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ABSTRACT 9 

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to 10 

risk infection by decontaminating and reusing medical personal protective equipment intended only for a 11 

single use. The uncertain future of the pandemic is compounded by limited data on the ability of the 12 

responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from 13 

accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the 14 

inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their 15 

thermal degradation that will help mitigate the COVID-19 pandemic and future outbreaks. This paper 16 

introduces a thermodynamic model that synthesizes existing data into an analytical framework built on 17 

first principles, including the Arrhenius equation and the rate law, to accurately predict the temperature-18 

dependent inactivation of coronaviruses. The model provides much-needed thermal sterilization 19 

guidelines for personal protective equipment, including masks, and will also allow epidemiologists to 20 

incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into 21 

models forecasting the spread of coronaviruses across different climates and seasons.   22 
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INTRODUCTION 23 

The COVID-19 pandemic has spread quickly and overwhelmed medical facilities worldwide, often 24 

resulting in a lack of intensive care beds and ventilators. These circumstances have forced doctors to 25 

decide which patients to provide with life-saving equipment—and which patients to leave without.  The 26 

shortages have not only affected patients; facing a lack of masks, face shields, gowns, and other typically-27 

disposable personal protective equipment (PPE), medical workers have had to reuse PPE or work without 28 

proper protection. As a result, many of them have been infected with SARS-CoV-2, the virus that causes 29 

COVID-19, despite the potential for effective sterilization techniques, including dry heat sterilization. 30 

Furthermore, as COVID-19 spreads to almost every region of the globe, epidemiologists need to know 31 

how long the virus survives in different climates in order to determine where to focus limited resources, 32 

how to model further spread, and how to predict future seasonal flare-ups. 33 

 34 

During previous viral outbreaks, regional shortages of PPE led researchers to explore decontamination 35 

procedures that might allow PPE to be reused safely.
1,2

 Facing an unprecedented nationwide lack of PPE 36 

brought on by the COVID-19 pandemic, medical workers have begun implementing these procedures: 37 

For example, The University of Nebraska Medical Center in Omaha began attempting in March 2020 to 38 

reuse masks after decontamination with ultraviolet (UV) irradiation.
3
 However, UV decontamination 39 

faces several drawbacks, including an inability to kill viruses trapped within crevices that are not 40 

illuminated and a lack of availability in clinics in low-income areas and in most peoples’ homes.
4
  Other 41 

methods of decontamination, namely steam sterilization, alcohol washing, and bleach washing, are useful 42 

for items like glassware and other durable materials, but have been reported to degrade surgical masks 43 

and other delicate PPE not intended for reuse.
2,5,6

 Dry heat sterilization, on the other hand, can be 44 

performed almost anywhere (including in home ovens intended for cooking), and viruses inside of 45 

crevices or within fabrics are easily inactivated. In addition, while dry heat sterilization is often performed 46 

at 160 °C or higher, it can effectively inactivate viruses at much lower temperatures as well (albeit over 47 

longer periods of time), enabling sterilization and reuse of delicate PPE intended for disposal after a 48 
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single use.
7
 However, at this time, dry heat sterilization guidelines for single-use PPE contaminated with 49 

SARS-CoV-2 remain limited to only a few experimental measurements constrained to specific 50 

temperatures
8
 and are not directly applicable to the temperatures encountered in home ovens and other 51 

heating devices.  A predictive model that generates the necessary sterilization time at an arbitrary 52 

temperature would enable more robust guidelines applicable to any heating conditions.   53 

 54 

Meanwhile, virus transmission has been linked to both seasonal and regional variations in climate, where 55 

colder atmospheric temperatures typically lead to longer virus lifetimes outside of their hosts. This effect 56 

has been reported for both influenza
9,10

 and the common cold,
11

 and even the human coronaviruses SARS-57 

CoV-2,
8
 SARS-CoV-1,

12,13
 and MERS-CoV

14,15
 have been shown to survive longer at lower temperatures. 58 

Unfortunately, existing data for SARS-CoV-2 is limited to specific experiments performed at only a few 59 

temperatures encountered in typical climates.
8,16

 Epidemiologists would benefit from knowledge of the 60 

lifespan of SARS-CoV-2 as a continuous function of atmospheric temperature in order to accurately 61 

model the spread of COVID-19. Furthermore, understanding this temperature-dictated inactivation time 62 

could help predict whether the autumn and winter will bring a resurgence of cases as colder weather 63 

returns to the Northern Hemisphere, following a similar trend to that of the seasonal flu.
17

  64 

 65 

In this work, we introduce an analytical model based on the rate law and Arrhenius equation that enables 66 

prediction of the thermal inactivation rate and lifetime of coronaviruses, including SARS-CoV-2, as a 67 

function of temperature.  These viruses are treated as macromolecules undergoing thermal denaturation, 68 

and the time required to achieve a desired log-scale reduction in viable virions (e.g. by a factor of 10
6
 as 69 

typically used for sterilization
18–21

) can be determined at a given temperature. We confirm that 70 

coronaviruses undergo thermal denaturation because their inactivation behavior follows the Meyer-Neldel 71 

rule.
22

 Our model provides system-specific dry heat sterilization guidelines that may be used to safely 72 

decontaminate PPE at temperatures encountered in commonly-available equipment like home-use 73 

cooking ovens and rice cookers. The model also predicts the inactivation rate of human coronaviruses as a 74 
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continuous function of temperature in various climates; this ability will be of extreme importance to 75 

epidemiologists in predicting the regionally-dependent lifetime of the SARS-CoV-2 virus as well as the 76 

severity of the resurgence of COVID-19 that we may face this upcoming autumn and winter.  77 

