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Abstract 

Molecular simulations are widely applied in the study of chemical and bio-physical systems. However, the 

accessible timescales of atomistic simulations are limited, and extracting equilibrium properties of systems 

containing rare events remains challenging. Two distinct strategies are usually adopted in this regard: either 

sticking to the atomistic level and performing enhanced sampling, or trading details for speed by leveraging 

coarse-grained models. Although both strategies are promising, either of them, if adopted individually, 

exhibits severe limitations. In this paper we propose a machine-learning approach to ally both strategies so 

that simulations on different scales can benefit mutually from their cross-talks: Accurate coarse-grained (CG) 

models can be inferred from the fine-grained (FG) simulations through deep generative learning; In turn, FG 

simulations can be boosted by the guidance of CG models via deep reinforcement learning. Our method 

defines a variational and adaptive training objective which allows end-to-end training of parametric 

molecular models using deep neural networks. Through multiple experiments, we show that our method is 

efficient and flexible, and performs well on challenging chemical and bio-molecular systems. 
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I. Introduction 

Molecular simulations, particularly all-atom and ab initio molecular dynamics (MD), have furthered our understanding of 

many chemical and bio-physical processes.1-2 In molecular simulations, interactions between particles (e.g., atoms, residues or 

molecules) are described by an (potential) energy function 𝑈(𝐑) of the configuration 𝐑. To investigate such systems, one is 

often not interested in the exact energy, but the free energy, or the equilibrium distribution, of some reduced descriptors, e.g., 

collective variables (CV)3 or CG variables,4 𝐬(𝐑), as a function of 𝐑: 

 𝑝(𝐬) =
∫ 𝑒−𝛽𝑈(𝐑)𝛿(𝐬 − 𝐬(𝐑))𝑑𝐑

∫ 𝑒−𝛽𝑈(𝐑)𝑑𝐑
=

𝑒−𝛽𝐹(𝐬)

𝑍
 (1) 

 𝐹(𝐬) = −
1

𝛽
[log 𝑝(𝐬) + log 𝑍] (2) 

where 𝑍 = ∫ 𝑒−𝛽𝑈(𝐑)𝑑𝐑 is the partition function, 𝛽 is the inverse temperature and 𝛿 denotes the Dirac-delta function. Equation 

(2) holds up to an arbitrary additive constant. Usually 𝐬 is selected to be slowly changing variables governing the process of 

interest, and the rest of degrees of freedom (DOF) can be treated in the mean-field fashion.5-6 Under this setting, 𝐹(𝐬) becomes 

a CG description of the original thermodynamic system, and simulations performed under 𝐹(𝐬) are generally much faster than 

those run on the FG potential (i.e., 𝑈(𝐑)) because Dim(𝐬) ≪ Dim(𝐑) (where Dim(∙) denotes the dimensionality) despite the 

loss of finer details. Therefore, Eqs. (1-2) are also known as the principle of thermodynamic consistency for coarse graining.5 

However, practical implementation of Eqs. (1-2) is hindered by two major issues: (1) How can one approximate a reliable 

analytical form for the CG potential 𝐹(𝐬) given access to samples drawn from 𝑈(𝐑)? (2) How can one draw equilibrium 

samples from 𝑈(𝐑), which are further used to infer 𝐹(𝐬)? The former is known as the coarse graining problem, while the latter 

as the importance sampling problem, and both are of particular importance in physics, chemistry and biology. 

Conventionally, if 𝐬 is low-dimensional (say, Dim(𝐬) ≤ 3), non-parametric methods like kernel density estimation (KDE)7 

can be adopted to infer 𝐹(𝐬), but they become quickly infeasible as Dim(𝐬) increases. Artificial neural networks (ANNs) and 

deep learning may offer extra flexibility and expressivity to this end.8-9 For instance, several recent studies proposed supervised 

learning approaches to fit 𝐹(𝐬) by ANNs.10-12 However, fitting 𝐹(𝐬) as a regression problem has several drawbacks: (1) it 

necessitates gridding the space of 𝐬, which would be computationally prohibitive for large Dim(𝐬); (2) it is rather data-

inefficient because calculating 𝐹(𝐬) at one point needs a large amount of samples from 𝑈(𝐑) at the neighborhood of 𝐬 (i.e., 

𝛿(𝐬 − 𝐬(𝐑))); (3) Since regression learning lays equal importance over any point in the probability measure space regardless 

of the mass density distribution, it is not suitable for fitting an imbalanced distribution where the accuracy of areas with higher 

mass density should be more emphasized. 

An alternative view of inferring 𝑝(𝐬) is provided by statistical modeling and machine learning community, where density 

estimation of high-dimensional data has been a long-standing goal.9, 13 Particularly, a recent burst of work sparks new ideas to 

exploit deep learning to this end, giving rise to various deep generative models including variational auto-encoders,14 auto-

regressive15 and normalizing-flow models.16-17 These generative models enjoy the merits of fast sampling and scale well to data 

of large dimensionality. The price paid for such easy-sampling is that these models have to be footed on certain simple prior 

distributions, hence the complexity of the distributions resulted from these methods is bound by the manifold structure of the 

prior distribution. Therefore, they are known to suffer from issues like mode-dropping and often assigning probability mass to 
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areas unwarranted by the data.18 On the other hand, generative learning with energy-based models (EBMs) can be dated back 

to even longer before,19-21 which in principle can fit arbitrarily complex distributions due to the flexibility and plasticity of the 

energy landscapes.22-23 Due to the flexibility, preserving the symmetry and invariance of many-particle systems which is 

difficult for other generative models remains tractable in EBMs. Moreover, EMBs can be easily conditioned on a priori 

restraints thanks to the additive compositionality of the energy functions. Despite of these advantages, implementation of EBMs 

is often hindered by the intractable sampling issue which are circumvented by above-mentioned deep generative models. 

In this paper, combining the strengths of deep generative models and EBMs, we propose a variational approach to the CG 

problem, i.e., to infer an analytic form for the complex free energy surface (FES) without supervision in a tractable manner. 

Furthermore, our new approach allows simulations on different scales, which are launched simultaneously, cross talk and 

benefit from each other so that the inferred CG potential can in turn help enhance the sampling of the FG model in a reinforced 

and adaptive manner. 
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II. Methods 

1. Variational adversarial density estimation (VADE). 

We propose a deep learning approach to approximate the (possibly high-dimensional) FES, 𝐹(𝐬), by parametric models. 

Specifically, we denote the approximate free energy function and the associated probability distribution as 𝐹𝜃(𝐬) and 𝑝𝜃(𝐬) ∝

exp(−𝛽𝐹𝜃(𝐬)) respectively (where 𝜃 are optimizable parameters), and define a strict divergence 𝐷(𝑝||𝑝𝜃) between 𝑝 and 𝑝𝜃 . 

A strict divergence, including but not limited to Kullback-Leibler divergence 𝐷KL(𝑝||𝑝𝜃)24 and Earth-Mover’s distance 

𝐷W(𝑝||𝑝𝜃),25 satisfies the condition that 𝐷(𝑝||𝑝𝜃) ≥ 0 where the equality holds if and only if 𝑝 = 𝑝𝜃 , hence can be used as a 

variational objective.26-28 Particularly, the gradient of 𝐷KL(𝑝||𝑝𝜃)  w.r.t. 𝜃  takes the following form in Eq. (3) (see SI or 

references27 for the derivation), 

 ∇𝜃𝐷KL(𝑝||𝑝𝜃) = 〈𝛽∇𝜃𝐹𝜃(𝐬)〉𝑝(𝐬) − 〈𝛽∇𝜃𝐹𝜃(𝐬)〉𝑝𝜃(𝐬) (3) 

where 〈𝑓(𝑥)〉𝑝(𝑥) denotes the expectation value of 𝑓, a function of 𝑥, over a distribution 𝑝(𝑥). The gradient for 𝐷W(𝑝||𝑝𝜃) has 

been separately derived in Targeted Adversarial Learning Optimized Sampling (TALOS)29. In this paper we perform 

experiments exclusively according to Eq. (3) and leave 𝐷W for future research. Noteworthy, Eq. (3) bears intriguing similarity 

with Wasserstein Generative Adversarial Networks (W-GANs).25 As in GANs, optimizing Eq. (3) requires both positive 

samples (drawn from the ground-true distribution 𝑝(𝐬)) and negative samples (drawn from the model potential 𝑝𝜃(𝐬)), thus 

effectively avoids overfitting in an adversarial manner. Given this observation, we refer Eq. (3) as variational adversarial 

density estimation (VADE), and 𝐹𝜃 optimized via Eq. (3) as VADE potential hereafter (Fig. 1A). 

We note here that VADE can be viewed as a more general extension of the inversed Monte Carlo method.30 The merit of 

VADE over GANs lies in the fact that 𝐹𝜃 actually yields a density estimation of 𝐬 whereas GANs cannot. Compared to GANs, 

VADE is able to preserve the necessary a priori physics restraints of the data by choosing proper energy functional forms. 

