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Abstract

While free energies are fundamental thermodynamic quantities to characterize

chemical reactions, their calculation based on ab initio theory is usually limited by

the high computational cost. This is particularly true if multiple levels of theory have

to be tested to establish their relative accuracy, if highly expensive quantum mechan-

ical approximations are of interest, and also if several different temperatures have to

be considered. We present an ab initio approach that effectively couples perturbation

theory and machine learning to make ab initio free energy calculations more affordable.

Starting from results based on a certain production ab initio theory, perturbation the-

ory is applied to obtain free energies. The large number of single point calculations
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required by a brute force application of this approach are here significantly decreased

by applying machine learning techniques. Importantly, the training of the machine

learning model requires only a small amount of data and does not need to be per-

formed again when the temperature is decreased. The accuracy and efficiency of this

method is demonstrated by computing the free energy of activation of the proton ex-

change reaction in the zeolite chabazite. Starting from an ab initio calculation based

on a semilocal approximation of density functional theory, free energies based on sig-

nificantly more expensive non-local van der Waals and hybrid functionals are obtained

with only a few tens of additional single point calculations. In this way this work

paves the route to quick free energy calculations using different levels of theory or

approximations that would be too computationally expensive to be directly employed

in molecular dynamics or Monte Carlo simulations.

1 Introduction

Free energy is certainly one of the most important thermodynamic quantities used to charac-

terize chemical reactions. The knowledge of the free energy of activation (∆A‡), for instance,

allows for a determination of the rate constant via Eyring-Polanyi equation1

kR→P =
kB T

h
exp

(
−∆A‡

kB T

)
, (1)

providing thus an access to reaction kinetics. Similarly, by employing the expression

KR→P = exp

(
−∆AR→P

kB T

)
, (2)

the free energy of reaction (∆AR→P ) defined as a free energy difference between the product

(P) and the reactant (R) states can be used to determine the equilibrium constant (KR→P )

expressing the relative proportion of P and R at equilibrium.

The accurate calculation of free energy for chemical transformations is complicated by
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the necessity to sample the configuration space between reactant and product, whereby

some relevant configurations, especially those close to the transition region, receive Boltz-

mann weights that are often many orders of magnitude lower than those for configurations

of stable states. This fact precludes a direct use of standard molecular dynamics (MD) or

Monte Carlo (MC) approaches and therefore specialized simulation techniques, such as um-

brella sampling,2 blue moon ensemble technique,3 or metadynamics,4 have to be employed

instead. As the use of all these techniques is in itself very time consuming, the systematic

comparison of different electronic structure methods to find the best description of a chem-

ical reaction is rarely attempted. Similarly, the use of highly accurate but computationally

demanding quantum chemical approximations (e.g. coupled-cluster theory5) in free energy

calculations is limited by the significant computational requirements. Indeed, an effective

design of methods for effective and accurate ab initio free energy calculations is a highly

important task that was addressed also in several previous reports where the schemes were

proposed to compare stability of various conformers or stable phases of materials at different

levels of theory,6,7 determine chemical potentials of various species,8 free energies of solva-

tion,9 or free energy profiles for chemical reactions.10–14 The machine learning (ML) based

algorithms turn out to be a very useful in this respect as they allow for inexpensive calcula-

tions of energies of configurations,6,10,13 acceleration of the configuration space sampling,7,8,12

or improving the quality of results at the post-processing stage.11 In this work we focus on

calculations of free energy of activation. To this end, we propose an efficient simulation

protocol combining concepts from free energy perturbation theory15 (FEPT) and our re-

cently introduced machine learning thermodynamic perturbation theory (MLPT) method16

that allows to recompute the free energy difference determined at a certain level of theory

(designated hereafter as a production method) at another level of theory (target method).

