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Electric mobility application design requires accurate and fast prediction of Li-ion battery

performance and life. An emerging area of mobility enabled by electrification is electric

vertical takeoff and landing aircraft (eVTOL) for urban air mobility (UAM). Design process,

techno-economic analysis and the operation of on-board systems depend on the fast and accu-

rate prediction of Li-ion battery performance and life. These models must be accurate for the

unique use-case of UAM requiring high power at takeoff and landing, thereby, causing signif-

icant rise in battery cell temperature. In this work, we generate a battery performance and

thermal dataset specific to eVTOL use-cases and develop a fast and accurate performance

and degradation model around that dataset. We use a machine-learning based physics-

informed battery performance model to break the typically observed accuracy-computing

cost trade-off. We fit the aging parameters for each cycle in a given cell’s lifetime, and then

model the evolution of those parameters using a new approach that combines traditional

physics-based models, consisting of SEI film growth, charge loss, and Li Plating, along with

a neural network in a universal ordinary differential equations (u-ODEs) framework. The

new approach provides a unique way to combine the extrapolative capability of physics-based

models with the representation power of neural networks.

Electric vehicles are seeing an increased mass-market adoption due to the rapidly falling

cost and increasing performance of Li-ion batteries.1–3 These improvements are enabling the elec-

trification of aviation powertrains with many demonstration flights for short distances.4, 5 In an

electric aircraft, power is transferred from the battery energy storage system to propulsive thrust

by a high voltage distribution bus, electric motor, and power inverter. Relative to internal com-
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bustion or turbine engine systems, this mode of propulsive energy transfer facilitates elimination

of the complexity associated with gearboxes or mechanical transmissions, and affords relatively

low unit costs per propulsor (inverter, motor, propeller).6 This paradigm shift in aircraft propul-

sion system has enabled a vast array of new hybrid and electric aircraft configurations.7 Many

electric aircraft designs utilize distributed electric propulsion to realize novel configurations which

can achieve a significant safety and efficiency advantage over conventional single or multi-engine

aircraft.8 Notably, these developments in electrical energy storage and distributed electric propul-

sion have enabled the possibility of urban air mobility (UAM). As outlined by NASA, UAM aims

to safely and efficiently transport passengers and cargo in an urban area,9 and may have an energy-

efficiency10 advantage over ground transport. Core to the UAM concept are vertical take-off and

landing aircraft (eVTOLs), that use rotors to take off and land without needing a runway.11

The design trade-offs using Li-ion based electric aircraft designs are distinct from those in

combustion engines, in large part due to orders of magnitude difference in specific energy between

Li-ion batteries and jet-fuel. Thus, electric aircraft require careful integration and use of Li-ion bat-

tery systems and battery weight directly limits the electric aircraft range.11, 12 Most eVTOL aircraft

are typically designed for the critical case: cruise to maximum range into a headwind, followed

by a redirect reserve segment and a subsequent contingency landing such as a single propulsor

failure. This mission profile is especially challenging to achieve at the battery retirement state-

of-health (typically 80-85% SOH), as maximum power output is demanded at minimum state-of-

charge (SOC).11 To ensure that the co-design of electric propulsion sub-systems is consistent with

the sized vehicle geometry and weights, a rapid battery performance estimation method is required
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in the sizing loop.13 In addition, on-board state-estimation of energy and power is important for

aircraft operations. Battery SOH estimation as a function of mission profile is also critical for

techno-economic and business case analyses, as batteries are a major component of operations

cost.14

Estimating the state-of-charge over a duty cycle and the state-of-health over the lifetime of

a cell has been performed using one of three broad categories of models, (i) empirical models,

(ii) physics-based models,15 or (iii) data-driven methods.16, 17 Each category of models entails a

number of advantages and disadvantages based on the accuracy, the computational time to run

the model, the interpretability of the model results and extrapolation capability of the models. A

typical trade-off plot between model accuracy and computational time is shown in Fig. 1a.16 The

ability to break this kind of multi-scale modeling trade-off by physics-informed neural networks

is now widely realized in atomistic simulations18 and fluid mechanics.19 The key insight that en-

ables breaking this trade-off is to encode physical principles for data efficiency and extrapolation

in conjunction with the representation power of neural networks. In this work, we develop such

an approach, CellFit, a physics-constrained machine-learning model for battery performance, ther-

mal response, and degradation. A simplified physical representation that obeys conservation laws