 78 

RESULTS 79 

Reports in the literature describe the inactivation of many viruses over time, with experiments in different 80 

reports conducted over a range of temperatures, providing abundant data upon which a predictive 81 

analytical model capturing the influence of thermal effects on virus inactivation may be constructed.  In 82 

this work, we focused specifically on the inactivation of coronaviruses, a group of enveloped viruses that 83 

contain positive sense single-stranded RNA and are often responsible for respiratory or gastrointestinal 84 

diseases in mammals and birds.
23

 Specifically, we collected data on five types of coronaviruses, with 85 

subdivisions between types of viruses based on (i) strains of each virus, (ii) pH levels during experiments, 86 

and (iii) relative humidity conditions during experiments, resulting in fourteen sets of data (Figure 1(a)). 87 

These viruses include: (i) Severe Acute Respiratory Syndrome Coronavirus (both SARS CoV-1 and 88 

SARS-CoV-2);
8,13,16,24,25

 (ii) Middle East Respiratory Syndrome Coronavirus (MERS-CoV);
14,15

 (iii) 89 

Transmissible Gastroenteritis Virus (TGEV);
26

 (iv) Mouse Hepatitis Virus (MHV);
27,28

 and (v) Porcine 90 

Epidemic Diarrhea Virus (PEDV).
29

 The first two types of viruses are highly pathogenic and cause life-91 

threatening respiratory diseases in humans; SARS-CoV-2, the virus responsible for the COVID-19 92 

pandemic, is closely related to SARS-CoV-1 and exhibits many chemical and biological similarities.
30

 93 

The latter three viruses are zoonotic viruses known to cause mild to severe illnesses in humans.  In each 94 

of the referenced studies evaluating thermal inactivation characteristics of coronaviruses, viral inocula 95 

were exposed to different temperatures at varying time intervals. Samples were prepared by either 96 

suspending the viral stock in an appropriate test tube medium or depositing on a material surface. After 97 

exposure to different temperatures, samples on surfaces were recovered to a minimum essential medium. 98 

Either a plaque assay or a 50% tissue culture infectious dose (TCID50) assay was used to evaluate the 99 

infectious titer; we converted TCID50 results to number of plaque forming units (PFU) by multiplying by 100 
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0.69 based on theory, as performed in prior work.
31–33

 Some of these reports also explored the effects of 101 

pH and relative humidity on viral infectivity.
26,29,34

 102 

 103 

The inactivation behavior of microbes can be described accurately by the rate law.
35

 Non-first-order rate 104 

laws have been applied to inactivation of some microbes,
36–38

 particularly bacteria with heterogeneous 105 

populations,
39

 but the inactivation of most viruses—including the viruses considered in our analysis—106 

follows a first-order reaction, with viable virions as products and inactivated virions as reactants (Eq. 1): 107 

 [𝐶] = [𝐶0]𝑒−𝑘𝑡 (Eq. 1) 

The majority of primary experimental data for the inactivation of viruses is reported in plots of the log of 108 

concentration ln([C]) as a function of time.  The rate constant, k, can be determined from the primary data 109 

by fitting a line to data taken at a given temperature, T, and calculating the slope, k = ∆ln([C])/∆t. Each of 110 

these pairs of (k, T) equate to one data point in Figure 1(a).  We fitted straight lines to the primary data 111 

for each of the viruses studied here in order to determine the rate constants of each virus corresponding to 112 

specific temperatures; these linear fits are included in the Supplementary Information.  113 

 114 

Virus inactivation occurs due to thermal denaturation of the proteins that comprise each virion. The 115 

temperature dependence of this thermal denaturation process is captured by the Arrhenius equation,
40

  116 

which yields a linear relationship between ln(k) and 1/T (Eq. 2): 117 

 ln(𝑘)  = – 𝐸𝑎/𝑅𝑇 +  ln(𝐴)  (Eq. 2) 

where R is the gas constant, Ea is the activation energy associated with inactivation of the virus (i.e., the 118 

energy barrier that must be overcome for protein denaturation), and A is the frequency factor. Therefore, 119 

in Figure 1(a), we applied linear fits to the data to enable continuous prediction of the reaction rates over 120 

the full range of temperatures.  The activation energy, Ea, and natural log of the frequency factor, ln(A), 121 

were calculated for each virus by equating –Ea/R and ln(A) from Eq. 2 with the slopes and intercepts from 122 

the linear fits in Figure 1(a), respectively, according to the van’t Hoff equation, and are plotted in Figure 123 

1(b).  The correlation between ln(A) and Ea indicates that coronaviruses undergo a thermal denaturation 124 
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process following the Meyer-Neldel rule,
22

 in support of our assertion that they are inactivated primarily 125 

by thermally-driven protein denaturation. In fact, the slope and intercept of a best-fit line applied to the 126 

data, for which we calculate [ln(A) = 0.394Ea – 5.63] from the dataset used in this work, are nearly 127 

identical to the slopes and intercepts of [ln(A) = 0.380Ea – 5.27]
22

 and [ln(A) = 0.383Ea – 5.95]
41

 reported 128 

in prior work on denaturation of tissues and cells.  129 

 130 

 131 

Figure 1. Thermal inactivation behavior of coronaviruses. The dependence of inactivation rate on 132 

temperature was compiled from literature on several strains and under different relative humidity (RH) 133 

and pH conditions for SARS-CoV-2, SARS-CoV-1, MERS-CoV, TGEV, MHV, and PEDV, represented 134 

here in a van’t Hoff plot (a). Each dataset was fitted with a linear curve according to Eq. 2, and the 135 

resulting activation energy and frequency factor were back-calculated from each linear fit according to 136 

Eq. 2 and plotted (b); the linear correlation between the log of frequency factor versus activation energy 137 

for the set of coronaviruses considered here supports our hypothesis that they are inactivated due to 138 

protein denaturation.
22

  139 

 140 

The degree of inactivation of a pathogen is defined by the ratio of the concentration (amount) of a 141 

pathogen compared to its initial concentration, [C]/[C0], with varying levels of inactivation corresponding 142 

to rigor of sterilization reported in the literature, often in terms of orders of magnitude; an n-log 143 
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inactivation refers to a reduction in concentration of 10 raised to the nth power ([C]/[C0] = 10
–n