Most importantly, we show that such a calculation can be accomplished by performing only

a few tens of extra single point energy calculations at the target method level of theory

(possibly including computationally expensive methods for which energy gradients may not
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even be available). This is achieved by using a small set of explicit calculations to train a ML

algorithm whose predictions provide the data required to reach full convergence. We note

that a similar idea has been employed in previous work of Shen10 but our method differs in

several important details that we discuss in Sec. 5. The use of our method is exemplified on

the calculation of the free energy of activation for the proton exchange reaction between two

oxygen sites in zeolite chabazite (see Fig. 1), which has been investigated in several previous

theoretical studies.17,18 Specifically, starting from a production run based on a numerically

efficient semi-local approximation19 of density functional theory (DFT), the free energy of

activation of this reaction is computed using the non-local van der Waals (vdW) functional

optPBE-vdW20–23 and the hybrid functional HSE06.24–26 The latter two methods are con-

sidered to be superior to the former because of different reasons: optPBE-vdW accounts for

long range London dispersion interactions, which are not described correctly by the semi-

local DFT, while the inclusion of the Hartree-Fock exchange in HSE06 should reduce the

well known problem with underestimation of barriers for proton transfer reactions by the

generalized gradient approximation to DFT.27

Additional numerical properties of this new approach are also analyzed in detail. It

is shown that a ML algorithm trained on data from simulations at a certain temperature

preserves a high level of accuracy also for lower temperatures. This allows for free energy

computations in a wide interval of temperatures without additional expensive target method

calculations. It is also demonstrated that our method provides accurate predictions beyond

the expected range of applicability: by considering only training energies from reactant and

transition state configurations the ML algorithm predicts accurate potential energies (and

free energies) also for intermediate points along the reaction path. Finally, by exploiting

the high predictive power of our ML model coupled with Monte Carlo sampling, we devise a

numerical procedure to correct for the inaccuracies that can occur in FEPT when the overlap

between production and target method phase spaces is less effective.

The layout of the paper is organized as follows. In the following section, Sec. 2, we
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discuss the methodology to couple FEPT and machine learning to obtain quickly and effi-

ciently free energy estimates at multiple levels of theory. In Sec. 3 we introduce the system

used to test our new approach (the proton exchange reaction between two oxygen sites in

zeolite chabazite) and describe the settings used in numerical simulations. In Sec. 4 we

discuss in detail the numerical properties of our method, including performance beyond the

expected range of applicability, limitations, and possible improvements. Sec. 5 contains our

conclusions.

2 Methodology

In this section we summarize the main theoretical and computational concepts that are at

the base of the methodology presented in this paper. Specifically, in Sec. 2.1 we introduce the

Helmholtz free energy of activation and show how this quantity can be computed by using

the bluemoon sampling method. Starting from MD simulations based on the production

method, the value of the activation free energy at the target level of theory can then be

obtained by applying free energy perturbation theory (Sec. 2.2). A brute force application

of FEPT still requires a significant number of single point calculations using the target

approximation. This number can be significantly reduced by training a machine learning

algorithm on a small set of explicit calculations and using it to predict all the remaining

required values (Sec. 2.3). The canonical (NVT) ensemble is used throughout this study

although the generalization of our method for the use with other ensembles is also possible.

2.1 Free energy of activation

The Helmholtz free energy of activation can be expressed using the formula:3,28

∆A‡
R→P = ∆Aξref,R →ξ∗ − kB T ln

{
h

kB T

⟨|ξ̇∗|⟩
2

P (ξref,R)

}
, (3)
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where ξ = ξ(q) is the reaction coordinate or its approximation which, in general, depends

on all atomic positions q, ξref,R is the value of ξ for an arbitrary reference point among

the reactant configurations, ξ̇∗ is the velocity associated with the reaction coordinate for

configurations at the transition state (ξ∗), the angular bracket ⟨· · · ⟩ represents an ensemble

average over all reactant configurations, P (ξref,R) = ⟨δ(ξref,R−ξ)⟩ is the probability density of

ξref,R within the ensemble of reactant configurations, and ∆Aξref,R →ξ∗ = −kBT ln
{

P (ξ∗)
P (ξref,R)

}
is the reversible work needed to shift the reaction coordinate from the value ξref,R to ξ∗. We

note that Eq. 3 emerges from the combination of the transition state (TS) theory expression

for the rate constant3,29 with the Eyring-Polanyi equation (Eq. 1).