(charge, energy) are used together with the representation power of neural networks towards a

class of models which we term as universal battery performance and degradation models. The

universality arises from describing the residual mechanisms, not captured by physical models, by

the representation power of neural networks. The model is open-source and built using the Julia

programming language,20 enabling great computational speed of less than 1 ms for a cycle.
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Figure 1: Model accuracy v. computational time and its importance in electric aviation (a)

Model accuracy and computational time trade-off shown for different battery performance models.

Electrochemical models such as Pseudo 2 dimensional (P2D) models and single particle models

(SPM) are typically accurate and interpretable, but parameter estimation is difficult and model

runtime is long. Equivalent circuit models (ECM) provide fast models at the cost of accuracy and

interpretability. We propose that reduced order models supplemented with data-driven and ma-

chine learning approaches provide an accurate and fast compromise which provides some level of

physical interpretability as the optimal battery model for electric aircraft development and design.

(b) Aircraft require careful integration of battery modeling to ensure safety, particularly in the early

stages of design and development. The model must be able to account for the full life cycle of the

battery by incorporating a degradation model to ensure safety and to estimate economic viabil-

ity. Additionally, the battery model must have a fast runtime because of the iterative nature and

compuatational complexity of aircraft design
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The development of machine learning based models requires relevant battery performance

datasets to train and test the models. While datasets exist for testing Li-ion performance under

a few duty cycles, 2, 17, 21 the limited number of openly-available datasets remains a challenge to

bring advanced machine-learning methods to battery performance prediction, 17, 22 and there are no

such datasets specific to electric aircraft missions. To fill this gap, we generate an experimental

battery performance dataset using cell testing specific to the operating conditions encountered by

an eVTOL. The mission profiles follow the same generic format in all cases: (i) Take-off: the

cell was discharged at constant power at a high rate for a period, tto (ii) Cruise: the cell was

discharged at constant power at a lower rate for a longer duration, tcr and (iii) Landing: the cell

was discharged at constant power at the same rate as takeoff for a slightly longer period of time,

tla, (iv) Rest: the cell was allowed to rest until it cooled to a temperature of less than 27◦C,

(v) Charging: the cell was charged using a constant current-constant voltage (CC-CV) charging

protocol, (vi) Rest: The cell was allowed to rest until cell temperature reached 35◦C, then allowed

to rest 15 minutes further before beginning the next cycle. Every 50 cycles, the cells underwent

a capacity test wherein they were discharged at constant current until their voltage was less than

2.5V. The cells were cycled until they reached less than 2.5V or a temperature of greater than 70◦C

during a typical discharge cycle. The dataset was carefully curated to represent a diverse set of

use-cases to test the generalizability of the developed model.

For performance modeling, we use a physics inspired model23 that obeys conservation laws

and take a data-driven approach to estimate the parameters. Parameter estimation for the model

is performed against the experimentally generated eVTOL battery performance dataset. Battery
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performance dataset typically contains time-series data of voltage, current, and temperature. Pa-

rameter estimation for electrochemical battery models is a notable challenge24. We use simulated

annealing25 to estimate the model parameters required for predicting the voltage of the cell over a

given duty cycle. Parameters used in this model cannot be directly obtained from physical mea-

surements. However, they are physically motivated and correspond to processes which include

electrochemical reactions, reaction kinetics, and transport. The performance model is a system of

ordinary differential equations which obeys physical constraints, including conservation of charge,

conservation of energy, the second law of thermodynamics for open-circuit voltage, and kinetic

rate-laws of electrochemical reactions, as further described in the methods section. This combi-

nation strikes a compromise between accuracy, computational speed, and interpretability of the

model.

The operation of on-board electric propulsion system requires fast and accurate prediction of

battery performance in terms the cell terminal voltage and the cell temperature over the mission.