Moreover, the mode-dropping issue suffered by GANs could be avoided through active mode-exploration (Eq. (S11); see SI 

for more details). VADE requires the evaluation of the two expectation values in Eq. (3). If we have access to, say, equilibrium 

MD samples drawn from 𝑈(𝐑), the distribution of which is denoted as 𝑝FG(𝐬), we can use 𝑝FG to approximate 𝑝 and optimize 

𝐹𝜃  w.r.t. a surrogate objective 𝐷KL(𝑝FG||𝑝𝜃) , minimizing which is equivalent to maximum likelihood estimation. The 

remaining task is to calculate 〈∇𝜃𝐹𝜃(𝐬)〉𝑝𝜃(𝐬) . Since the analytical forms of 𝐹𝜃(𝐬) and ∇𝐬𝐹𝜃(𝐬) are both available, we can 

perform CG simulations on 𝐹𝜃(𝐬) to generate negative samples and estimate 〈∇𝜃𝐹𝜃(𝐬)〉𝑝𝜃(𝐬). If 𝐬 is relatively low-dimensional, 

the CG simulations are usually computationally economic and converge relatively fast, hence brute-force simulations via Monte 

Carlo (MC) sampling or Langevin dynamics (LD) generally suffice.  

 

2. Scale up VADE via Neural Samplers (VADE-NS). 

In contrast to GANs where negative samples can be easily generated by drawing simple independent random noises,31 VADE 

entails sampling over 𝐹𝜃(𝐬) through MC or LD simulations which could be intractable as Dim(𝐬) grows. Worse still, after each 

update of 𝜃, Eq. (3) requires sampling over the newly updated 𝐹𝜃, thus optimizing 𝐹𝜃 through MC or LD sampling could be 

extremely time-consuming. To conquer this sampling issue, we propose to equip VADE with a neural sampler, i.e., a deep 

generative model, in replacement of the less efficient MC or LD simulations. Specifically, given a fixed-form energy function 



5 

 

𝐹𝜃, one can approximate an upper bound for the free energy (or equivalently, the normalized equilibrium distribution) via a 

surrogate distribution 𝑞𝜓 by minimizing the KL-divergence between 𝑞𝜓 and 𝑝𝜃  , 

 𝐷KL(𝑞𝜓||𝑝𝜃) = 〈log 𝑞𝜓(𝐬) + 𝛽𝐹𝜃(𝐬)〉𝑞𝜓(𝐬) + log 𝑍𝜃 (4) 

The first term on the R.H.S. of Eq. (4) is known as the variational free energy of 𝐹𝜃.32-33 Note that calculating the constant 

𝑍𝜃 is unnecessary for solving this optimization (hence circumventing sampling over 𝐹𝜃). The optimal 𝑞𝜓(𝐬) can be determined 

variationally according to Eq. (4) without the concern of overfitting, but the optimization requires that sampling from 𝑞𝜓 is 

efficient and the log-likelihood log 𝑞𝜓(𝐬) can be computed with ease.33-34 Considering that a function 𝑓𝜓 (parametrized by 𝜓) 

can map a random variable 𝐳 bijectively into 𝐬, i.e., 𝐬 = 𝑓𝜓(𝐳), and that 𝐳 comes from a known distribution 𝑞(𝐳), we can thus 

compute 𝑞𝜓(𝐬) according to the change-of-variable formula (Eq. (5)),17 

 log 𝑞𝜓(𝐬) = log 𝑞(𝐳) − log |det (
𝜕𝑓𝜓

𝜕𝐳
)| (5) 

where det(𝜕𝑓/𝜕𝐳) is the determinant of the Jacobian matrix 𝜕𝑓/𝜕𝐳. In practice, 𝑞(𝐳) can be chosen as a tractable distribution 

(e.g., independent multi-variate Gaussians) so that sampling over 𝐳 as well as 𝑞𝜓(𝐬) can be convenient. Many deep bijective 

models16, 35-38 can be adopted as 𝑓𝜓 to approximate 𝑝𝜃 , and we term them as the neural sampler (NS) hereafter (see SI for more 

details about NS). 

Equipping VADE with NS (VADE-NS) (Fig. 1B), we arrive at a nested optimization problem similar to GANs: Given a 

fixed 𝐹𝜃, a NS is optimized according to Eq. (4); while given an optimized NS, 𝐹𝜃 can be updated according to Eq. (3). In this 

sense, the NS here takes a flavor of the generator in GANs whereas 𝐹𝜃 behaves like a discriminator. This nested optimization 

problem even allows 𝑓𝜓 to be non-bijective mappings as shown in recent studies.39  Noteworthy, in some applications of VADE 

where no a priori restraints are imposed over the functional form of 𝐹𝜃 , the nested optimization problem can be further 

simplified by modeling 𝐹𝜃 with a black-box deep bijective model (Eq. (6)),  

 𝛽𝐹𝜃(𝐬) ≡ − log 𝑞𝜓(𝐬) (6) 

and optimizing 𝐹𝜃 directly through Eq. (3). More details about the training and model choices for VADE-NS can be found in 

SI. 

 

3. Reinforced VADE (RE-VADE) 

In a more common setting where 𝑝FG is not available beforehand, we have to perform sampling over 𝑈(𝐑) from scratch. 

Since Dim(𝐑) is usually very large, i.e., Dim(𝐑) ≫ Dim(𝐬), estimating ensemble averages over 𝑝(𝐬) is often infeasible for 

brute-force FG (e.g., all-atom or ab initio) simulations or variational inference. A plethora of enhanced sampling methods have 

been developed trying to solve this issue, and there exist several excellent reviews on this topic.3, 40-42 Here we will show that 

VADE, combined with reinforced imitation learning, provides a new solution to this problem. We name our new approach RE-

VADE, which exhibits several compelling merits: (1) RE-VADE is able to handle high-dimensional CG variables while most 

of enhanced sampling methods become ineffective as Dim(𝐬) grows; (2) RE-VADE casts a well-defined optimization problem 

which allows cross-fertilization with deep learning; (3) RE-VADE formulates an adaptive training objective which can be 

optimized variationally, hence ensuring the efficiency and convergence of the method. 
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Mathematically, if we have an optimal 𝐹𝜃(𝐬) which is  equal to the ground-true 𝐹(𝐬), and perform sampling under 𝑈 − 𝐹𝜃, 

we will arrive at a uniform distribution over 𝐬. Therefore, one is motivated to employ 𝐹𝜃(𝐬) as a bias potential in order to 

achieve a flattened distribution over 𝐬 which may originally involve high free energy barriers.43 However, the situation is 

complicated by the errors  in 𝐹𝜃: Since 𝐹𝜃 is optimized w.r.t. available FG samples (usually corresponding to metastable states 

in MD simulations), its value can be very inaccurate in those under-sampled regions (e.g., transition regions). Therefore, 

directly inserting 𝐹𝜃 as the bias potential could be non- or even counter-productive. We note here that similar problems where 

one has to deal with moving distributions and partial sampling are commonly encountered and addressed in Reinforcement 

Learning (RL).44 Inspired by RL, we introduce a two-timescale learning scheme, where a bias potential 𝑉𝜙(𝐬) with 𝜙 denoting 

optimizable parameters (equivalent to a policy function in RL) is separately trained in addition to 𝐹𝜃(𝐬) which can now be 

viewed as a value function in the spirit of actor-critic RL.45 As in variationally enhanced sampling (VES)28 or TALOS,29 we 

can define a target distribution 𝑝T(𝐬; 𝜃) where the free energy barrier is lowered (in other words, less-visited regions are more 

encouraged) according to 𝐹𝜃(𝐬). Following the well-tempered (WT) metadynamics,46 one reasonable choice of 𝑝T(𝐬; 𝜃) is Eq. 

(S23) (see SI for more information about 𝑝T), and one can then optimize the bias potential 𝑉𝜙(𝐬) by minimizing a strict 

divergence, for instance,  𝐷KL(𝑝T||𝑝𝜙), 

 ∇𝜙𝐷KL(𝑝T||𝑝𝜙) = 〈𝛽∇𝜙𝑉𝜙(𝐬)〉𝑝T
− 〈𝛽∇𝜙𝑉𝜙(𝐬)〉𝑝𝜙

 (7) 

where 𝑝𝜙 denotes the Boltzmann distribution induced by (𝑈 + 𝑉𝜙) which can be approximated through MD sampling. The 

separate parametrization allows us to use an imbalanced learning schedule for the free energy function 𝐹𝜃 and the bias potential 

𝑉𝜙. Particularly, we can train 𝐹𝜃(𝐬) based on the latest 𝑝FG(𝐬) (reweighted from 𝑝𝜙) with a higher rate, and update 𝑉𝜙(𝐬) in a 

more conservative manner. In terms of imitation learning, 𝐹𝜃(𝐬) plays the role of a leader that coins a moving target based on 

the current density estimation, while 𝑉𝜙(𝐬) learns to tune the policy in order to catch up (Fig. 1C). A dramatic advantage of 

such leader-chaser scheme lies in the fact that 𝐹𝜃 along with 𝑝T is constructed based on the samples drawn from simulations 

under 𝑉𝜙, so 𝑝T and 𝑝𝜙 always share substantial overlap; otherwise 𝐷KL would fall victim to the notorious vanishing gradient 

issue.25 Remarkably, such sort of separate parametrization and two-timescale updated rule were also adopted in some 

unsupervised and reinforcement learning settings like generative adversarial networks,31, 47 double Q-learning48 and parallel 

WaveNets,49 etc.  

