at T=300 K and the pressure at 

P=1 atm by coupling the dynamics with the V-rescale thermostat8 and the Berendsen barostat,9 with 

isotropic pressure scaling, respectively. Both algorithm were applied with a coupling time of 1 ps. 

Again, before the production runs all the systems were energy-minimized via steepest descent 

algorithm, and then a brief equilibration cycle of 50 ps, with an integration step of 5 fs, was performed 

to relax the initial configuration. For the Coulomb and van der Waals interactions a cut-off of 1.1 nm 

was employed, using a relative dielectric constant of =15, according to the MARTINI force-field 

scheme.11 

2.2. Bonds rescaling 

Several bond lengths were rescaled in the benchmark CG models, notably between particles mapped 

to aromatic rings and molecular cores, according to the MARTINI framework.11 Therefore, all Rg results 

of the main text are reported taking into account appropriate offsets for AA-mapped references. For 

SASA values, it is not possible to calculate a similar offset and SASA was not reported in cases where 

it was not relevant for evaluation. SASA were calculated using CG beads radii of 0.27 nm for standard 

MARTINI beads and 0.23 nm for small beads, using the double cubic lattice method12 implemented in 

GROMACS.6,7 In the specific case of the NDI taken from the literature,13 all bond lengths were rescaled 

with respect to the AA-mapped reference trajectory for consistency between the CG representation 

of NDI aromatic rings and the CG representation of the cyclohexane solvent, which has rescaled bonds 

between CG particles in the MARTINI framework.11 Non-bonded interactions were tuned accordingly 

in this study.13 

 

 



 

 S4 

P
re

p
ri

n
t 

u
p

lo
ad

ed
 b

y 
th

e 
au

th
o

rs
 o

n
 C

h
em

R
xi

v 
o

n
 6

 J
u

ly
 2

0
2

0
 

 

2.3. Execution times details 

Molecule 
Number of 

CG particles 
Opti. wall 

time 
Number of 
opti. steps 

Hardware (cpu + gpu) 

BTA 1622 6 h 257 6x i7-5930K + 1x GTX 980 Ti 

BTT 5682 7 h 282 9x i9-9980XE + 1x RTX 2080 Ti 

NDI 7855 16.5 h 395 9x i9-9980XE + 1x RTX 2080 Ti 

Porphyrin 8079 15.5 h 392 9x i9-9980XE + 1x RTX 2080 Ti 

β-Cyclodextrin 439 5 h 206 9x i9-9980XE + 1x RTX 2080 Ti 

Pillar[5]arene- 1231 6.5 h 230 6x X6 1090T + 1x GTX 580 

Spermine-
functionalized 

dendron 
2110 12 h 255 8x FX-8120 + 1x GTX 580 

G1 PAMAM 
dendrimer 

1281 5 h 182 6x i7-5930K + 1x GTX 980 Ti 

G2 PAMAM 
dendrimer 

2387 5.5 h 182 4x i7-5930K + 1x GTX 980 Ti 

Table S2. Execution times obtained for optimization of the molecules included in the Swarm-CG benchmark 
using execution mode 1, with short description of the hardware used. 

 

3. Optimization results details 
 
Supplementary Files include all topology (ITP) files of the optimized models obtained using execution 
modes 1 and 2 (in the cases where mode 2 was used), formatted to allow a comprehensive reading of 
the geoms grouping choices according to symmetries, with the help of AA models with superimposed 
CG particles mappings and numbering (Figures S1, S7, S13, S19, S25, S29, S32, S35, S39). 

 

 

Figure S1. Molecular structure of the water-soluble BTA molecule studied herein14: AA model in sticks with 

superimposed transparent CG beads showing AA-CG mapping and numbering. 
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Figure S2. Geoms distributions for 200 ns of MD simulation of BTA14 using parameters obtained through 

Swarm-CG initial BI via execution mode 1 (initial guess only: CG in blue vs. reference AA model in red). 