The individual terms of Eq. 3 can be computed by means of molecular dynamics (MD)

as follows. The probability density P (ξref,R) can be approximated by a histogram obtained

using the data from a straightforward MD of the reactant state. The term ∆Aξref,R →ξ∗

can be computed by any simulation method designed to determine free energies of rare

events, such as metadynamics,4 umbrella sampling,2 or the bluemoon ensemble method.3

In the present study, we choose the latter method, which seems to be best suited for the

purposes of our work (see Sec. 2.2). In this method, free energy differences are determined

by integrating free energy gradients along the reaction path connecting the states ξref,R and

ξ∗:

∆Aξref,R →ξ∗ =

∫ ξ∗

ξref,R

(
∂A

∂ξ

)
ξ′
dξ′, (4)

whereby the free energy gradients are obtained using constrained MD simulations via the

following formula:30

(
∂A

∂ξ

)
ξ′
=

1

⟨Z−1/2⟩ξ′
⟨Z−1/2[−λ+

kB T

Z2

N∑
i=1

N∑
j=1

1

mimj

∑
µ=x,y,z

∑
ν=x,y,z

∂ξ

∂qµ,i

∂2ξ

∂qµ,i∂qν,j

∂ξ

∂qν,j
]⟩ξ′ ,

(5)

where ⟨· · ·⟩ξ′ indicates the constrained ensemble average with ξ(q) = ξ′, mi and qµ,i are the

mass and the µ component of a Cartesian position vector of an atom i, respectively, λ is a

Lagrange multiplier associated with the parameter ξ used in the SHAKE algorithm,31 and
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Z is the inverse of the mass metric tensor defined as follows:

Z =
∑N

i=1

1

mi

∑
µ=x,y,z

(
∂ξ

∂qµ,i

)2

. (6)

The integration of Eq. 4 is performed using the free energy gradients computed for a certain

number of points distributed between the states ξref,R and ξ∗.

Finally, the generalized velocity term ⟨|ξ̇∗|⟩ can be determined using the following equa-

tion:3

⟨|ξ̇∗|⟩ =
√

2kB T

π

1

⟨Z−1/2⟩ξ∗
, (7)

whereby the term ⟨Z−1/2⟩ξ∗ is readily available from the constrained MD performed for the

state ξ∗ within the ∆Aξref,R →ξ∗ calculation.

2.2 Computing ∆A‡ using free energy perturbation theory

Let us now assume that the free energy of activation ∆A‡ has already been determined as

described in Sec. 2.1 using the production method with Hamiltonian H(q,p) defined by the

potential energy V (q) and the kinetic energy T(p). The same quantity determined at the

target method level with Hamiltonian H̃(q,p) can be formally expressed as

∆Ã‡ = ∆Ãξref,R →ξ∗ − kB T ln

(
h

kB T

⟨| ˙̃ξ∗|⟩
2

P̃ (ξref,R)

)
, (8)

where a tilde is used to distinguish the quantity computed using the target method from

that obtained using the production method. In the following we will suppose that produc-

tion and target Hamiltonians differ only in position dependent potential energy term, namely

H̃(q,p)−H(q,p) = Ṽ (q)−V (q) = ∆V (q). The perturbation ∆V (q) can be introduced not

only by changing the physical model that describes the interactions between the particles in

the system of interest but also by changing their identity32 (i.e. via ”alchemical transforma-

tion”). We show in this section that the target free energy ∆Ã‡ can be obtained from the
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production free energy ∆A‡ in Eq. 3 using FEPT via the following formula:

∆Ã‡ = ∆A‡ − kB T ln

{
⟨exp [−∆V (q)/kB T ]⟩ξ∗
⟨exp [−∆V (q)/kB T ]⟩

}
. (9)

The expressions −kB T ln {⟨exp [−∆V (q)/kB T ]⟩ξ∗} and −kB T ln {⟨exp [−∆V (q)/kB T ]⟩} can

be interpreted as corrections to the free energy of TS and R, respectively, and hence we use

a shorthand notation ∆ATS and ∆AR for these two terms throughout this work.