Another major advantage of this separate parametrization scheme lies in the fact that density estimation of high-dimensional 

data inevitably involves high variance and large uncertainties, while RE-VADE still enables enhanced sampling with higher 

tolerance of these errors and even negates the necessity of knowing them. In RE-VADE, albeit 𝐹𝜃(𝐬) may be imperfect globally 

(especially at the beginning of training), it still gives relatively accurate density estimation of the recently visited regions, 

according to which 𝑉𝜙(𝐬) can be improved locally via Eq. (7) and gradually enhance the sampling efficiency. On the other 

hand, as the FG sampling is enhanced by 𝑉𝜙(𝐬), we can get a better approximation of 𝑝(𝐬), thus gradually push 𝐹𝜃(𝐬) to the 

optimum according to Eq. (3). Specifically, if one chooses a well-tempered target distribution as in Eq. (S13), the optimal 𝑉𝜙 

will converge to the well-tempered free energy (Eq. (S14)). From this perspective, metadynamics 43 can be viewed as a special 

case of RE-VADE if 𝐹𝜃(𝐬) is replaced by KDE and accumulative Gaussians serve as 𝑉𝜙(𝐬). In other words, RE-VADE is a 

generalization of metadynamics to large Dim(𝐬) and parametric bias potential functions. The assembled training algorithm of 
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RE-VADE is summarized in Algorithm S1. Compared to existing methods,43, 50 VADE-NS allows us to implement Eq. (7) over 

high-dimensional CG space because density estimation and samples from the resulting target distribution (𝑝T) can be drawn 

conveniently. Particularly, in many enhanced sampling applications, a priori knowledge of the underlying 𝐹(𝐬) is scarcely 

available, hence we can model 𝐹𝜃(𝐬) with deep bijective models for simplicity (Eq. (6)). Besides, to attack the issue of irregular 

gradients while maximally harnessing the expressivity of ANNs, the architecture of ANNs should be carefully designed, and 

special regularization techniques may be needed to smooth the gradients (see SI for more details). 

 

 

Figure 1. Workflow of variational adversarial density estimation (VADE). (A) VADE: the free energy approximator 𝐹𝜃 simultaneously 

takes in positive samples (𝐬~𝑝FG(𝐬)) and negative samples (𝐬~𝑝𝜃(𝐬)). The negative samples are generated by Monte Carlo or Langevin 

Dynamics simulations over 𝐹𝜃. Red arrows indicate the direction of data flow or the computational graph. (B) VADE with a neural sampler 

(VADE-NS):  identical to VADE except that the negative samples are drawn by a neural sampler 𝑓𝜓. (C) Reinforced VADE (RE-VADE): 

Given simulation samples from fine-grained (FG) models (𝑝FG), a coarse-grained (CG) potential 𝐹𝜃 can be approximated through VADE. In 

turn, a target distribution 𝑝T(𝐬; 𝜃) can be defined based on 𝐹𝜃, according to which a bias potential 𝑉𝜙 can be variationally optimized to boost 

the FG simulation.  
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III. Results 

I. Benchmark VADE as density estimator 

We benchmarked VADE on the 2-dimensional Tiwary-Berne model51 which consists of three potential wells. The contour 

map of the potential energy surface (PES), 𝑈(𝑥, 𝑦), is shown in Fig. 2A. A Langevin dynamics simulation was conducted on 

𝑈(𝑥, 𝑦) as 𝑝FG in Eq. (3) (see SI for more simulation details). We chose 𝐬 = (𝑥, 𝑦) in order to approximate the equilibrium 

distribution under  𝑈(𝑥, 𝑦) via VADE. We first performed kernel density estimation over the training data as a baseline (Fig. 

2B). the FES obtained by KDE (Fig. 2B) agrees well with the ground-true PES (Fig. 2A) in all the metastable regions. However, 

the difference is relatively large in the transition regions due to the lack of training data in those regions which resulted from 

by insufficient sampling of LD simulations. 

We then performed VADE and implemented importance MC sampling to optimize an ANN which serves as the density 

estimator, 𝐹𝜃(𝑥, 𝑦) (see SI for more details about model setup and training details). We trained 𝐹𝜃(𝑥, 𝑦) through VADE (Eq. 

(3) for 100 epochs, and plotted the estimated 𝐷KL between 𝑝𝜃  and 𝑝FG along the training progress (Fig. 2F). It can be seen that 

𝐷KL  between the two distributions quickly diminished during training, and the optimization of 𝐹𝜃  around 100 epochs, 

demonstrating the efficiency and efficacy of VADE. Besides 𝐷KL, another important indicator of the quality of models for 

VADE is whether or not 𝐹𝜃 of positive samples (i.e. training data) and negative samples (generated by VADE sampler) are 

identically (or similarly) distributed. Therefore, we examined the two distributions accordingly (Fig. 2E, panel 1), and found 

that they overlapped perfectly, proving the resulting 𝐹𝜃 is of high quality. The optimized 𝐹𝜃∗(𝑥, 𝑦) obtained by VADE was 

shown in Fig. 2C, and we found that  𝐹𝜃∗ not only agreeing well with the baseline KDE (Fig. 2B), but also appears quite smooth 

as the original PES thanks to the gradient regularizations we imposed over 𝐹𝜃 (see SI for more details). We also showcased the 

negative samples generated by MC sampling over 𝐹𝜃∗ (Fig. 2C), which indeed cannot be visually distinguished with those 

coming from the training set (Fig. 2B). 

Furthermore, we chose a continuous normalizing-flow model with a free-form Jacobian38 as the neural sampler, and 

performed VADE-NS over the same training set (see SI for more details about model setup and training details). For a fair 

comparison, VADE-NS was trained under the same settings with VADE. Tracking the optimization process, we found that 

𝐷KL between 𝑝𝜃  (which was yielded by VADE-NS) and 𝑝FG also quickly diminished, and even dropped more rapidly than 

VADE in the early epochs showing higher initial training efficiency (Fig. 2F). However, as the training proceeded, VADE-NS 

did not reach the same minimum level in 𝐷KL  achieved by VADE, possibly due to insufficient training or the lack of 

expressivity commonly suffered by deep bijective models. Intriguingly, the distributions of 𝐹𝜃 (yielded by VADE-NS) over 

positive and negative samples also overlapped well (Fig. 2E, panel2), indicating that VADE-NS also found a minimum to the 

optimization problem in Eq. (3), but the solution is sub-optimal due to the insufficient variational flexibly of the bijective 

model. The optimized 𝐹𝜃∗(𝑥, 𝑦) obtained by VADE-NS was plotted in Fig. 2D. The 𝐹𝜃∗  obtained by VADE-NS was not so 

smooth as the model obtained by VADE, because it is non-trivial to impose the gradient regularizations over the bijective 

model in VADE-NS. Nonetheless, the overall contour of 𝐹𝜃∗ is still in line with the baseline KDE, capturing all the three 

metastable states while leaving blank for the transition regions, and the negative samples produced by 𝐹𝜃∗ also resemble those 

from the training set. 

In summary, the surrogate energy function 𝐹𝜃∗ yielded by VADE and VADE-NS successfully preserves all the three local 

minima correctly, showing no signs of mode-dropping. This is a particular advantage of VADE provided that metastable states 
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usually play functionally important roles for bio-molecules, and dropping any of them during coarse graining may lead to 

failure of the resulting model. Now that we obtained the analytical form of 𝐹𝜃 based merely on samples from 𝑈(𝑥, 𝑦) (rather 

than knowing the mathematical form of 𝑈(𝑥, 𝑦)), we can locate free energy minima and cluster samples. We minimized the 

simulation samples over 𝐹𝜃∗ obtained by VADE, and observed that all the samples finally fall into three distinct local minima 

(Fig. S1A). We also colored the simulation samples according to their final minimizers, as shown in Fig. S1B, and found that 

the noisily distributed samples were indeed assigned to different metastable states quite reasonably. This result implies 

important potential application of VADE in identifying free energy minima (or metastable states) and clustering noisy high-

dimensional samples, which is demanded by many mechanism analysis and kinetic modeling methods. Besides, since 𝐹𝜃 

deviates from the ground-true 𝑈(𝑥, 𝑦) due to the lack of samples over the transition region, 𝐹𝜃 would be further improved if 

more training samples over the transition regions can be obtained, and such consideration is a strong motivation behind RE-

VADE. 