).  144 

Equations 1 and 2 combine to yield the time required to achieve an n-log reduction in a pathogen (Eq. 3): 145 

 𝑡𝑛−𝑙𝑜𝑔 = −
1

𝐴
𝑒

(
𝐸𝑎
𝑅𝑇

)
 ln (10−𝑛) (Eq. 3) 

The US Food and Drug Administration recommends a 6-log reduction in concentration of a pathogen (i.e. 146 

[C]/[C0] = 10
–6

) for sterilization.
18–21

 According to this recommendation, we refer to the time required to 147 

achieve a 6-log reduction as the virus lifetime, indicating both sterilization time and viable lifetime 148 

outside of a host. A more conservative value for sterilization could be modeled by inserting a different n-149 

log value into Eq. 3, which would change all of the resulting predictions by a simple multiplicative factor 150 

of n/6 (e.g. to achieve a 12-log reduction in a virus would require doubling all of the times predicted in 151 

this work). The predictions generated from Eq. 3 are plotted in Figure 2 and detailed in Tables 1 and 2.   152 

 153 

Figure 2 shows the predictions of virus lifetime as a function of temperature ranging from room 154 

temperature to temperatures achievable using common heating devices. In Figure 2(a), all five types of 155 

coronaviruses (subdivided according to virus strain and the experimental conditions of relative humidity 156 

and pH, as applicable) are plotted to show the variation across different environmental conditions and 157 

types of coronavirus. The plot in Figure 2(b) shows the same data, with the exception of data sourced 158 

from Casanova, et al.,
12

 due to possible experimental error in the primary data from that report (see 159 

Supplementary Information, Section S3). The same data from Figure 2(b) is replotted in Figure 2(c) with 160 

the lifetime axis scaled linearly to highlight the exponential dependence of lifetime on temperature. 161 

Figure 2(d) focuses solely on the three human coronaviruses included in this work: SARS-CoV-2, 162 

SARS-CoV-1, and MERS-CoV exhibit a similar trend in thermal degradation, in agreement with recent 163 

work that has shown the inactivation behavior of SARS-CoV-2 is similar to SARS-CoV-1.
16

 However, 164 

we observed that SARS-CoV-2 has a slightly longer lifetime than both SARS-CoV-1 and MERS-CoV 165 

outside of a host, potentially contributing to its relatively high reproduction number, R0. 166 
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 167 

Figure 2. Virus lifetime as a function of temperature. Predictions are shown for (a) all of the 168 

coronaviruses analyzed in this work and (b) all coronaviruses excluding the data from Casanova, et al., 169 

where the average curves apply to the data shown in each panel.  The subset of data in (b) is replotted 170 

with a linearly-scaled vertical axis (1440 minutes = 1 day) to highlight the exponential dependence of 171 

sterilization time on temperature (c).  The three human coronaviruses considered here have similar 172 

thermal degradation behavior and sterilization times (d), although SARS-CoV-2 exhibits a longer lifetime 173 

than both SARS-CoV-1 and MERS-CoV. 174 

 175 

The average sterilization times required for inactivation of all of the coronaviruses analyzed in this work, 176 

as well as the sterilization times for the subset of human coronaviruses (SARS-CoV-2, SARS-CoV-1, and 177 

MERS-CoV), are shown in Table 1. The temperature values displayed in the table were selected to 178 

illustrate that thermal sterilization is feasible at relatively low temperatures attainable by the general 179 



 

9 

 

public, albeit requiring longer sterilization times (most home ovens in the United States have a minimum 180 

temperature setting between 60-70 °C). The geometric mean was used to calculate the average 181 

coronavirus sterilization time for the full set of data, corresponding to the black curve in Figure 2(a). The 182 

data shown in Figure 2(d) was used to tabulate the human coronavirus sterilization times, where 183 

sterilization of SARS-CoV-2 takes slightly longer than the other human coronaviruses but still less than 184 

the average time for all of the coronaviruses analyzed. Meanwhile, Table 2 shows the lifetime of human 185 

coronaviruses outside of hosts, calculated based on thermal denaturation under different environmental 186 

temperatures, with the temperature range corresponding to seasonal weather patterns. 187 

 188 

Table 1. Sterilization time required for inactivation coronaviruses, with the average time for all of the 189 

coronaviruses analyzed in this work as well as for each of the human coronaviruses reported. 190 

Temperature 

Average coronavirus 

sterilization time, t6-log 

SARS-CoV-2 

sterilization 

time, t6-log 

SARS-CoV-1 

sterilization 

time, t6-log 

MERS-CoV 

sterilization 

time, t6-log 

60 °C 45 min 21 min 9.5 min 7.9 min 

70 °C 11 min 5.0 min 2.1 min 1.9 min 

80 °C 2.7 min 1.3 min < 1 min < 1 min 

90 °C < 1 min < 1 min < 1 min < 1 min 

 191 

 192 

Table 2. Lifetime of human coronaviruses outside of hosts across a range of environmental temperatures 193 

from 10 °C to 40 °C, defined as the time required for 6-log inactivation due to thermal denaturation (the 194 

lifetime of all human coronaviruses was greater than one month at temperatures below 10 °C). 195 

 196 

Temperature 

SARS-CoV-2 

lifetime, t6-log 

SARS-CoV-1 

lifetime, t6-log 

MERS-CoV 

lifetime, t6-log 

10 °C > 1 month > 1 month > 1 month 

15 °C 30.0 d 20.8 d 11.5 d 

20 °C 11.8 d 7.5 d 4.3 d 

25 °C 4.6 d 2.8 h 1.7 d 

30 °C 1.9 d 1.1 h 0.7 d 

35 °C 18.7 h 10.4 h 7.0 h 

40 °C 8.0 h 4.3 h 3.0 h 



 

10 

 