The cell voltage and temperature prediction from CellFit for a wide range of experimentally tested

mission profiles is shown in Figure 2. Two missions are shown in Figure 2, at two different points

in the cycle life. The first is VAH01, the baseline mission. The second is VAH06, which has

a relatively low charging current. For VAH01, we show the discharge curve at the first and the

800th cycle, and for VAH06 we show the discharge curve at the first and the 701st cycle. Overall,

the model is extremely accurate. Particularly important for the application of eVTOL design, the

model accurately predicts the highest temperature of the cell. Much of the thermal error results

when the cell is cooling during the first rest period. This error can be attributed to the varying
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cooling conditions (convective cooling coefficient) experienced by the cell during the experiments.

In all cases, the model predicts a slightly lower voltage during discharge and a slightly higher

voltage during charge than the experimental results. This may be indicative of the model having a

slightly higher resistance in an error to accurately capture the highest temperature.

The discharge curves shown in Figure 2a and b are important to model throughout the life of

the aircraft to inform design decisions based on battery performance characteristics. Figure 2c also

shows the loss function which defines the accuracy of performance model for each cycle over the

lifetime of the battery. We used a tuned loss function to emphasize the importance of the prediction

of the quantities of interest (the details of which can be found in the methods section). Figure 2

also shows the value of the loss function over cycle life for all of the cycles. The loss does not

substantially increase with time, and for most cycles, it stays relatively low. For reference, the loss

functions for the baseline mission and for the VAH06 mission shown in Figure 2a and b are around

0.2 and 0.15 respectively. Therefore, the error in predicting quantities of interest are consistently

low throughout the lifecycle of the battery. Additionally, each discharge profile takes less than 1

millisecond to generate. Therefore due to its accuracy over the battery’s lifetime and the overall

model speed, this framework and model is ideal for design of eVTOL’s.

Each cycle of a mission, as represented by each point shown in Figure 2c, is defined by a

unique set of parameter values to predict the voltage and temperature over the cycle. We refer to

this set of parameter values as performance parameters. A subset of the performance parameters

is chosen to capture the evolution of the performance model as the battery ages26, we refer to this
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Figure 2: CellFit voltage and temperature predictions and its accuracy Voltage and temper-

ature predictions generated at a sub-millisecond run time of CellFit(a) for the Baseline mission

(VAH01) at cycle 1 and 800, (b) for the VAH06 mission (which has a lower charge rate than the

baseline condition) at cycle 1 and 701. Importantly for safety and thermal management purposes

in the aircraft design process, the temperature prediction is nearly always accurate for the highest

temperature experienced during any given cycle. (c) Numerical value of the dimensionless loss

function for temperature and voltage predictions. While some missions are better than others, and

some issues exist at the battery’s end of life most remain relatively low and flat throughout the

lifecycle of the battery.
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subset as the aging parameters. Additionally, to capture the evolution of the aging parameters over

the lifetime of the battery, we implement a model to evolve the aging parameters, and we refer to

the parameters of that model as the degradation parameters.

The smallest set of aging parameters must be first be identified to model degradation in

this framework. This, in a process akin to hyperparameter optimization, is accomplished by first

picking a set of initial parameters (typically based on physical intuition), then calculating the loss

function for each cycle in the dataset, as shown in Figure 2c. To calculate the loss, the aging

parameters must be estimated, and the parameter estimation routine for these parameters is slightly

different than for the other parameters, as detailed in methods. The loss function for each cycle

over the life of the battery should be low and flat, indicating that the model, with estimated aging

parameters and constant non-aging performance parameters, is capable of successfully predicting

battery aging. An objective function, e.g. deviation from initial loss, could be used to evaluate

whether the parameter set is sufficient to capture the variations. Once the smallest set of parameters

which meets the above loss criteria has been identified, a degradation model must be chosen and

fit for the evolution of those parameters.

There are several advantages to the degradation modeling approach followed here. Firstly,

the parameter estimation process for each cycle over the lifetime of the battery (the aging param-

eters) can be conducted independently, therefore, can be conducted in parallel, utilizing modern

high performance computing architectures such as multi-core architectures and graphics process-

ing units. Estimating the parameters in parallel theoretically allows us to estimate the parameters
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for each cycle over entire lifetime of a battery in the time required for a single cycle. Secondly,

this approach results in accurate prediction of discharge characteristics throughout the battery’s

lifetime, which is vital for design, analysis, and safe operation of electric aircraft.