 

 

Figure 2.  Benchmark VADE on a 2D numerical model. (A) 2D potential energy surface (PES), 𝑈(𝑥, 𝑦), of the model. The PES was 

shifted w.r.t. the global minimum so that 𝑈(𝑥, 𝑦) ≥ 0 everywhere. (B) Kernel density estimation of the training samples. The estimated free 

energy surface (FES) is shown in colored contour plot, superimposed with randomly selected training samples (black dots). The FES is 

shifted (and hereafter) as in (A) for a fair comparison. (C) 𝐹𝜃∗(𝑥, 𝑦) obtained by VADE which was optimized via Monte Carlo sampling 

(VADE-MC) is shown in colored contours. Black dots are random samples generated by MC over the optimized 𝐹𝜃∗. (D) 𝐹𝜃∗(𝑥, 𝑦) obtained 

by VADE-NS is shown in colored contours, superimposed with random samples generated by the neural sampler. (E) Panel 1: The distribution 

of the final  𝐹𝜃∗(𝑥, 𝑦) obtained by VADE-MC over the training samples (black solid line) and those generated by MC (red dotted line); Panel 

2: The distribution of the final  𝐹𝜃∗(𝑥, 𝑦) obtained by VADE-NS over training samples (black solid line) and those generated by NS (red 

dotted line). (F) Evolution of KL-divergence 𝐷KL(𝑝FG||𝑝𝜃) against training epochs of VADE-MC (black) and VADE-NS (red). 
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2. Coarse grain a mini-protein by VADE 

Particle-based CG models are widely adopted in bio-molecular modeling.52 Conventionally, such models are premised on 

some empirical forms of force fields and fitted w.r.t. experimental and/or high-level calculation data. Since the force fields are 

generally designed to reflect certain physics restraints, the number of parameters are relatively limited and bottlenecks the 

expressivity and flexibility of the resulting models. In contrast, it is also possible to construct a CG potential entirely through 

an ANN in order to improve the expressivity, however, the model would require excessive amount of samples for training and 

might not generalize well due to the large parameter space. VADE can help combine the best of the two worlds if the CG 

potential takes a hybrid form (Eq. (8)): 

 𝐹𝜃(𝐬) = 𝐹Θ(𝐬) + 𝐹prior(𝐬) (8) 

where 𝐹Θ(𝐬) is a trainable parametric model while 𝐹prior(𝐬) is a force-field-like term accounting for some a priori knowledge 

or physics restraints. Equation (8) can be interpreted from two perspectives: On the one hand, 𝐹Θ(𝐬) can be regarded as a 

correction term for the traditional force fields. On the other hand, 𝐹prior(𝐬) serves as a reasonable prior distribution which 

effectively restricts the hypothesis space of 𝐹𝜃 thus expedites the training. 

We tested this idea on a mini-protein Chignolin using long all-atom MD simulation trajectories contributed by Lindorff-

Larsen et al.53 The positions of the ten C𝛼 atoms were selected as the CG variables s (Fig. 3A). 𝐹prior(𝐬) contains repulsive 

restraints to penalize the overlapping between CG particles. We adopted a deep bijective model36 as 𝐹𝜃(𝐬) and performed 

VADE-NS according to Eq. (S19), a regularized version of Eqs. (3-4), to incorporate the restraint 𝐹prior  (see SI for more details 

about model setups and training details). 𝐹𝜃 was trained over c.a. 500,000 FG samples for 10 epochs (one epoch takes less than 

5 minutes in wall-clock time on a single NVIDIA GeForce GTX 1650 GPU card). After training finished, we plotted the 

distributions of 𝐹𝜃 over the fine-grained MD samples and the negative CG samples produced by VADE-NS (Fig. 3B). The two 

distributions agreed qualitatively well, indicating good quality of the resulting models. 

In order to examine whether 𝐹𝜃 captures the important protein conformations, we characterized the generated CG samples 

from 𝐹𝜃 with two widely-used metrics: the root-mean-squared deviation (RMSD) w.r.t. the folded structure and the radius of 

gyration (Rg). We compared the distribution of the generated samples against the real ones in terms of these two metrics (Fig. 

3C), and found that the CG potential faithfully reproduced the overall conformational features. Specifically, a sharp local 

minimum corresponds to the compact native conformation (small RMSD and small Rg) is well defined by 𝐹𝜃, meanwhile the 

distribution of the extended unfolded structures is preserved as well. 

In addition to the overall conformational patterns, we are also concerned with the fine details produced by the optimized CG 

model. Particularly, we examined the distributions of the C𝛼4-C𝛼5 bond length, C𝛼4-C𝛼5-C𝛼6 angle and C𝛼4-C𝛼5-C𝛼6-C𝛼7 

torsion which locate at the turning point of the 𝛽-hairpin structure (Fig. 3A). We compared the distributions of these local 

structural features produced by 𝐹𝜃 against the reference FG MD samples (Fig. 3E), and confirmed that the optimized model 

𝐹𝜃(𝐬) also faithfully reproduced these local structural patterns. Finally, we showcased some randomly sampled CG structures 

from 𝐹𝜃, superimposed with their best-aligned FG counterparts (Fig. 3F). These CG conformations are diverse and realistic 

comparable to FG ones, including the folded structure, partially folded intermediates and extended unfolded structures, 
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demonstrating that the CG model obtained by VADE is free of mode-dropping and is able to capture the conformational features 

of the protein. 

 

 

Figure 3.  Coarse grain Chignolin by VADE. (A) FG protein structure of Chignolin. The CG particles are the 10 C𝛼 atoms, which are 

highlighted by colored beads and indexed accordingly. (B) Distributions of VADE potential 𝐹𝜃 for FG MD simulation samples (black solid 

line) and for CG structures sampled from 𝐹𝜃 (red dotted line). (C) 2D FES spanned by RMSD and Rg of FG MD simulation samples (D) 2D 

FES spanned by RMSD and Rg of VADE CG structures. (E) Distributions of the bond length between C𝛼4-C𝛼5 (upper panel), the angle 

between C𝛼4-C𝛼5-C𝛼6 (middle) and the torsion between C𝛼4-C𝛼5-C𝛼6-C𝛼7 (bottom). Black histograms correspond to FG samples and white 

histograms to VADE samples. Statistics were performed over 10,000 FG MD samples and VADE CG samples, respectively. (F) VADE CG 

structures are shown beads (colored according to Fig. 3A) and purple bonds, superimposed with their best-aligned FG counterparts (shown 

in yellow ribbons) selected from the MD trajectories. 

 

3. RE-VADE of alanine dipeptide in explicit water 

Next, we proposed to construct a CG model for a prototypical bio-molecular system, alanine dipeptide (Ala2) in explicit 

water without available FG samples. Specifically, the backbone torsional angles were chosen to be the CG variables (Fig. 4A), 

that is, 𝐬 = (𝜙, 𝜑) , and our goal is to infer a reasonable FES, 𝐹𝜃(𝐬) . However, different from the previous toy model, 

isomerization of (𝜙, 𝜑) involves relatively high barrier, thus brute-force FG simulations of Ala2 converge too slowly to obtain 

an accurate estimate of 〈∇𝜃𝐹𝜃(𝐬)〉𝑝FG
. Therefore, we adopted RE-VADE to enhance the sampling over 𝐬. Technically, we 

simultaneously launched two simulations: one FG (all-atom) MD simulation under a bias potential 𝑉𝜙(𝐬), and a CG MC 

simulation over 𝐹𝜃(𝐬). Both 𝐹𝜃 and 𝑉𝜙 are initialized to be zero everywhere. After a period of FG sampling (40 ps in length) 

biased by 𝑉𝜙, we reweight the yielded FG samples to represent 𝑝FG, and optimize 𝐹𝜃 according to Eq. (3). Based on the newly-

trained 𝐹𝜃, a well-tempered target distribution 𝑝T according to Eq. (S23) (see SI for more details) is established, w.r.t. which 

the bias potential 𝑉𝜙 is optimized. 𝑉𝜙 is then fed into the FG simulations of Ala2 and yields an updated collection of samples 

representing 𝑝FG. This procedure constitutes one iteration of RE-VADE, and the entire process continues till the convergence 

criteria are met (Algorithm S1). 

We tracked how 𝐹𝜃 of FG simulation samples and CG ones distribute (Fig. 4B), provided that the similarity (or overlap) 

between these two distributions is a good indicator of convergence. We trained the FG and CG models by RE-VADE for 8 ns 

(or equivalently, 200 iterations), and found that the two distributions overlap well and that both spread for a relatively wide 
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range (implying no mode-dropping). Noteworthy, in such a short simulation length, it is impossible for brute-force MD to 

produce equilibrium samples covering all important metastable states. To illustrate how RE-VADE helps enhance the sampling 

of FG models, we presented the 1-ns trajectories for torsions 𝜙 and 𝜑 produced by vanilla MD in contrast to those produced 

by simulations biased by 𝑉𝜙 in Fig. 4C. It can be seen that isomerization of torsion 𝜙 is fairly frequent in biased MD but hardly 

found in vanilla MD. Similarly, rotation of torsion 𝜑 is also boosted significantly by 𝑉𝜙. One may wonder how 𝑉𝜙 looks like 

and why it is able to boost the FG sampling so efficiently. By drawing the contour map of the bias potential (Fig. 4D), we 

observed that the optimized 𝑉𝜙  appears complementary to the ground-true FES of 𝐬 = (𝜙, 𝜑) (a reference FES of 𝐬 was 

presented in Fig. S2). We also superimposed some randomly selected FG samples produced under 𝑉𝜙 over the contour map 

(Fig. 4D), demonstrating an excellent coverage over both the free energy minima and the transition regions. Therefore, samples 

from 𝑉𝜙  are better representatives of 𝑝FG  and can be reliably used to optimize the CG models. The final CG model (𝐹𝜃) 

optimized via RE-VADE, which can be regarded as a variationally approximated FES for Ala2 in explicit water, is shown in 

Fig. 4E. We found that 𝐹𝜃 not only captures all known metastable states of Ala2 w.r.t. (𝜙, 𝜑) (i.e., no mode-dropping), but also 

quantitatively agrees well with the reference FES (Fig S2). This example demonstrates that simulations on multiple scales can 

be bridged by RE-VADE and that CG models can be reliably inferred even without access to FG samples a priori.  