Depending on regional temperatures, coronavirus inactivation times may vary significantly. We estimated 197 

the lifetime of SARS-CoV-2 based on regional temperatures in the United States.  We used temperatures 198 

averaged over January to March, 2020, corresponding to the onset of the COVID-19 pandemic (Figure 199 

3(a)), and July to September, 2019, as a rough prediction of typical SARS-CoV-2 lifetimes in summer 200 

2020 (Figure 3(b)). Virus lifetimes were determined using Eq. 3 and the appropriate Ea and ln(A) data 201 

(details in the Supplementary Information, Section S4). Summer weather in the Northern Hemisphere will 202 

reduce SARS-CoV-2 lifetime significantly as temperatures rise, potentially lowering the reproduction 203 

number, R0, and slowing transmission of COVID-19. The predictions in Figure 3 are based on a 204 

simplified constant temperature profile and do not account for daily temperature fluctuations, which may 205 

result in shorter lifetimes than predicted due to the exponential dependence of reaction rate on 206 

temperature. Additional environmental effects, like UV from sunlight, may further reduce inactivation 207 

time; with these limitations in mind, predicted thermal lifetimes longer than one month are not reported. 208 

The values shown in Figure 3 represent maximum possible virus lifetimes across the United States. 209 

 210 

 211 

Figure 3. Lifetime of SARS-CoV-2 outside of a host across the United States in winter and summer. 212 

Predictions are based on (a) average temperature data from January to March, 2020 (corresponding to 213 

the onset of COVID-19 pandemic), and (b) average temperature data from July to September, 2019 (to 214 

show characteristic lifetimes in summer weather). The lifetime of SARS-CoV-2 will decrease in summer, 215 

likely hindering transmission and lowering the reproduction number, R0, but a recurrence of COVID-19 216 

in autumn and winter may occur due to an increase in R0 as the colder weather returns.  217 
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DISCUSSION 218 

We compared results from the thermodynamic model presented here with experimental data that had not 219 

been used as part of the model training data in order to test its predictive ability. SARS-CoV-1 has been 220 

reported to require 5 days at room temperature to achieve a 5-log reduction;
42

 our model predicts am 221 

inactivation time of 4.2 days under the same conditions, in good agreement with the reported data. In 222 

another report, SARS-CoV-1 was heated to 56 °C and required only 6 minutes to achieve a 6-log 223 

reduction;
25

 our model predicts a time of 17 minutes. A third report claimed that SARS-CoV-1 required 224 

30 minutes to achieve an approximately 6-log reduction at 60 °C; 
43

 our model predicts a time of 10 225 

minutes. Considering the demonstrated similarity in inactivation behavior of SARS-CoV-1 and SARS-226 

CoV-2,
16

 as well as the similarity in our model predictions for different strains of other coronaviruses 227 

(Figure S23), the model presented here offers promise as a useful tool to estimate the thermally-228 

dependent inactivation behavior of SARS-CoV-2.  229 

 230 

This model is limited to temperature-based predictive ability, and does not incorporate other 231 

environmental variables like the relative humidity and the fomite (i.e. the surface material on which a 232 

virion rests), both of which appear to have an effect on inactivation times.
8,12,16,44

 Variations in 233 

inactivation time at a given temperature due to these environmental factors may be interpreted as catalytic 234 

effects,
45

 where the activation energy is lowered on certain fomites, in the presence of water vapor, or 235 

even under different pH levels as observed in this work for PEDV (effect shown in Figure S26). 236 

Incorporating such an adjustment to the activation energy into the present model would enable predictive 237 

capability for other environmental conditions in addition to temperature. Another limitation of this model 238 

is its reliance on a limited set of primary data taken under different conditions which may also contain 239 

experimental error (all primary data is reproduced in the Supplementary Information).  This model also 240 

assumes that the enthalpy and entropy of the inactivation reaction are constant as temperature changes, 241 

which is typically valid for macromolecules like proteins,
22

 but the extrapolation of our model to higher 242 
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temperatures outside the range of the primary data (e.g. above 100 °C) may be unfounded if new 243 

inactivation reaction pathways become available.  244 

 245 

Fortunately, the results in Table 1 indicate that dry heat sterilization is feasible for inactivation of all 246 

types of coronaviruses, including SARS-CoV-2.  The most common material used in surgical masks and 247 

N95 respirators is non-woven polypropylene.
46,47

 Polypropylene is mainly used in room temperature 248 

conditions, already well above its glass transition temperature
48,49

 and within a region of near-constant 249 

stiffness until approaching its melting point, which is typically within the range of 156 °C to 168 °C.
50,51

 250 

Cui and colleagues suggest that thermal cycling (75 °C, 30 min heating, applied over 20 cycles) does not 251 

degrade the filtration efficiency of N95-level facial masks,
7
 and Lin et al. have shown that there is no 252 

significant degradation of surgical masks after heating to 160 °C for 3 min.
5
 Therefore, we expect that 253 

repeated sterilization at lower temperatures will be effective without degrading masks, while also feasible 254 

within relatively short times (less than 30 min; Table 1) and achievable for the majority of humans with 255 

access to home ovens, rice cookers, or similar inexpensive heating devices.  256 

 257 

In summary, this work provides guidelines to medical professionals and the general public for the 258 

effective, safe thermal sterilization of  PPE, including surgical masks, gowns, and face shields, and even 259 

the cloth masks—already popular worldwide—that the CDC has recommended all US citizens wear 260 

during the COVID-19 pandemic.
52

 In addition, the sensitivity of coronaviruses to environmental 261 

temperature variations, shown in Table 2 and Figure 3, indicates that the thermal inactivation of SARS-262 

CoV-2 must be considered in epidemiological studies predicting its global spread and, potentially, 263 

seasonal recurrence; our model will be easily incorporated into these studies due to its ability to predict 264 

virus lifetime as a continuous function of environmental temperature. Finally, the modeling framework 265 

and predictions for the behavior of a wide range of coronaviruses presented here offers a new 266 

fundamental understanding of their thermal inactivation that will help fight not only the COVID-19 267 

pandemic but also future outbreaks of other novel coronaviruses.  268 
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METHODS 269 