This degradation framework allows for use of both physics-based and machine-learning

based degradation models. We developed two degradation models: (i) A physics-based mecha-

nistic degradation model (MDM), which includes contributions from three different degradation

mechanisms: SEI growth, lithium plating, and active material loss.15, 27, 28 (ii) A novel approach,

called the universal battery degradation model (UBDM), which is based on neural differential

equations and universal ordinary differential equations29, 30. In the UBDM approach, we use a neu-

ral network to supplement the mechanistic model to capture complex effects of charge and active

material loss as well as change in resistance. Any mechanistic model can be substituted for our

mechanistic model in the UBDM, to account for changes in chemistry, operating conditions, cell

models, etc.

The dataset is split into a training set and a testing set to train both degradation models (see

Methods for details). The datasets are selected to reflect the broad nature of the generated dataset,

attempting to keep experiments/ missions of each kind in both the testing set and the training

set. MDM and UBDM are then trained alongside each other. Figure 3c shows the total error

experienced by training and test. For nearly all sets, the UBDM model performs better than the

MDM model. For the training set, the UBDM experiences a total accuracy increase of around

15%. For the testing set, the UBDM experiences a total accuracy increase of around 19%. This
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Figure 3: Comparison of UBDM and Mechanistic Degradation Model (a) Resistance and

Charge for the MDM and the UBDM for two missions in the training set. The UBDM has learned

when resistance should follow a sublinear growth pattern and when it should follow a superlinear

growth pattern depending on the data. (b) Resistance and Charge for the MDM and the UBDM

for two missions in the testing set. The UBDM outperforms the MDM in all cases, showing its

generalization ability. (c) Errors for the MDM and the UBDM for the training set and the testing

set. In nearly all training cases and in all testing cases, the UBDM outperforms the MDM.
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represents a substantial improvement for an already relatively accurate model. The MDM shows

a linear increase in resistance over the life of the cell. The UBDM corrects this model by slowing

growth in some cases, and speeding growth in some cases, as shown in Figure 3a and Figure 3b for

the testing set. These differences show that the model is not overfitting to anomalies in the dataset,

but rather is learning the underlying patterns of degradation.

The ability to augment physics-constrained features with neural networks is causing a revo-

lution in multi-scale modeling in various fields.18, 19 We believe that the ideas behind the universal

battery modeling approach presented here will have a similar impact in modeling across length and

time scales, capturing microscopic and macroscopic phenomena at unprecedented detail.

Conclusions

In this work, we have generated a battery performance and thermal response dataset specific to

the urban air mobility use-case. We expect this dataset to rapidly accelerate the nascent field

of batteries for electric aircraft. In order to learn this dataset, we develop a ‘universal’ battery

modeling approach, which combines exact physical laws along with neural networks that can learn

the residual (missing) physics. Using this modeling approach, we show incredible accuracy and

computational efficiency for voltage, temperature and degradation for the dataset. The universal

modeling framework developed here has the potential to disrupt battery modeling akin to similar

disruptions occurring in quantum mechanics of materials, fluid mechanics by physics-constrained

neural networks.
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Phase Duration Power C-rate Discharge Energy

Take-off 75s 54W 5C 1.12Wh

Cruise 800s 16W 1.48C 3.55Wh

Landing 105s 54W 5C 1.57Wh

Table 1: Baseline Mission Parameters (Discharge)

Methods

Cell Testing and Data Generation: This work utilized Sony-Murata 18650 VTC-6 cells (INR

technology). This cell has a rated capacity of 3000mAh at a nominal voltage of 3.6V. The manu-

facturer specified maximum continuous discharge rate is 10C with a 80◦C upper temperature cut

off. This cell is appropriate for evaluation in eVTOL applications as it can sustain high power

demand while providing a cell specific energy of 230 Wh/kg.

All cells were tested in a Arbin 200A cylindrical cell holder paired with a BioLogic BCS-

815 modular battery cycler. As shown in Supplementary Figure 1, cell testing was performed in

enclosures that were placed in a temperature chamber that was maintained at 25◦C. Cell can surface

temperatures were measured via a thermocouple fixed to the cell body with aluminum tape.