 

 

Figure 4.  RE-VADE sampling of Ala2 in explicit water. (A) Chemical structure of Ala2 and two coarse-graining variables: the torsions 

𝜙 and 𝜑. (B) Distributions of 𝐹𝜃 for all-atom MD simulation samples (black solid line) and for CG simulation samples (red dotted line). (C) 

1-ns simulation trajectories projected on torsion 𝜙 (upper panel) and torsion 𝜑 (lower panel). Blue squares correspond to vanilla MD, red 

dots to MD biased by 𝑉𝜙. (D) The contour map of 𝑉𝜙 optimized via RE-VADE. Superimposed black dots are representative samples produced 

by the enhanced MD simulation under 𝑉𝜙. (E) Contour map of 𝐹𝜃 optimized via RE-VADE. 

 

4. RE-VADE of chemical reactions in explicit solvent 

Chemical reactions in condensed phase are notoriously known to be difficult to simulate, and enhanced sampling approaches 

are often needed to this end. We thus employed RE-VADE to boost the simulation of a Claisen rearrangement reaction (Fig. 

5A), which involves relatively high energy barrier, in the media of ionic liquid (see more details about simulation setup in SI). 

According to a previous study,54 a linear combination of the breaking/forming bonds (i.e., 𝑑1 and 𝑑2 in Fig. 5A) is selected as 

the CV 𝑠, and the target distribution over 𝑠 takes a Lorentzian form55 (Eq. (S25)) which is developed to help enhance the 

sampling of the transition state regions (see more details about the CV, target distribution and training details in SI). The 

reactant is treated quantum mechanically (QM) while the solvent treated molecular mechanically (MM). One iteration of RE-

VADE consists of 60-ps QM/MM simulation. As shown in Fig.  5B, after 100 iterations of RE-VADE, the chemical transitions 
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can take place back-and-forth within several nano-seconds by virtue of RE-VADE (i.e., the enhanced reaction rate is about 0.1 

ns-1). Noteworthy, as can be inferred from 𝐹𝜃 (Fig. 5C) which approximates the equilibrium potential of mean force over 𝑠 (the 

putative reaction coordinate), the reaction rate is indeed very slow (less than 0.1 s-1 according to transition state theory). 

Therefore, within less than 10 ns simulation and training time, RE-VADE achieves an acceleration of the reaction rate by nearly 

9 orders of magnitude. 

To understand how RE-VADE achieves such impressive performance, we examined the target distribution 𝑝T  and the 

optimized bias potential 𝑉𝜙(𝑠) . It can be seen from Fig. 5C that, based on the well-trained 𝐹𝜃 , the target distribution 

automatically emphasizes on the TS region while understates the reactant and product regions. In order to arrive at the target 

distribution, the bias potential 𝑉𝜙 is optimized in the way that the energy barrier is lowered and the metastable wells are lifted 

(Fig. 5C). By doing so, RE-VADE enables one to sample various molecular configurations efficiently (Fig. 5E), based on 

which we can investigate interesting thermodynamic properties of the reaction. For instance, the products of this reaction 

consists of a pair of enantiomers (Figs. 5A and 5E), the sampling of which is challenging for many sampling methods like 

umbrella sampling 6. We constructed the 2-dimensional FES (Fig. 5D) spanned by the chirality order parameter 𝑞C  (the 

definition of 𝑞C can be found in SI and references56) and 𝑠 via KDE over samples generated by RE-VADE. We found that both 

enantiomers are adequately sampled. More importantly, the final FES appears fairly symmetric w.r.t. 𝑞C, indicating that the 

distributions of the two enantiomers are almost identical, agreeing with the fact that the enantiomeric excess of this reaction 

should be zero. This result also demonstrates that the sampling of such a complex chemical reaction has converged. 

 

 

Figure 5.  RE-VADE sampling of chemical reactions in ionic liquid. (A) The retro-Claisen rearrangement under study. The reactant is a 

7-member-ring ether while the product is an aldehyde containing a 3-member ring. Two potential chiral carbons in the product are indicated 

by star symbols. The breaking and forming bonds are denoted as 𝑑1 and 𝑑2, respectively. (B) Trajectories of 𝑑1 (black) and 𝑑2 (red) during 

RE-VADE simulations. (C) Upper panel: the optimized CG potential 𝐹𝜃(𝑠)  (black solid line) in unit of kJ/mol and the associated 

(unnormalized) target distribution 𝑝T(𝑠) (red dashed line). Lower panel: the optimized bias potential 𝑉𝜃 in unit of kJ/mol. (D) 2D FES over 
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the CG variable 𝑠 and chirality order parameter 𝑞C. (E) Snapshots of various molecular configurations during RE-VADE. From left to right: 

reactant, transition state (T.S) and two enantiomer products. 

 

  



15 

 

IV. Concluding remarks 

Despite that all-atom and ab initio MD simulations have assisted scientists gain insights over many important physical, 

chemical and biological processes, their applications to complex systems containing rare events are limited, because 

experimentally related timescales of such systems (like protein folding and chemical reactions) are well beyond the reachable 

scope for even the most powerful supercomputers. Two distinct strategies are separately developed to combat this issue: either 

to perform enhanced sampling over the atomistic model, or to leverage CG models at the cost of losing atomic details. However, 

traditional enhanced sampling methods can neither scale well to large system sizes, nor transfer well to different system types 

due to the requirement of system-specific expert knowledge. On the other end, although different attempts exist to build CG 

models incorporating atom-level knowledge, transitioning from atomistic models to CG models still remains challenging. In 

this paper we developed a machine-learning approach, (RE-)VADE, to connect FG and CG models. In (RE-)VADE, 

simulations on different scales can benefit from each other: CG models are optimized w.r.t. the FG simulations hence 

incorporating information on finer scales; In turn, FG simulations are enhanced under the guidance of CG models. 

Mathematically, (RE-)VADE belongs to the realm of unsupervised and reinforcement learning. The variational and self-

adaptive training objective allows end-to-end and online training of parametric models like ANNs. Through several 

experiments we show that (RE-)VADE is able to yield flexible CG models more rapidly than traditional CG methods, moreover, 

it can also boost the sampling efficiency of chemical reactions and conformational transitions of prototypical biomolecules by 

several orders of magnitude. In (RE-)VADE, CG models can be variationally inferred based merely on equilibrium FG samples, 

thus involving less artifacts and computational cost than existing methods. This feature allows researchers to fully exploit the 

available atomistic simulations in order to construct transferrable CG models. More importantly, (RE-)VADE also allows one 

to construct CG models even without access to FG samples a priori. We remark here that although the CG models obtained 

this way are able to reproduce the thermodynamic properties of finer-scale simulations, the dynamics is not necessarily correct. 

In terms of Langevin dynamics, our CG models only provide a reliable description of the drifting field, yet the diffusion field 

remains unknown. Inferring the diffusion field based on the available drifting field can be an interesting direction for further 

studies. Besides, in the presented examples, RE-VADE is composed of one CG-FG cycle over merely two scales under the 

assumption that sampling over CG models can be readily achieved with simple simulation techniques and converges much 

faster than the FG simulations. While this is true for most cases because CG models are designed for computational tractability, 

some CG models for very large or complex systems may entail heavy computation and may also suffer from the sampling issue 

like FG models. If coarser-grained models were built on top of the CG model, they could possibly help enhance the CG 

sampling in a way similar to how the CG model boosts the FG sampling. Following this line, it is appealing to develop models 

over a cascade of scales via (RE-)VADE.  
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PART I. SUPPUPLEMTAL TEXTS 

 

I. Training objectives of (RE-)VADE 

Given the target distribution  sp  and an approximate 

distribution  sp , there are some practical ways to define 

the divergence between the two. The most commonly used 

one is the Kullback-Leibler divergence or relative entropy. 

A. Kullback-Leibler divergence 

    
 

 
KL log

s
s s
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D p p p d

p
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 
   

 
  (S1) 

where both distributions are assumed to admit densities (i.e. 

absolutely continuous) with respect to a same measure. KL-

divergence is known to be asymmetric and possibly infinite 

when there is non-overlapping area between the two 

distributions. Therefore, effective utilization of KL 

divergence as a optimization objective requires substantial 

overlap between  sp  and  sp
1. 

B. Training objective of VADE 

Now we consider the derivatives of Eq. (S1) w.r.t. the 

parameters  , namely,  KL ||D p p  . First, we can re-

write p  and p  in terms of the free energy, 
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following which Eq. (S1) becomes 

 

       

 

KL

log log

s s s s

s

D p p F F p d

Z Z d

 



    

 




 (S4) 

It can be found that  KLD p p  is now a functional of 

F , hence we can obtain the functional derivatives, 
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Notice that Eq. (S6) is equivalent to 
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so we finally arrive at the derivatives of KLD  w.r.t.  , 
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We remark here that Eq. (S8) holds for arbitrary fixed

 sp  when  sp  is a learnable distribution used to 

approximate  sp . So it can be easily generalized to the 

training objective of RE-VADE (Eq. (4) in the main text). 