Data were obtained from the literature and homogenized according to the following procedures: (i) units 270 

were converted to standard SI, except for the use of minutes instead of seconds following the convention 271 

used in virology; (ii) 50% tissue culture infectious dose (TCID50) assay results were converted to number 272 

of plaque forming units (PFU) by multiplying by 0.69 based on theory, as performed in prior work;
31–33

 273 

(iii) logarithms were all converted to base-e (the natural logarithm); and (iv) data for which the 274 

experimental error overlapped the lower detection limit (LDL) of the experimental technique were 275 

excluded because they would artificially skew the resulting curve fits towards lower rate constants (i.e. 276 

lower slopes).  The specific procedures used to process each dataset are detailed in the Supporting 277 

Information, and the linear fits to the primary data used to determine the inactivation rate constants for 278 

each virus and at each temperature are shown in Supplementary Figures S1-S28. The slopes and 279 

intercepts of each of these fits are compiled in Table S1 and Figure S29, and the activation energies and 280 

frequency factors plotted in Figure 1(b) are reported in Table S2.  281 

 282 

DATA AVAILABILITY 283 

The authors confirm that all relevant data are included in the paper and supplementary information files. 284 
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 15 

S1. Homogenization of Virus Inactivation Data 16 

Data were obtained from the literature and homogenized according to the procedures described in the 17 

Methods section of the main text.  The specific procedure for each dataset and supporting plots showing 18 

linear fits to data points are detailed in this section. 19 

 20 

Data for SARS-CoV-2 21 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Chin, et al.
8
  We 22 

converted the TCID50 results to number of plaque forming units (PFU) by multiplying by 0.69 based on 23 

theory, as performed in prior work,
31–33

 and then converted the data from log10 to the natural log before 24 

plotting against time and taking a linear fit. Linear fits for the data at 4 °C, 22 °C, 37 °C, 56 °C, and 70 °C 25 
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are presented in Figures S1 through S5.  The resulting slopes were used to determine the rate constants at 26 

these temperatures, reported in Table S1.  27 

 28 

We followed the same procedure to homogenize data reported by van Doremalen, et al.,
16

 for SARS-29 

CoV-2 on a fomite of plastic, chosen over other fomites reported in the study because plastic is inert and 30 

has a minimal catalytic effect on changing the activation energy. The authors specify experimental 31 

conditions with a temperature between 21-23 °C; we used an intermediate value of 22 °C in this work. 32 

Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-predicting the 33 

rate.  A linear fit is presented in Figure S6.  The resulting slopes were used to determine the rate 34 

constants at these temperatures, reported in Table S1.  35 

 36 

 37 

Figure S1. Primary data from Chin, et al.,
8
 for inactivation of SARS-CoV-2 at 4 °C after converting the 38 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 39 

rate constant at 4 °C. 40 
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 41 

Figure S2. Primary data from Chin, et al.,
8
 for inactivation of SARS-CoV-2 at 22 °C after converting the 42 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 43 

rate constant at 22 °C. 44 

 45 

 46 

Figure S3. Primary data from Chin, et al.,
8
 for inactivation of SARS-CoV-2 at 37 °C after converting the 47 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 48 

rate constant at 37 °C. 49 

 50 
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 51 

Figure S4. Primary data from Chin, et al.,
8
 for inactivation of SARS-CoV-2 at 56 °C after converting the 52 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 53 

rate constant at 56 °C. 54 

 55 

 56 

Figure S5. Primary data from Chin, et al.,
8
 for inactivation of SARS-CoV-2 at 70 °C after converting the 57 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 58 

rate constant at 70 °C. 59 



 

S-5 

 

 60 

Figure S6. Primary data from van Doremalen, et al.,
16

 for inactivation of SARS-CoV-2 at ≈22 °C after 61 

converting the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to 62 

determine the rate constant at 22 °C. 63 

 64 

Data for SARS-CoV-1 65 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Darnell, et al.  We 66 

converted the TCID50 results to number of plaque forming units (PFU) by multiplying by 0.69 based on 67 

theory, as performed in prior work,
31–33

 and then converted the data from log10 to the natural log before 68 

plotting against time and taking a linear fit. Data near the lower detection limit (LDL) were excluded from 69 

the analysis to avoid under-predicting the rate.  In addition, data at 75 °C were excluded because only one 70 

data point was not near the LDL, meaning a line could not be fit to the data. Linear fits for the data at 56 71 

°C and 65 °C are presented in Figures S7 and S8.  The resulting slopes were used to determine the rate 72 

constants at these temperatures, reported in Table S1.  73 

 74 

We followed the same procedure to homogenize data reported by van Doremalen, et al.,
16

 for SARS-75 

CoV-1 on a fomite of plastic, chosen over other fomites reported in the study because plastic is inert and 76 

has a minimal catalytic effect on changing the activation energy. The authors specify experimental 77 
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conditions with a temperature between 21-23 °C; we used an intermediate value of 22 °C in this work. 78 

Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-predicting the 79 

rate.  A linear fit is presented in Figure S9.  The resulting slopes were used to determine the rate 80 

constants at these temperatures, reported in Table S1.  81 

 82 

 83 

Figure S7. Primary data from Darnell, et al.,
24

 for inactivation of SARS-CoV-1 at 56 °C after converting 84 

the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine 85 

the rate constant at 56 °C. 86 

 87 

 88 

Figure S8. Primary data from Darnell, et al.,
24

 for inactivation of SARS-CoV-1 at 65°C after converting 89 

the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine 90 

the rate constant at 65 °C. 91 
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 92 