Generation of the eVTOL data set was developed from the baseline power profile for a no-

tional eVTOL flight given in table 1.

Battery cell state-of-health was measured for the baseline mission profile and a series of
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Phase Definition End Criteria

Rest 1 0 Amps T < 27◦C

CC Charge 1C V > 4.2

CV Charge V=4.2 I < C/30

Rest 2 I=0 T < 35◦C

Table 2: Baseline Mission Parameters (Charge)

variations on the baseline mission. For each mission profile, cells were cycled until cell voltage

reached 2.5V or cell temperature reached 70C during discharge. To measure cell energy capacity

a specific reference test was performed at the start of each aging test campaign and following each

subsequent set of 50 mission cycles. Capacity was measured by discharging the cell from 100% to

0% state-of-charge at a discharge rate of C/5. These reference tests also included internal resistance

measurement at 20 percent and 60 percent depth of discharge. After all discharge cycles a rest time

was observed to allow the cell to cool to 30◦C. Once 30◦C cell temperature was reached a CC-CV

charge profile was started with constant current charge at 1C, followed by constant voltage charge

until charge current decayed to C/30 to a (nominally) 4.2V end of charge voltage.

To evaluate the impact of several test parameters on cell aging, a single variable in the base-

line mission profile was modified according to the test descriptions given in Table 3 and Table 4.

Every 50 cycles, the cells underwent a capacity test, wherein they were discharged at 0.6

amps until their voltage dropped below 2.5V. The tests were repeated until the cells dropped below
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2.5V or the temperature rose above 70◦C during a mission cycle.

Cell Model: The cell model is based on an adaptation of the model presented by Daigle and

Kulkarni31. It is a fully-coupled electrochemical-thermal model which, while being inspired by

more accurate battery models such as the Newman model, represents a significant simplification

of those models. It reduces the system of partial differential equations typically used to model

electrochemical reactions to a system of ordinary differential equations to perform fast integration.

It models only the cathode and anode of the system, neglecting all electrolyte dynamics. It has two

principal components: Modeling charge (q) movement and potential (V). The model comprises 4

domains: bulk and surface regions of both the cathode and the anode. Charge flow is governed

by applied current between the surfaces of each electrode and by diffusion between the surface

and bulk of each electrode. Voltage is calculated using a buildup consisting of 5 terms: cath-

ode and anode equilibrium potentials, cathodic and anodic surface overpotentials (modeled by the

butler volmer equations), and an ohmic overpotential. All overpotentials are also passed through

first-order filters to prevent sudden voltage changes. Cell resistance is modeled by a lumped resis-

tance parameter. The anode and cathode equilibrium potentials are modeled by the Redlich-Kister

polynomials.32

The thermal model is based on a lumped parameter model with heat generation terms for

ohmic heating and entropic heating. Cooling is convective cooling, owing to the test setup as

described above.

The equations for the charge transport portion of the model are given in equations (1), where
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Training Data

Mission Profile Description

VAH01 Baseline mission

VAH02 Cruise time, tc = 1000s

VAH05 Power reduction of 10 percent for takeoff, cruise, and landing

VAH06 CC-CV charge cycle at C/2 CC – C/30 CV

VAH09 Thermal chamber temperature of 20◦C

VAH10 Thermal chamber temperature of 30◦C

VAH11 Power reduction of 20% for takeoff, cruise, and landing

VAH12 Cruise time, tc = 400s

VAH13 Cruise time, tc = 600s

VAH15 Cruise time, tc = 1000s

VAH16 CC-CV charge cycle at 1.5C CC – C/30 CV

VAH17 Baseline mission

Table 3: Descriptions of the Training dataset
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Testing and Validation Data