Note that Eq. (S8) can be considered as the gradient of the 

following loss function,  

    
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C. Active mode-exploration in VADE 

Since VADE yields the (unnormalized) probability 𝑝𝜃(𝐬) 

for a training sample 𝐬, we can make use of this property to 

encourage VADE to learn the modes of the training samples 

which might have been ignored, in the spirit of importance 

sampling. Specifically, we can assign each training sample 

an importance weight 𝑤(𝐬) (normalized over mini-batch of 

samples), 

    
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where 𝛾 ≥ 1 is a factor determining to what extent active 

mode-exploration is performed, and we re-write Eq. (S9) 

into, 
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When 𝛾 = 1 , Eq. (S11) reduces to the original VADE 

objective, i.e., Eq. (S9). 

  

II. Training objectives of VADE-NS 
A. Deep bijective models as neural samplers 

Given a random variable 𝐳~𝑞(𝐳)  and a function 

𝑓𝜓: ℝ𝐷 → ℝ𝐷  that bijectively maps 𝐳  into 𝐬 , where 𝐷 =

Dim(𝐬) = Dim(𝐳) , then the probability of the random 

variable 𝐬  can be computed according to the change-of-

variables formula: 

    log log log det
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s z
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Calculating 𝑞𝜓(𝐬)  using Eq. (S12) admits two key 

premises: (i) 𝑞(𝐳) is tractable so that drawing samples of 𝐳 

can be achieved with ease; (ii) the bijective function 𝑓𝜓 has 

a tractable Jacobian whose determinant can be computed 

efficiently. In practice, one can simply choose a normal 

distribution as 𝑞(𝐳) to meet the first requirement. However, 

the computational cost of the determinant of the Jacobian of 

a bijective function generally scales as 𝒪(𝐷3), so ANNs of 

special architectures are needed for the second requirement. 

Deep generative models that satisfy these two 

requirements include but not limited to normalizing-flow 

models,2-4 auto-regressive flow models,5-6 and we refer 

readers interested in this topic to the references. 

B. Training objectives of VADE-NS 

VADE-NS proposes a nested optimization problem as in 

GANs: Given a fixed VADE potential 𝐹𝜃, a NS is optimized 

to approximate the equilibrium distribution of 𝐹𝜃 ; while 

given an optimized NS, 𝐹𝜃 can be updated to fit density of 

the training data. Specifically, the NS is optimized following 

the gradient with 𝐹𝜃 fixed, 
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where 𝐿(𝜓)  denotes 𝐷KL(𝑞𝜓||𝑝𝜃)  in Eq. (4) of the main 

text, and 𝑓𝜓  is a deep bijective model, e.g., a normalizing 

flow model taking the form of Eq. (S12). For continuous 

normalizing flows, 𝑞 (𝑓𝜓(𝐳))  is computed via black-box 

solvers for ordinary differential equation.7-8 

On the other hand, when 𝑓𝜓 is fixed, the VADE potential 

𝐹𝜃 is optimized following the gradient, 
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where 𝐿(𝜃) is formulated by Eq. (S9). 

Such nested optimization of VADE-NS through Eqs. 

(S13-S14) enjoys the merits that parametrization of the 

VADE potential is in free-form and independent of how 𝑓𝜓 

is chosen, so that 𝐹𝜃 can be designed arbitrarily expressive 

or variationally flexible. Besides, VADE-NS in this form can 

admit any prescribed additive restraint energies in the VADE 

potential 𝐹𝜃. 

In many cases where the functional form of 𝐹𝜃  is not 

prescribed, so that one can choose any black-box function 

approximator as 𝐹𝜃, we can reduce the nested optimization 

problem by parameter-tying trick (or Eq. (6) in the main 

text), 

     log   s zF q f  (S15) 

where 𝑓𝜃: ℝ𝐷 → ℝ𝐷 is a bijective function transforms 𝐳 into 

𝐬. Then 𝐹𝜃 can be simply optimized following the gradient, 
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where 𝑓𝜃
−1 denotes the inverse function of 𝑓𝜃 that transforms 

𝐬 into 𝐳. 

Compared to the nested VADE-NS optimization problem 

Eqs. (S13-S14), Eq. (S16) is more convenient to implement 

in practice. Besides, the parameter-tying trick also reduces 

the number of necessary model parameters thus expedite the 

training of VADE potentials. 

C. Incorporating parameter-free restraints in VADE-NS 

Consider a VADE potential consisting of extra restraints, 

where the restraints take in the form of additive energies, 

𝐹prior,  

      ' prior  s s sF F F  (S17) 

In the scenario of nested optimization, the gradient for the 

VADE potential 𝐹𝜃 remains the same as Eq. (S14), but the 

gradient for the NS becomes, 
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To reduce the nested optimization problem into a 

standalone optimization problem, one can also adopt the 

parameter-tying trick (Eq. (S15) or Eq. (6) in the main text). 

Incorporating Eq. (S15), the first two terms on the R.H.S. of 

Eq. (S18) cancels out, and the gradient of the VADE-NS 

turns out to be, 
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The only difference of Eq. (S19) compared to Eq. (S19) is 

the inclusion of an additional term   
 prior 
z

z
q

F f . 

This term can be regarded as a regularization over the VADE 

potential 𝐹𝜃  that encourages the generated CG samples to 

have low restraint energies (𝐹prior), similar to the effect of a 

bias potential widely adopted in restraint dynamics 

simulations.9 

 

III. Deep energy functions in (RE-)VADE 
There is relatively large margin for the specific functional 

forms for 𝐹𝜃  (and/or 𝑉𝜙 ). For example, it can be a linear 

expansion of certain basis functions as in VES where   are 
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the expansion coefficients 10; or can be a non-linear neural 

network, where   are the built-in parameters of neural 

network 11. 
A. Orthonormal polynomials or functions 

If Dim(𝐬) ≤ 3 , we recommend orthonormal basis 

functions as 𝐹𝜃  and 𝑉𝜙 , and the expansion coefficients are 

the learnable parameters. For periodic CG variables 𝐬 , 

Fourier expansions can be adopted. For non-periodic 𝐬 , 

Legendre or Chebyshev polynomials can be used.10 

Orthonormal polynomials usually yield smooth energy 

function, so generally no additional regularization is needed. 

B.  Artificial neural networks 

ANNs are expressive parametric models which can be 

used as 𝐹𝜃  and 𝑉𝜙 . Modern deep learning models have 

evolved based on specially designed architecture. Here we 

briefly introduce some building blocks which may be useful 

for constructing the deep models in (RE-)VADE. Multi-layer 

perceptrons (MLP) are most commonly seen ANNs 

consisting of fully connected hidden layer. The input of a 

MLP, 𝐬 , should trans-rotational invariant features of the 

molecular system. More importantly, each dimension of the 

input vector 𝐬 should be indexible (or non-degenerate w.r.t. 

permutations). MLP will transform the input vector to 

hidden features, and finally yields an output vector. 

C. Neural allocative potentials (NAP) 

We note here that it is not the absolute value but the 

difference of energy makes physical sense. If we do not 

exploit this property, the absolute value of the energy 

produced by ANNs may grow rapidly but the energy 

difference does not. This is harmful to our purpose, because 

it was recently revealed that the smoothness and continuity 

of ANNs become vulnerable if the absolute values of built-

in parameters are too large hence the weight matrices of 

ANNs become ill-conditioned.12 Given the above 

considerations, we can first choose a lower bound and an 

upper bound for the bias potential, and "quantized" this 

energy range into 𝐾 fixed levels {𝐸𝑘}𝑘=1..𝐾, based on which 

we propose the following functional form, 
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where 𝛼𝑘(𝐬; 𝜃) corresponds to the output of an ANN with a 

soft-max output layer. The associated force takes the 

following form, 

    
1

;s ss s

K

k k

k

F E  



    (S22) 

In other words, we transform the problem of learning a 

scalar into learning a simplex {𝛼𝑘}𝑘=1..𝐾 . Following this 

form, NAP is trained to allocate proper amount of energy to 

configuration 𝐬, rather than estimate the absolute value of the 

bias potential. Therefore, the training of 𝐹𝜃(𝐬) is more robust 

and the gradient will be well-behaving. 

D. Gradient regularization 

In order to ensure the to-be-optimized function 𝐹𝜃(𝐬) to be 

smooth enough for integration, we introduce several 

techniques to effectively regularize the gradient, ∇𝐬𝐹𝜃(𝐬). 

1. Weight clipping 

One simple and intuitive approach is to clip the weights 1 

of the neural network 𝐹𝜃  (e.g.,  0.01,0.01   ) after 

each gradient update. The reason behind is that, if the 

parameter space  for   is compact, then all the functions 

𝐹𝜃 will be K-Lipschitz for some K that only depends on  

and not the individual weights. In practice, the clipping range 

is a very important hyper-parameter, which can neither be 

too large (reduced compactness) nor too small (reduced 

capacity of 𝐹𝜃). Besides, usually this method requires batch-

normalization13 in order to achieve a robust and good 

performance. 

2. Spectral normalization 

One more recent approach to stabilize the training of GAN 

can also be applied in (RE-)VADE, which is to perform 

spectral normalization for the weight matrices 𝜃  in the 

energy function 𝐹𝜃 . The basic idea is to constrain the 

Lipschitz constant of the function by restricting the spectral 

norm of each layer. Compared to other normalization 

techniques, spectral normalization does not require extra 

hyper-parameter tuning (setting the spectral norm of all 

weight layers to 1 consistently performs well in practice). 

Moreover, the computational cost is also relatively small. 