 

 

Figure S3. Geoms distributions for 200 ns of MD simulation of BTA14 using parameters obtained through 

Swarm-CG initial BI via execution mode 2 (initial guess only: CG in blue vs. reference AA model in red). 

 

 

Figure S4. Geoms distributions for 200 ns of MD simulation of BTA14 using parameters obtained through 

Swarm-CG optimization process via execution mode 1 (final PSO result: optimized CG parametrization in blue 

vs. reference AA model in red). 

 

 

Figure S5. Geoms distributions for 200 ns of MD simulation of BTA14 using parameters obtained through 

Swarm-CG optimization process via execution mode 2 (final PSO result: optimized CG parametrization in blue 

vs. reference AA model in red). 
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Figure S6. Geoms distributions for 200 ns of MD simulation of BTA14 using parameters obtained from the 

literature14 (manual CG parametrization in blue vs. reference AA model in red). 

 

 

Figure S7. Molecular structure of the BTT-based molecule studied herein15: the AA model is represented in 

sticks with transparent superimposed CG beads with mapping and numbering. 
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Figure S19. Molecular structure of the Zn-porphyrin molecule studied herein16: AA model in sticks with 

superimposed transparent CG beads with mapping and numbering. 
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Figure S25. Molecular structure of the  β-cyclodextrin studied herein17: AA model in sticks and superimposed 

transparent CG beads with mapping and numbering. 

 

 

Figure S26. Geoms distributions for 200 ns of MD simulation of β-cyclodextrin17 using parameters obtained 

through Swarm-CG initial BI via execution mode 1 (initial guess only: CG in blue vs. reference AA model in red). 
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Figure S27. Geoms distributions for 200 ns of MD simulation of β-cyclodextrin17 using parameters obtained 

through Swarm-CG optimization process via execution mode 1 (final PSO result: optimized CG parametrization 

in blue vs. reference AA model in red). 

 

 

Figure S28. Geoms distributions for 200 ns of MD simulation of β-cyclodextrin17 using parameters obtained 

from the literature17 (manual CG parametrization in blue vs. reference AA model in red). 
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Figure S29. Molecular structure of the pillar[5]arene studied herein18: AA model in sticks and superimposed 

transparent CG beads with mapping and numbering. 

 

 

Figure S30. Geoms distributions for 200 ns of MD simulation of the pillar[5]arene18 using parameters obtained 

through Swarm-CG initial BI via execution mode 1 (initial guess only: CG in blue vs. reference AA model in red). 

 

 

Figure S31. Geoms distributions for 200 ns of MD simulation of the pillar[5]arene18 using parameters obtained 

through Swarm-CG optimization process via execution mode 1 (final PSO result: optimized CG parametrization 

in blue vs. reference AA model in red). 
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Figure S32. Molecular structure of the spermine-functionalized dendron studied herein19,20: AA model in sticks 

and superimposed transparent CG beads with mapping and numbering. 

 

 

Figure S33. Geoms distributions for 200 ns of MD simulation of the spermine dendron19 using parameters 

obtained through Swarm-CG initial BI via execution mode 1 (initial guess only: CG in blue vs. reference AA 

model in red). 

 

 

Figure S34. Geoms distributions for 200 ns of MD simulation of the spermine dendron19 using parameters 

obtained through Swarm-CG optimization process via execution mode 1 (final PSO result: optimized CG 

parametrization in blue vs. reference AA model in red). 
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Figure S35. Molecular structure of PAMAM G1 dendrimer21: AA model in sticks and superimposed transparent 

CG beads with mapping and numbering. 

 

 

Figure S36. Geoms distributions for 200 ns of MD simulation of PAMAM G121 using parameters obtained 

through Swarm-CG initial BI via execution mode 1 (initial guess only: CG in blue vs. reference AA model in red). 

 

 

Figure S37. Geoms distributions for 200 ns of MD simulation of PAMAM G121 using parameters obtained 

through Swarm-CG optimization process via execution mode 1 (final PSO result: optimized CG parametrization 

in blue vs. reference AA model in red). 