Mission Profile Description

VAH07 End of charge voltage at 4.0V

VAH20 CC-CV charge cycle at 1.5C CC – C/30 CV

VAH22 Cruise time of 1000s

VAH23 End of charge voltage at 4.1V

VAH24 CC-CV charge cycle at C/2 CC – C/30 CV

VAH25 Thermal chamber temperature of 20C

VAH26 Cruise time of 600s

VAH27 Baseline

VAH28 Power reduction of 10 percent for takeoff, cruise, and landing

VAH30 Thermal chamber temperature of 35◦C

Table 4: Descriptions of the Testing and Validation dataset
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q represents the amount of charge in a domain, v represents the capacity of that domain, and D

represents the diffusion coefficient. The subscripts s and b indicate surface and bulk respectively,

and the subscripts p and n indicate positive and negative respectively.

dqsp

dt
=

1

D
(
qbp

vbp

− qsp

vsp

) + Iapp (1a)

dqbp

dt
= − 1

D
(
qbp

vbp

− qsp

vsp

) (1b)

dqsn

dt
=

1

D
(
qbn

vbn

− qsn

vsn

)− Iapp (1c)

dqbn

dt
= − 1

D
(
qbn

vbn

− qsn

vsn

) (1d)

This system of equations conserves charge. Charge can only flow between the electrodes and

between the surface and bulk and between each other. The equations for the equilibrium potentials

are given in equation (2), where VUn,p is the reference potential, R is the ideal gas constant, n is the

number of transferred electrons, F is Faraday’s constant, xn,p is the positive and negative filling

fraction (respectively), and An,p are the fitting coefficients.

VUn,p = VU0n,p +
RT

nF
log
(1− xn,p

xn,p

)
+

1

nF

Nn,p∑
i=1

An,p(2xn,p − 1)i − 2xn,p(i− 1)(1− xn,p)

(2xn,p − 1)1−i
(2)

Importantly, while the fitting coefficients are estimated using simulated annealing, they are

constrained to obey the second law of thermodynamics. This constraint helps to prevent overfit-

ting and increases the interpretability of the model. It is enforced within the simulated annealing

routine, by not allowing the routine to output an OCV curve which is not monotonic.
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The equations for the surface and ohmic overpotentials are given in equations (3) and (4),

respectively, where Jp,n is the current density, Jp0,n0 is the exchange current density, V is the

overpotential, and τ is the time constant for each overpotential:

dVη p,n

dt
=

RT
Fα

asinh( Jp,n
2Jp0,n0

)− Vηp,n

τη p,n

(3)

dVohm

dt
=

IR− Vohm

τohm
(4)

The equation for the thermal model is given in equation (5), where I is the current, R is

the resistance, ∂U
∂T

is the entropic coefficient, h is the conductive coefficient, A is the surface area

(because the surface area of all cells is the same, we model hA as a lumped parameter), m is the

cell mass, and cp is the specific heat.

dT

dt
=

I2R +
I ∂U
∂T

nF
− hA(T− Tamb)

mcp
(5)

The thermal model is slightly specific to this dataset; any cooling model can be used in lieu

of newtonian convection to best approximate cooling for any situation.

Parameter Estimation and Identification Different parameters were estimated using different

techniques. Performance parameters, including all Redlich-Kister coefficients, the diffusion coef-

ficients, the reference potentials, all thermal parameters, and time constants were estimated using

simulated annealing. A stochastic optimization technique was chosen to avoid the parameter iden-
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tifiability issues described previously. The simulated annealing algorithm begins by evaluating the

loss function at an initial point θ. Then, using gibbs sampling, a random parameter is chosen to

iterate, and a new parameter vector θcandidate is created by adding a step λN (0, 1) where λ depends

on the magnitude of the selected parameter, and the loss function is then evaluated at θcandidate. If

the new loss function is lower than the previous loss function, then θ is replaced by θcandidate. If

the new loss function is higher than the previous loss function, then θ is replaced by θcandidate with

a probability calculated by the Boltzmann distribution:

Pacceptance = e
L(θcandidate)−L(θ))

T (6)

Over the course of the optimization, the temperature T is lowered to reduce the likelihood

of moving to a less optimal parameter vector. This enables the algorithm to exploit and explore

the parameter space. Exploration occurs when the temperature is relatively high, because the

algorithm will allow movement to a higher loss value. This allows the algorithm to escape some

local minima. Exploitation occurs when the temperature is relatively low, forcing the algorithm

to move towards the local minima. All degradation parameters, including both mechanistic and

UBDM methods, were estimated using simulated annealing.