We refer readers interested in this technique to the 

reference.12 

3. Drift removal 

In experiments we found that removing the net drift of the 

energy function will help stabilize training. To be specific, 

we added a regularization term to the overall loss function, 

to restrict the mean value of the energy distribution of FG 

samples to be close to zero. This trick works possibly 

because the output of the network is anchored to a nearly 

zero-mean value, so the absolute value of the output (and the 

built-in parameters) will not be too large. 

 

IV. Target distribution for RE-VADE 
A. Well-Tempered (WT) distribution 

Given the density estimation, i.e., 𝐹𝜃(𝐬), we can define the 

target distribution in WT form,14 which is equivalent to a 

partially flattened FES, 
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where     is the WT factor. Noteworthy, with 𝑝T  in the 

form of Eq. (S23), the optimal 𝐹𝜃 and 𝑉𝜙 can be proved to 

take the following form,  



4 

 

 

   

   

KL

KL T

arg min ||

1
arg min || 1












 
  
 

s

s

F

V

D p p F

D p p F

 (S24) 

B. Lorentzian-coupled distribution 

As recently proposed by Debnath et al.,15 the target 

distribution may take the following form: 
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where   is a scaling factor and  WT ;sp   is a pre-defined 

WT distribution with the WT-factor  (Eq. S23). More 

introduction to this kind of target distribution can be found 

in the reference 15. The advantage of such a Lorentzian-type 

target is that, the transition-state region (where 𝑑𝐹𝜃 𝑑𝐬⁄ ≈ 0) 

can be further enhanced along with metastable states. This 

property is very useful in some scenarios where the sampling 

of transition state is crucial as in transition path sampling. 

 

V. Connection between RE-VADE and other 

sampling methods 
A. Metadynamics 

Metadynamics16 is a powerful tool in enhanced sampling 

of rare events if low-dimensional CV 𝐬 can be defined a 

priori. However, metadynamics cannot be readily applied to 

cases where Dim(𝐬) ≥ 3. As introduced in the main text, 

RE-VADE can be viewed as a generalization of 

metadynamics into large Dim(𝐬)  and parametric bias 

potential functions. 

(1) Metadynamics exploits KDE to coin the target 

distribution which will fail in large Dim(𝐬). In contrast, RE-

VADE uses parametric models to perform density estimation 

which is even applicable to large Dim(𝐬). 

(2) Metadynamics accumulated non-parametric Gaussian 

as bias potential which will be intractable for large Dim(𝐬); 

while RE-VADE implements parametric learning to 

construct the bias potential, thus being more flexible and 

scalable for complex systems. 

In summary, RE-VADE will be more useful if one wants 

to boost the sampling efficiency but does not have enough 

expert knowledge to determine low-dimensional CV. 

B. VES 

The mathematical form of VADE training objective is 

almost identical to VES 10, although it is derived from a 

different starting point. Both VES and RE-VADE aims to 

minimize the KL-divergence between the sampled 

distribution and a target distribution. Nevertheless, they can 

be distinguished by several remarkable differences: 

(1) The target distribution in VES has to be defined 

carefully because VES would suffer from gradient vanishing 

or exploding issues when the distributions scarcely overlap. 

Usually this is a very demanding task. In contrast, RE-

VADE follows actor-critic learning and coins a target 

distribution in a metadynamics-like fashion, thus always 

ensures a useful gradient for optimization. 

(2) Optimization in VES relies on higher-order derivatives 

thus involving higher computational cost, while RE-VADE 

employs the state-of-the-art first-order optimization 

techniques from deep learning thus being robust, fast and 

economic. 

(3) The functional form of bias potentials supported by 

vanilla VES is limited to linear expansions, thus the 

dimension of the CV space cannot be too large. In contrast, 

RE-VADE supports any differentiable functions (such as 

neural networks) as valid forms and can be easily extended 

to ultra-large dimensions. 

C. TALOS 

Both TALOS 17 and RE-VADE are closely connected to 

actor-critic reinforcement learning. They both parametrize a 

pair of value function and policy function in order to boost 

the rare events. But there are several key differences 

demarcating the two approaches: 

(1) In TALOS, the value network is a critic (or 

discriminator) 𝐷𝑤  as in GAN; whereas in RE-VADE, the 

value network  𝐹𝜃 is a density estimator. 

(2) TALOS optimizes the policy network (i.e., the bias 

potential) to minimize the Wasserstein-1 distance between 

the sampled distribution and the target; while RE-VADE 

minimizes the KL-divergence for the same purpose. 

(3) The target distribution in TALOS is manually selected 

a priori, the choice of which is sometimes tricky. While in 

RE-VADE, the target distribution is automatically 

determined and adaptively updated according to the current 

density estimation. 

(4) The critic and policy networks in TALOS can be 

defined on different vector spaces; while in RE-VADE, both 

must operate on the same space. 

We mark here that the strengths of TALOS and RE-VADE 

are highly complementary. It remains as an interesting 

research direction that one may combine both methods, that 

is, to minimize the Wasserstein-1 distance between the 

sampled distribution and an adaptively determined target 

distribution. 
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Algorithm S1. Reinforced Variational Adversarial Density Estimation (RE-VADE) 

1: 
Input: Initialize value network 𝐹𝜃 and policy network 𝑉𝜙; Learning rate  𝛼𝜃 

and 𝛼𝜙 for 𝜃 and 𝜙, respectively. 
 

2: While 𝜙 do not converge, do  

3: Run MD under 𝑉𝜙, collect samples to calculate 〈𝑉𝜙(𝐬)〉𝑝𝜙
 run FG simulations 

4: Define 𝑝FG(𝐬) ∝ exp (𝛽𝑉𝜙(𝐬)) and calculate 〈𝐹𝜃(𝐬)〉𝑝FG
 reweight biased samples 

5: For 0t m   train 𝐹𝜃 for m  iterations 

6: Draw samples from 𝐹𝜃, calculate 〈𝐹𝜃(𝐬)〉𝑝𝜃
. run CG simulations 

7: Calculate ℒ(𝜃) = 〈𝛽𝐹𝜃(𝐬)〉𝑝FG
− 〈𝛽𝐹𝜃(𝐬)〉𝑝𝜃

 Eq. (S9) 

8:             Adam , ,       update value network 

9: End For  

10: Define target distribution 𝑝T according to 𝐹𝜃   

11: Calculate ℒ(𝜙) = 〈𝑉𝜙(𝐬)〉𝑝T
− 〈𝑉𝜙(𝐬)〉𝑝𝜙

 Eq. (S9) 

12:   Adam , ,       update bias potential 

13: End While  
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PART II. SIMULATION DETAILS 

 

I. VADE for numerical model: 2-dimensional 3-

well potential 
A. Simulation setup 

The potential energy function of the 2D 3-well potential 18 

takes the following form given the inverse temperature  : 

 

      

    

      

2 2

2 2

2 2 6 6

, 16exp 2 0.5 2 0.5

18exp 2 0.8 2 1.2

16exp 2 0.5 2 0.3 0.5

      

    

      

U x y x y

x y

x y x y

  

For the overdamped Langevin simulation, we chose 

1  , and the diffusion tensor was set to be: 

 
 

 

1

1

0 5 0

0 0 5









  
   
    

D
xx

yy

D

D
  

The resulting white-noised Langevin dynamics was 

simulated with a discrete time integration step of 0.01. 

100,000 samples in total were collected every 100 

integration steps. We randomly selected 50,000 samples as 

the training set, and 5,120 out of the rest of samples as 

validation set. 

B.  Model setups 

For VADE-MC, 𝐹𝜃 is constructed on the 2D (𝑥, 𝑦) space 

via a MLP. The MLP contains 2 hidden layers, each 

consisting of 64 units with softplus as the activation function. 

The hidden layers were also regularized by Spectral 

Normalization (see SI Part I, Section III) to smooth the 

gradients. The hidden layers were terminated by a one-unit 

linear output layer. 

For VADE-NS, 𝐹𝜃  takes the form of a continuous 

normalizing flow (CNF) model with a free-form Jacobian 

(FFJORD).8 The state transform function of FFJORD was 

modeled by a MLP consisting of 3 hidden layers, each 

composed of 64 units with softplus activation function, 

followed by a linear output layer composed of 2 units (the 

dimension of the output should be the same as the input). We 

stacked two CNF’s of such architecture to improve the 

expressivity of the resulting model as suggested by the 

reference.8 The base distribution for the latent variable 𝐳, 

𝑞(𝐳) (Eq. (S12) or Eq. (6) in the main text), was chosen to 

be the multi-variate normal distribution. 

C.  Training details 

For VADE-MC, we trained 𝐹𝜃 with a mini-batch size of 

500 and 100 epochs in total. Samples from 𝐹𝜃  was drawn 

through importance MC sampling. 𝐹𝜃 was optimized w.r.t. 

Eq. (S8) (or Eq. (3) in the main text). We further regularized 

the model by removing the drift of mean energy of the FG 

samples. The default Adam optimizer19 with a learning rate 

of 10-4 was adopted. Optimization was performed on 

Tensorflow. 

For VADE-NS, we trained 𝐹𝜃  with a mini-batch size of 

500 and 100 epochs in total. Samples from 𝐹𝜃 was generated 

by the reversed dynamics of FFJORD CNF model. 𝐹𝜃 was 

optimized w.r.t. the reduced VADE-NS objective, i.e. Eq. 