Figure S9. Primary data from van Doremalen, et al.,
16

 for inactivation of SARS-CoV-1 at ≈22 °C after 93 

converting the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to 94 

determine the rate constant at 22 °C. 95 

 96 

Data for MERS-CoV 97 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Leclerq, et al. A table 98 

with information of the slopes (rate constant) at 56 °C and 65°C was provided. We converted the value of 99 

the slopes from log10 to the natural log and also the TCID50 results to number of plaque forming units 100 

(PFU) by multiplying by 0.69 based on theory, as performed in prior work.
31–33

 Data at 25°C were 101 

excluded due to the non-physical positive value for the slope (the concentration should decrease with 102 

time), which was likely due to experimental error in the measurements eclipsing the small change in 103 

concentration at 25°C. The authors also mentioned in the paper that there was no decrease in titre after 2 104 

hours for the data taken at 25°C. The data for 20°C was obtained from work by Doremalen, et al. A 105 

TCID50 assay was reported in their work. We converted TCID50 results to number of plaque forming units 106 

(PFU) by multiplying by 0.69 based on theory, as performed in prior work,
31–33

 and then converted the 107 

data from log10 to the natural log before plotting against time and taking a linear fit. A linear fit for the 108 

data at 20°C is presented in Figure S10 and the slope is computed to determine the rate constant at this 109 

temperature, reported in Table S1.  110 
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 111 

Figure S10. Primary data from van Doremalen, et al.,
14

 for inactivation of MERS-CoV at 20 °C after 112 

converting the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to 113 

determine the rate constant at 20 °C. 114 

 115 

Data for TGEV-D52 and TGEV-Purdue 116 

An Arrhenius plot for thermal inactivation of TGEV D52 strain and Purdue strain was reported in the 117 

work by Laude, et al. The logarithms of the rate constants were provided for temperatures of 31, 35, 39, 118 

43, 47, 51, and 55 °C. We converted the value of the rate constants from log10 to the natural log and also 119 

converted the units from inverse seconds to inverse minutes to maintain consistency with the other data 120 

values used in this work. The converted rate constants are reported in Table S1.  121 

 122 

Data for TGEV at relative humidity (RH) values of 20%, 50%, and 80% 123 

The virus concentration versus time for relative humidity (RH) values of 20%, 50%, and 80% at 124 

temperatures of 4, 20, and 40°C was reported in the work by Casanova, et al.
12

  We converted the value of 125 

the slopes from log10 to the natural log before plotting against time and taking the linear fit to find the rate 126 

constant. Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-127 

predicting the rate (because the slope of the linear fit would artificially become shallower due to the 128 

inability to resolve lower concentrations experimentally).  Linear fits for the data at 4, 20, and 40 °C and 129 
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at relative humidity values of 20%, 50%, and 80%, respectively, are shown in Figures S11 to S19.  The 130 

resulting slopes were used to determine the rate constants at these temperatures, reported in Table S1. 131 

 132 

 133 

Figure S11. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 4 °C and relative humidity 134 

of 20% after converting the y-values from log10 to the natural log. We fit a line to the data to determine 135 

the rate constant at 4 °C and RH of 20%. 136 

 137 

 138 

Figure S12. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 4 °C and relative humidity 139 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 140 

constant at 4 °C and RH of 50%. 141 
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  142 

Figure S13. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 4 °C and relative humidity 143 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 144 

constant at 4 °C and RH of 80%. 145 

 146 

 147 

Figure S14. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 20 °C and relative humidity 148 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 149 

constant at 20 °C and RH of 20%. 150 
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 151 

Figure S15. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 20 °C and relative humidity 152 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 153 

constant at 20 °C and RH of 50%. 154 

 155 

 156 

 157 

Figure S16. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 20 °C and relative humidity 158 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 159 

constant at 20 °C and RH of 80%. 160 

 161 
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 162 

Figure S17. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 40 °C and relative humidity 163 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 164 

constant at 40 °C and RH of 20%. 165 

 166 

 167 

Figure S18. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 40 °C and relative humidity 168 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 169 

constant at 40 °C and RH of 50%. 170 
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 171 

Figure S19. Primary data from Casanova et al.,
12

 for inactivation of TGEV at 40 °C and relative humidity 172 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 173 

constant at 40 °C and RH of 80%. 174 

 175 

Data for MHV at relative humidity (RH) values of 20%, 50%, and 80% 176 

The virus concentration versus time for relative humidity (RH) values of 20%, 50%, and 80% at 177 

temperatures of 4, 20, and 40°C was reported in the work by Casanova, et al.
12

  We converted the value of 178 

the slopes from log10 to the natural log before plotting against time and taking the linear fit to find the rate 179 

constant. Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-180 

predicting the rate (because the slope of the linear fit would artificially become shallower due to the 181 

inability to resolve lower concentrations experimentally).  Linear fits for the data at 4, 20, and 40°C and at 182 

relative humidity values of 20%, 50%, and 80%, respectively, are shown in Figures S20 to S28.  The 183 

resulting slopes were used to determine the rate constants at these temperatures, reported in Table S1. 184 

 185 
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 186 

Figure S20. Primary data from Casanova et al.,
12

 for inactivation of MHV at 4 °C and relative humidity 187 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 188 

constant at 4 °C and RH of 20%. 189 

 190 

 191 

Figure S21. Primary data from Casanova et al.,
12

 for inactivation of MHV at 4 °C and relative humidity 192 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 193 

constant at 4 °C and RH of 50%. 194 

 195 
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 196 

Figure S22. Primary data from Casanova et al.,
12

 for inactivation of MHV at 4 °C and relative humidity 197 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 198 

constant at 4 °C and RH of 80%. 199 

 200 

 201 

Figure S23. Primary data from Casanova et al.,
12

 for inactivation of MHV at 20 °C and relative humidity 202 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 203 

constant at 20 °C and RH of 20%. 204 

 205 
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 206 

Figure S24. Primary data from Casanova et al.,
12

 for inactivation of MHV at 20 °C and relative humidity 207 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 208 