We identified the aging parameters (charge and resistance) using a grid-based method. We

chose this method for two reasons. Firstly, because there were only two parameters, and because

of the aforementioned speed of the calculation of the loss function for this problem, a grid based

method was tractable. Secondly, there was relatively little tolerance for optimization noise in these
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parameters, and the grid based method produced much less noise than a stochastic method such as

simulated annealing. In the grid based method, upper and lower limits for charge and resistance

were first identified based on physical constants. The lower resistance limit was defined as 0.01

ohms, and the upper resistance limit was defined as 0.05 ohms. The upper charge limit was defined

as 26000 coulombs, and the lower charge limit was set to around 15000 coulombs. Using these

limits, a 10 by 10 grid was created and the loss function was evaluated at each point on the grid.

At the best points (those with the lowest loss function) the grid was further subdivided and the loss

function was re-evaluated for a specified number of subdivisions and number of subgrid points.

As briefly mentioned in the article, we used a custom loss function to identify the parameters.

That function given in equation (7), where a tilde over the variable indicates that it is the average

experimental of the data, and a t subscript indicates that it is taken at timestep t, W indicates the

weight given to each part, and the subscript of the W ’s indicates the part of the loss function to

which that weight is applied. In this work, the weight was 10 for the voltage error and 1 for the

other error terms.

L =
∑
t

(WV
|Vt − Ṽt|

V̄
+ WT

(Tt − T̃t)
2

T̄
) + WMT

|max(Tt)−max(T̃t|)
T̄

(7)

Degradation Modeling To model battery degradation, we follow a multistep process with

three steps: first, find the parameters which change with aging. Then, fit those parameters to

each (SOC) cycle for any given battery life-cycle, and identify whether or not the loss function is

increasing as the battery ages 26. If the loss function is not increasing with time, then the parameters
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identified are the correct set of aging parameters. If the loss function is increasing with time, then

the selection of the aging parameters needs to be revisited. As mentioned previously, because of

the requirement for relatively low amounts of noise and the relatively low computational cost of

estimating these parameters, the aging parameters were estimated using a grid-based method33.

Using this methodology, the precise degradation model can be chosen to fit the generated

data once the parameters for each cycle have been estimated. For this work, we employed two

separate degradation models. The first we refer to as the mechanistic model. It is based on physical

principles and consists of charge loss due to SEI formation, Equation (8a), active material isolation,

Equation (8c), and lithium plating, Equation (8b)27, 28. Additionally, we add a resistance increase

term, Eq. (8d)26.

dQsei

dt
=

KSEIe
−ESEI

RT

2(1 + λθ)
√

t
(8a)

jpl = i0ple
− 0.5F

RT
(VUn−Vηn) (8b)

dQam

dt
= KAMe−

EAM
RT SOCIapp (8c)

dR

dt
= wd|Iapp| (8d)

We additionally have proposed a new degradation model. This model uses Universal Ordi-

nary differential Equations (U-ODE) to estimate charge loss and resistance change. Neural Ordi-

nary differential equations (NODE) are a model where the derivative of a function is approximated

using a neural network29. U-ODE’s are an extention of NODE’s where only part of the time deriva-

tive is approximated using a neural network30. In this case, we have supplemented our mechanistic

degradation model with a U-ODE to improve accuracy and generalization of predictions. The U-
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ODE neural network is a function of all of the other state variables of the system. Therefore, the

degradation model is as such:

dQnonmechanistic

dt
= NN(u, θ) (9a)

dRnonmechanisitic

dt
= NN(u, θ) (9b)

where u is defined as

u = [qsp, qbp, qsn, qbn,V0,Vηn,Vηp,T,R, qmax]
T (10)

and θ are the parameters of the neural network. We combine the mechanistic and non-mechanistic

parts of the model to arrive at our final degradation model, the UBDM, which is written as:

dQ

dt
=

dQSEI

dt
+

dQAM

dt
+ jpl +

dQnonmechanistic

dt
(11)

dR

dt
=

dRmechanistic

dt
+

dRnonmechanistic

dt
(12)

The loss of charge in the degradation model always occurs at the anode surface.
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