(S16).  The default Adam optimizer with a learning rate of 

10-3 was adopted. Optimization was performed on 

Tensorflow. 

 

II. VADE for Chignolin 
A. Data source 

The all-atom simulation data of chignolin is taken from 

reference 20, which contains over 500,000 samples in total. 

These samples were used to approximate 𝑝FG.  

B.  Model setups 

We imposed an exclusion energy 𝐹prior, which penalizes 

if the distance between the i-th and j-th particles, 𝑟𝑖𝑗 , is 

shorter than a prescribed cutoff 𝑟ex, and stays zero otherwise 

    
2

prior ex ij

i j

 sF r r  (S27) 

and we chose 𝑟ex = 0.1 nm in our experiment. 

We performed VADE-NS by employing a Masked Auto-

regressive Flow (MAF) model6 as the VADE potential 𝐹𝜃. 

We first converted the input Cartesian coordinates of all C𝛼 

atoms, denoted by 𝐬 , into the trans-rotational invariant 

internal coordinates 𝐬𝑧 . To remove the non-invertibility 

caused by the periodicity of angles (and torsions) in 𝐬𝑧 , 

denoted by −𝜋 ≤ 𝐬rad < 𝜋 , we first performed a logit-

transformation over the periodic variables, 

 ' log
1




x
s

x
z  (S28) 

   rad1
2


 




  

s
x  (S29) 

where 𝛼 = 0.05 in Eq.(S29) to prevent overflow. 

MAF was then operated on these transformed coordinates. 

The base distribution for the latent variable 𝐳 , 𝑞(𝐳)  (Eq. 

(S12) or Eq. (5) in the main text), was chosen to be the multi-

variate normal distribution. Code of MAF is adapted from 

GitHub: https://github.com/spinaotey/maf_tf. 

C.  Training details 

For VADE-NS, we trained 𝐹𝜃  with a mini-batch size of 

512 and 10 epochs in total. Samples from 𝐹𝜃 was generated 

according to Eq. (S12), that is, by the sampling 𝐳 from the 

base distribution 𝑞(𝐳)  and transforms 𝐳  into 𝐬 through the 

MAF model. We optimized the VADE potential 𝐹𝜃 w.r.t. the 

regularized VADE-NS objective i.e. Eq. (S19).  The default 
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Adam optimizer with a learning rate of 10-4 was adopted. 

Optimization was performed on Tensorflow. 

 

III. RE-VADE for Alanine dipeptide (Ala2) 
A. Simulation setup 

For the alanine dipeptide in aqueous solution, no ions were 

added since the terminal of the alanine was neutrally blocked 

(namely, ACE-ALA-NME) surrounded by 384 SPCE water 

molecules.21 All the simulations were executed on 

AMBER17 package22 using FF99SB force field parameters. 
23 The aqueous solution system was put in a rectangular 

simulation box with periodic boundaries on. SHAKE 

algorithm 24 was adopted to constrain all covalent bonds 

involving hydrogen atoms, and a 2 fs time step was 

permitted. The system underwent a standard relaxation 

procedure and equilibrated to an NTP ensemble (300 K, 

1atm). To equilibrate the system to the appropriate volume, 

the pressure of the system was adjusted to 1 atm by the 

Berendsen weak-coupling algorithm 25 with the relaxation 

time constants of 0.2 ps under another 1 ns long normal MD. 

For production run, samples were collected every 1 ps from 

10 parallel walkers 26. 

B.  Model setups 

Both 𝐹𝜃  and 𝑉𝜙  are functions of the 2D  ,   space. 

Since   and   are periodic variables, we construct both 

functions using the Fourier polynomial: 

       
0 0

cos sin cos sin

j Ni N

ij

i j

F i i j j     



 

           

where 8N   for both 𝐹𝜃 and 𝑉𝜙. 

C.  Target distribution 

In order to train 𝑉𝜙 , we chose a WT-form target 

distribution with 1 𝛾⁄ = 0.4 based on 𝐹𝜃  according to Eq. 

(S23). 

D.  Training details 

In each RE-VADE iteration, we ran MD simulations for 

40 ps to collect samples as 𝑝FG. Before every training step of 

𝑉𝜙, 𝐹𝜃 was first trained for 5 steps (i.e., 𝑚 = 5 in Algorithm 

S1). We adopted the Averaged SGD algorithm as 

recommended by Refs. 27 and 10 for each optimization step, 

and the update step-size for 𝑉𝜙  and 𝐹𝜃  is 0.1. Codes for 

optimization was inherited from Ref. 17 and 10. In total, RE-

VADE was performed for 200 iterations, which is equivalent 

to 8-ns MD simulation. 

 

IV. RE-VADE for Claisen rearrangement 
A. Simulation setup 

The simulation was performed at the QM/MM interface on 

AMBER14 MD platform. The self-consistent charge density 

functional tight-binding (SCC-DFTB) method 28 was 

adopted to approximate the quantum mechanical 

Hamiltonian of the reactant molecule. The solvent is a kind 

of ionic liquid, containing a pair of soluble ion pairs termed 

as [C2mim]+[NTf2]-. We adopted the classical force field 

developed by Sieffert and Wipff 29-30 to describe the solvent 

molecules (or ions) and SHAKE was imposed on the solvent. 

No additional ions were added. 

The system underwent a standard relaxation procedure and 

equilibrated to an NTP ensemble (300 K, 1 atm) lasting for 

1-ns long normal MD. A cutoff of 10.0 Å was applied for 

calculating nonbonding interactions. All the simulations 

were performed with a 1-fs time integration step (no SHAKE 

on QM-treated molecule) and with periodic boundary 

condition. In production MD run, samples were collected 

every 0.5 ps from 8 parallel walkers. 

B.  Functional forms 

In reference of the work by Zhang et al. 31, we set 𝑠 =
0.82𝑑2 − 0.18𝑑1  as a one dimensional CV for enhanced 

sampling. 

So both 𝐹𝜃  and 𝑉𝜙  are functions of 𝑠 , and they are 

expanded by Legendre polynomials up to the same order. For 

instance, 𝐹𝜃 takes the following form, 

    
1

i N

i i

i

F s f s 




   

where if  denotes the i-th order Legendre polynomial, 

50N  , and s  linearly rescales s  to the range of [0,1], 

with min 0s   and max 0.35s   nm,  

 min max max min

2 2

s s s s
s s

    
    
   

 

C.  Target distribution 

In order to enhance the chemical transition, we optimized 

𝑉𝜙  according to a Lorentzian-coupled target distribution 

(Eqs. S25 and S26), where 𝑝WT(𝑠; 𝛾) in Eq. (S25) takes a 

WT factor 1 𝛾⁄ = 0.2 and 𝜁 = 500. 

D.  Training details 

In each RE-VADE iteration, we ran MD simulations for 

60 ps to collect samples as 𝑝FG. Before every training step of 

𝑉𝜙, 𝐹𝜃 was first trained for 5 steps (i.e., 𝑚 = 5 in Algorithm 

S1). Similarly to Ala2, we also adopted the Averaged SGD 

algorithm as for each optimization step, and the update step-

size for 𝑉𝜙 and 𝐹𝜃 is 0.5. In total, RE-VADE was performed 

for 100 iterations, which is equivalent to 6-ns MD 

simulation. 

E.  Characterizing the chirality 

We define the chirality order parameter 𝑞C as follows 32. 

First we pick the position of central carbon (corresponding 

to the chirality site) as 𝐑C, and order the attached four atoms 

from 𝐑0 to 𝐑3 according to conventions (Fig. S3). We then 

define several geometric vectors (Fig. S3): 𝒗𝑖 = 𝐑𝑖 − 𝐑C. In 

order to judge the chirality of the central carbon atom, we 

first calculate the cross product of two in-plane vectors, 

    2 3 1 2   u v v v v   
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Finally, the chirality order parameter 𝑞C is defined as the 

cosine of the angle between 𝒖 and the pseudo-normal vector 

𝒗0, e vectors, 

 0
C

0


q

u v

u v
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PART III. SUPPLEMENTAL FIGURES 

 

 
Figure S1.  (A) The contour map corresponds to the optimized 𝐹𝜃∗(𝑥, 𝑦) by VADE, the three symbols (magenta triangle, red square and 

yellow circle) represent three free energy minima found in 𝐹𝜃∗. (B) Hollow circles are simulation samples produced by Langevin dynamics 

on 𝑈(𝑥, 𝑦), colored by which local minimum they are minimized to over 𝐹𝜃∗. Colors are in line with the symbols in panel a. The contour map 

of 𝐹𝜃∗(𝑥, 𝑦) (as in Panel A) is shown in grey as background. 

 

 

 
Figure S2.  Reference FES for torsional angles (𝜙, 𝜑) of Ala2. The reference FES is obtained via kernel density estimation over 750 ns MD 

simulation of Ala2 in explicit water. The data is accessible to the public from: 

https://github.com/markovmodel/mdshare 

 

 

 
Figure S3.  The chiral carbon atoms in the product. We order the attached atoms to the central carbon by the ordering R3>R2>R1>R0. Upper 

panels: Illustration of the ordering of the central chiral carbon atom and the geometric vectors. Lower panels: Clockwise sequence of the 

attached groups corresponds to R-configuration, and a counter-clockwise sequence to S-configuration. This figure is adapted from Ref. 32 

with permission. 
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