constant at 20 °C and RH of 50%. 209 

 210 

 211 

Figure S25. Primary data from Casanova et al.,
12

 for inactivation of MHV at 20 °C and relative humidity 212 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 213 

constant at 20 °C and RH of 80%. 214 

 215 
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 216 

Figure S26. Primary data from Casanova et al.,
12

 for inactivation of MHV at 40 °C and relative humidity 217 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 218 

constant at 40 °C and RH of 20%. 219 

 220 

 221 

Figure S27. Primary data from Casanova et al.,
12

  for inactivation of MHV at 40 °C and relative humidity 222 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 223 

constant at 40 °C and RH of 50%. 224 

 225 
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 226 

Figure S28. Primary data from Casanova et al.,
12

 for inactivation of MHV at 40 °C and relative humidity 227 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 228 

constant at 40 °C and RH of 80%. 229 

 230 

Data for PEDV at pH values of 7.2, 9.2, and 10.2 231 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Quist-Rybachuk, et al.  232 

We converted TCID50 results to number of plaque forming units (PFU) by multiplying by 0.69 based on 233 

theory, as performed in prior work,
31–33

 and then converted the data from log10 to the natural log before 234 

calculating the slope based on the best fit lines that the authors provided in their plots. Data near the lower 235 

detection limit (LDL) had already been excluded from the authors’ own analysis to avoid under-236 

predicting the rate. The calculated slopes were used to determine the rate constants at 40, 44, and 48 °C 237 

for pH values of 7.2, 9.2, and 10.2, reported in Table S1.  238 

  239 
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S2. Processing of Virus Inactivation Data 240 

This section contains all of the raw values for the processed data included in Figure 1. The data points in 241 

Figure 1(a) are listed in Table S1, where the ln(k) values were calculated from the k = –d(ln([C]))/dt 242 

values determined in Section S1, unless otherwise noted in the table. The slope-intercept data for all of 243 

the linear fits in Figure 1 are listed in Table S2 and shown in Figure S29, along with the calculated 244 

activation energy and frequency factor shown in Figure 1(b).  245 

 246 

Table S1. Data plotted in Figure 1(a) in the main text.  247 

Dataset Ref. T  [°C] 1/T•10
4
   [10

4
/K] 

k = –d(ln([C]))/dt 

[1/min] 

ln(k)  

[1/min] 

SARS-CoV-2 
8
 4 36.10 0.0000597 -9.726 

SARS-CoV-2 
8
 22 33.90 0.000696 -7.270 

SARS-CoV-2 
16

 22 33.90 0.00166 -6.401 

SARS-CoV-2 
8
 37 32.36 0.00557 -5.190 

SARS-CoV-2 
8
 56 30.39 0.724 -0.323 

SARS-CoV-2 
8
 70 29.15 3.36 1.212 

SARS-CoV-1 
16

 22 33.90 0.00191 -6.261 

SARS-CoV-1 
24

 56 30.40 0.9077 -0.097 

SARS-CoV-1 
24

 65 29.59 2.869 1.054 

MERS-CoV 
14

 20 34.13 0.0027 -5.914 

MERS-CoV 
14

 56 30.40 0.16 -0.999 

MERS-CoV 
14

 65 29.59 3.62 2.121 

TGEV-D52 
26

 31 32.90 ln(k) provided in source -7.963 

TGEV-D52 
26

 35 32.47 ln(k) provided in source -7.332 

TGEV-D52 
26

 39 32.05 ln(k) provided in source -6.439 

TGEV-D52 
26

 43 31.65 ln(k) provided in source -5.808 

TGEV-D52 
26

 47 31.25 ln(k) provided in source -4.837 

TGEV-D52 
26

 51 30.86 ln(k) provided in source -3.369 

TGEV-D52 
26

 55 30.48 ln(k) provided in source -1.823 

TGEV-Purdue 
26

 31 32.90 ln(k) provided in source -7.832 



 

S-20 

 

TGEV-Purdue 
26

 35 32.47 ln(k) provided in source -7.149 

TGEV-Purdue 
26

 39 32.05 ln(k) provided in source -6.177 

TGEV-Purdue 
26

 43 31.65 ln(k) provided in source -5.468 

TGEV-Purdue 
26

 47 31.25 ln(k) provided in source -4.418 

TGEV-Purdue 
26

 55 30.48 ln(k) provided in source -1.849 

TGEV-RH20 
12

 4 36.10 0.000042 -10.126 

TGEV-RH20 
12

 20 34.13 0.00013 -9.210 

TGEV-RH20 
12

 40 31.95 0.0014 -6.570 

TGEV-RH50 
12

 4 36.10 0.000093 -9.316 

TGEV-RH50 
12

 20 34.13 0.0014 -6.571 

TGEV-RH50 
12

 40 31.95 0.0181 -4.012 

TGEV-RH80 
12

 4 36.10 0.00017 -8.517 

TGEV-RH80 
12

 20 34.13 0.00035 -7.824 

TGEV-RH80 
12

 40 31.95 0.0115 -4.465 

MHV-RH20 
12

 4 36.10 0.000012 -11.513 

MHV-RH20 
12

 20 34.13 0.000095 -9.210 

MHV-RH20 
12

 40 31.95 0.0018 -6.571 

MHV-RH50 
12

 4 36.10 0.00017 -8.517 

MHV-RH50 
12

 20 34.13 0.0016 -6.438 

MHV-RH50 
12

 40 31.95 0.0114 -4.474 

MHV-RH80 
12

 4 36.10 0.00013 -9.210 

MHV-RH80 
12

 20 34.13 0.00080 -7.131 

MHV-RH80 
12

 40 31.95 0.0113 -4.483 

PEDV-pH 7.2 
29

 40 31.95 0.0211 -3.858 

PEDV-pH 7.2 
29

 44 31.55 0.0326 -3.422 

PEDV-pH 7.2 
29

 48 31.15 0.0900 -2.407 

PEDV-pH 9.2 
29

 40 31.95 0.0863 -2.449 

PEDV-pH 9.2 
29

 44 31.55 0.1295 -2.044 

PEDV-pH 9.2 
29

 48 31.15 0.5178 -0.658 

PEDV-pH 10.2 
29

 40 31.95 0.1618 -1.821 

PEDV-pH 10.2 
29

 44 31.55 0.2728 -1.299 

PEDV-pH 10.2 
29

 48 31.15 1.2943 0.258 

 248 
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Table S2. Slopes and intercepts of data plotted in Figure 1(a) in the main text, and the calculated ln(A) 249 

and Ea values shown in Figure 1(b). 250 

Dataset Slope [K/10
4
] Intercept [1/min] Ea [J/mol] ln(A) [1/min] 