 

 S20 

P
re

p
ri

n
t 

u
p

lo
ad

ed
 b

y 
th

e 
au

th
o

rs
 o

n
 C

h
em

R
xi

v 
o

n
 6

 J
u

ly
 2

0
2

0
 

 

Figure S38. Geoms distributions for 200 ns of MD simulation of PAMAM G121 using parameters obtained from 

the literature21 (manual CG parametrization in blue vs. reference AA model in red). 

 

 

 

Figure S39. Molecular structure of PAMAM G2 dendrimer21: AA model in sticks and superimposed transparent 

CG beads with mapping and numbering. 
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Figure S40. Geoms distributions for 200 ns of MD simulation of PAMAM G221 using parameters obtained 

through Swarm-CG initial BI via execution mode 1 (initial guess only: CG in blue vs. reference AA model in red). 

 

 

Figure S41. Geoms distributions for 200 ns of MD simulation of PAMAM G221 using parameters obtained 

through Swarm-CG optimization process via execution mode 1 (final PSO result: optimized CG parametrization 

in blue vs. reference AA model in red). 

 

 

Figure S42. Geoms distributions for 200 ns of MD simulation of PAMAM G221 using parameters obtained from 

the literature21 (manual CG parametrization in blue vs. reference AA model in red). 



 

 S22 

P
re

p
ri

n
t 

u
p

lo
ad

ed
 b

y 
th

e 
au

th
o

rs
 o

n
 C

h
em

R
xi

v 
o

n
 6

 J
u

ly
 2

0
2

0
 

Supplementary References 
 

(S1)  Miyazawa, S.; Jernigan, R. L. Estimation of Effective Interresidue Contact Energies from Protein 
Crystal Structures: Quasi-Chemical Approximation. Macromolecules 1985, 18 (3), 534–552. 
https://doi.org/10.1021/ma00145a039. 

(S2)  Tschöp, W.; Kremer, K.; Batoulis, J.; Bürger, T.; Hahn, O. Simulation of Polymer Melts. I. 
Coarse-Graining Procedure for Polycarbonates. Acta Polym. 1998, 49 (2–3), 61–74. 
https://doi.org/10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V. 

(S3)  Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, 
E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. 
J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; 
Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. 
A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P. SciPy 1.0: 
Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 1–12. 
https://doi.org/10.1038/s41592-019-0686-2. 

(S4)  Abraham, M. J.; van der Spoel, D.; Lindahl, E.; Hess, B.; the GROMACS development team. 
GROMACS User Manual Version 2019. 

(S5)  Nobile, M. S.; Cazzaniga, P.; Besozzi, D.; Colombo, R.; Mauri, G.; Pasi, G. Fuzzy Self-Tuning PSO: 
A Settings-Free Algorithm for Global Optimization. Swarm Evol. Comput. 2018, 39, 70–85. 
https://doi.org/10.1016/j.swevo.2017.09.001. 

(S6)  Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel 
Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91 (1), 43–56. 
https://doi.org/10.1016/0010-4655(95)00042-E. 

(S7)  Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: 
High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to 
Supercomputers. SoftwareX 2015, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001. 

(S8)  Canonical sampling through velocity rescaling: The Journal of Chemical Physics: Vol 126, No 1 
https://aip.scitation.org/doi/10.1063/1.2408420 (accessed Jun 2, 2020). 

(S9)  Molecular dynamics with coupling to an external bath: The Journal of Chemical Physics: Vol 
81, No 8 https://aip.scitation.org/doi/10.1063/1.448118 (accessed Jun 2, 2020). 

(S10)  Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in 
Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. https://doi.org/10.1063/1.464397. 

(S11)  Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The MARTINI Force 
Field:  Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111 (27), 
7812–7824. https://doi.org/10.1021/jp071097f. 

(S12)  Eisenhaber, F.; Lijnzaad, P.; Argos, P.; Sander, C.; Scharf, M. The double cubic lattice method: 
Efficient approaches to numerical integration of surface area and volume and to dot surface 
contouring of molecular assemblies. J. Comput. Chem. 1995, 16 (3), 273–284. 
https://doi.org/10.1002/jcc.540160303. 

(S13)  Sarkar, A.; Sasmal, R.; Empereur-mot, C.; Bochicchio, D.; Kompella, S. V. K.; Sharma, K.; 
Dhiman, S.; Sundaram, B.; Agasti, S. S.; Pavan, G. M.; George, S. J. Self-Sorted, Random, and 
Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly. J. 
Am. Chem. Soc. 2020, 142 (16), 7606–7617. https://doi.org/10.1021/jacs.0c01822. 

(S14)  Bochicchio, D.; Pavan, G. M. From Cooperative Self-Assembly to Water-Soluble 
Supramolecular Polymers Using Coarse-Grained Simulations. ACS Nano 2017, 11 (1), 1000–
1011. https://doi.org/10.1021/acsnano.6b07628. 

(S15)  Casellas, N. M.; Pujals, S.; Bochicchio, D.; Pavan, G. M.; Torres, T.; Albertazzi, L.; García-Iglesias, 
M. From Isodesmic to Highly Cooperative: Reverting the Supramolecular Polymerization 
Mechanism in Water by Fine Monomer Design. Chem. Commun. 2018, 54 (33), 4112–4115. 
https://doi.org/10.1039/C8CC01259H. 



 

 S23 

P
re

p
ri

n
t 

u
p

lo
ad

ed
 b

y 
th

e 
au

th
o

rs
 o

n
 C

h
em

R
xi

v 
o

n
 6

 J
u

ly
 2

0
2

0
 

(S16)  Jung, S. H.; Bochicchio, D.; Pavan, G. M.; Takeuchi, M.; Sugiyasu, K. A Block Supramolecular 
Polymer and Its Kinetically Enhanced Stability. J. Am. Chem. Soc. 2018, 140 (33), 10570–10577. 
https://doi.org/10.1021/jacs.8b06016. 

(S17)  López, C. A.; de Vries, A. H.; Marrink, S. J. Computational Microscopy of Cyclodextrin Mediated 
Cholesterol Extraction from Lipid Model Membranes. Sci. Rep. 2013, 3 (1), 1–6. 
https://doi.org/10.1038/srep02071. 

(S18)  Beyeh, N. K.; Nonappa; Liljeström, V.; Mikkilä, J.; Korpi, A.; Bochicchio, D.; Pavan, G. M.; Ikkala, 
O.; Ras, R. H. A.; Kostiainen, M. A. Crystalline Cyclophane–Protein Cage Frameworks. ACS Nano 
2018, 12 (8), 8029–8036. https://doi.org/10.1021/acsnano.8b02856. 

(S19)  Pavan, G. M.; Danani, A.; Pricl, S.; Smith, D. K. Modeling the Multivalent Recognition between 
Dendritic Molecules and DNA: Understanding How Ligand “Sacrifice” and Screening Can 
Enhance Binding. J. Am. Chem. Soc. 2009, 131 (28), 9686–9694. 
https://doi.org/10.1021/ja901174k. 

(2S0)  Pavan, G. M.; Danani, A. The Influence of Dendron’s Architecture on the “Rigid” and “Flexible” 
Behaviour in Binding DNA—a Modelling Study. Phys. Chem. Chem. Phys. 2010, 12 (42), 13914–
13917. https://doi.org/10.1039/C0CP01124J. 

(S21)  Lee, H.; Larson, R. G. Coarse-Grained Molecular Dynamics Studies of the Concentration and 
Size Dependence of Fifth- and Seventh-Generation PAMAM Dendrimers on Pore Formation in 
DMPC Bilayer. J. Phys. Chem. B 2008, 112 (26), 7778–7784. 
https://doi.org/10.1021/jp802606y. 

 