SARS-CoV-2 -1.632 48.617 135,692 48.62 

SARS-CoV-1 -1.715 51.903 142,601 51.90 

MERS-CoV -1.628 49.480 135,377 49.48 

TGEV-D52 -2.451 72.205 203,822 72.21 

TGEV-Purdue -2.472 73.094 205,509 73.09 

TGEV-RH20  -0.924 22.919 76,826 22.92 

TGEV-RH50 -1.276 36.811 106,051 36.81 

TGEV-RH80 -0.986 26.640 81,964 26.64 

MHV-RH20  -1.191 31.449 98,984 31.45 

MHV-RH50 -0.972 26.644 80,850 26.64 

MHV-RH80 -1.140 31.882 94,776 31.88 

PEDV-pH7.2 -1.820 54.177 151,291 54.18 

PEDV-pH9.2 -2.245 69.111 186,661 69.11 

PEDV-pH10.2 -2.606 81.262 216,676 81.26 

 

 251 
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 252 

Figure S29. A magnified version of Figure 1(a) from the main text, with the slopes and intercepts for 253 

each linear fit indicated.  254 

 255 

S3. Trends across Virus Strains, Relative Humidity, and pH 256 

Subsets of the model predictions for several viruses that varied only by strain, relative humidity, or pH of 257 

the surrounding medium are plotted here to more clearly highlight trends.  258 

 259 

Trends across virus strains 260 

Comparing results for the TGEV-D52 and TGEV-Purdue strains, we did not observe any significant 261 

deviation in the model prediction between these strains, shown in Figure S30. We hypothesize that the 262 

similarity between these two strains may be indicative of a similarity that SARS-CoV-2 could exhibit 263 

with SARS-CoV-1; we have predictive capability for SARS-CoV-1 with the present model and data, and 264 

the predictions for SARS-CoV-1 may suggest the expected thermal degradation of SARS-CoV-2. 265 

 266 
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 267 

Figure S30. Model predictions for sterilization times required for the TGEV D52 and Purdue strains. 268 

 269 

Trends across relative humidity conditions 270 

Comparing results for the TGEV and MHV viruses at relative humidity levels of 20%, 50%, and 80%, we 271 

did not observe any clear trends, as shown in Figures S31 and S32.  We note that the dataset obtained 272 

from Casanova, et al., appeared to exhibit the most experimental error of all the data used in the model, 273 

especially at low temperatures, with R
2 
values as low as 0.1 when applying linear fits to several sets of 274 

their data in Section S1. Therefore, more data would be needed to rule out a correlation between virus 275 

inactivation and relative humidity, especially considering such a trend has been implied in prior work.
44

 276 
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 278 

Figure S31.  Model predictions for sterilization times required for TGEV at levels of relative humidity of 279 

20%, 50%, and 80%.  280 

 281 

 282 

Figure S32.  Model predictions for sterilization times required for MHV at levels of relative humidity of 283 

20%, 50%, and 80%.  284 
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Trends across pH levels 286 

Comparing results for PEDV across pH levels of 7.2, 9.2, and 10.2, we observed a faster rate of virus 287 

inactivation at more basic pH levels as reported in prior work,
29

 shown here in Figure S33. 288 

 289 

 290 

Figure S33.  Model predictions for sterilization times required for PEDV at pH levels of 7.2, 9.2, and 291 

10.2.   292 

 293 

S4. Conversion of Climate Data to Inactivation Timescale Map  294 

National average temperature maps of the United States for the months of January to March, 2020, and  295 

July to September, 2019, were obtained from the National Oceanic and Atmospheric Administration 296 

(NOAA). These temperature maps, shown in Figures S34 and S35, display the CONUS mean 297 

temperature (except data for Hawaii and Alaska, which were obtained from NOAA’s climate data online 298 

search). The average temperature values encompassing January through March, 2020, were chosen in 299 

accordance with the timeline of the COVID-19 pandemic to date, and the average temperature values 300 

from July to September, 2019, were chosen to represent typical summer weather in the United States. 301 

 302 

1

10

100

1000

10000

100000

0 20 40 60 80

T
im

e
 t

o
 S

te
ri
liz

a
ti
o
n
 [

m
in

]

Temperature [ C]

1

10

100

1000

10000

100000

20 50 80 110 140 170 200

T
im

e
 t
o
 S

te
ri
liz

a
ti
o
n
 [

m
in

]

Temperature [ C]

SARS-CoV-1

MERS-CoV

TGEV-D52

TGEV-Purdue

TGEV-RH20

TGEV-RH50

TGEV-RH80

MHV-RH20

MHV-RH50

MHV-RH80

PEDV-pH 7.2

PEDV-pH 9.2

PEDV-pH 10.2

Geometric Avg.



 

S-26 

 

 303 

Figure S34. Initial data from NOAA used to generate Figure 3 in the main text; average temperatures 304 

over the period encompassing January to March, 2020, are shown.  305 

 306 

 307 

Figure S35. Initial data from NOAA used to generate Figure 3 in the main text; average temperatures 308 

over the period encompassing July to September, 2019, are shown.  309 


	Coronavirus_inactivation_v15_maintext
	Coronavirus_inactivation_v15_SI