In order to prove Eq. 9, we first express ∆Ã‡ as ∆Ã‡ = ∆A‡ + (∆Ã‡ −∆A‡). The term

in parenthesis is then obtained by subtracting Eq. 3 from Eq. 8 while making use of the

relation ∆Aξref,R →ξ∗ = −kB T ln P (ξ∗)
P (ξref,R)

(and analogously for ∆Ãξref,R →ξ∗):

∆Ã‡ −∆A‡ = −kB T ln
P̃ (ξ∗)

P̃ (ξref,R)
+ kB T ln

P (ξ∗)

P (ξref,R)
− kB T ln

P̃ (ξref,R)

P (ξref,R)
− kB T ln

⟨| ˙̃ξ∗|⟩
⟨|ξ̇∗|⟩

= −kB T ln

{
P̃ (ξ∗)

P (ξ∗)
× ⟨| ˙̃ξ∗|⟩

⟨|ξ̇∗|⟩

}
. (10)

The ratio between probability densities writes:

P̃ (ξ∗)

P (ξ∗)
=

∫
dp dq δ(ξ(q)− ξ∗)exp [−∆V (q)/kB T ] exp [−H(p, q)/kB T ]∫

q∈R dp dq exp [−∆V (q)/kB T ] exp [−H(p, q)/kB T ]

×

(∫
dp dq δ(ξ(q)− ξ∗)exp [−H(p, q)/kB T ]∫

q∈R dp dq exp [−H(p, q)/kB T ]

)−1

, (11)

where q ∈ R indicates that the integration is taken over all reactant configurations. Upon a

trivial rearrangement, Eq. 11 yields

P̃ (ξ∗)

P (ξ∗)
=

⟨δ(ξ(q)− ξ∗)exp [−∆V (q)/kB T ]⟩
⟨δ(ξ(q)− ξ∗)⟩⟨exp [−∆V (q)/kB T ]⟩

. (12)

Since we compute the ensemble average ⟨δ(ξ(q)−ξ∗)exp[−∆V (q)/kB T ]⟩
⟨δ(ξ(q)−ξ∗)⟩

using the constrained molecular dynamics, the following relation3 must be used to correct
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for a bias introduced by fixing the momentum associated with ξ:

P̃ (ξ∗)

P (ξ∗)
=

⟨Z−1/2exp [−∆V (q)/kB T ]⟩ξ∗
⟨Z−1/2⟩ξ∗

1

⟨exp [−∆V (q)/kB T ]⟩
. (13)

Similarly, the velocity term ⟨|ξ̇∗|⟩ computed in a constrained MD with ξ(q) = ξ∗ is expressed

within the FEPT formalism as follows:

⟨| ˙̃ξ∗|⟩ =
√

2kB T

π

⟨exp [−∆V (q)/kB T ]⟩ξ∗
⟨Z−1/2exp [−∆V (q)/kB T ]⟩ξ∗

. (14)

Combining Eq. 14 with Eq. 7, we find the following expression:

⟨| ˙̃ξ∗|⟩
⟨|ξ̇∗|⟩

=
⟨Z−1/2⟩ξ∗⟨exp [−∆V (q)/kB T ]⟩ξ∗
⟨Z−1/2exp [−∆V (q)/kB T ]⟩ξ∗

. (15)

Finally, Eq. 9 is obtained by plugging Eq. 13 and 15 into Eq. 10.

In general, a direct application of FEPT represents a computationally demanding task as

a large number of target method calculations of Ṽ (q) may be needed in order to obtain well

converged reweighted averages in Eq. 9. In this work we propose an efficient solution to this

problem based on the MLPT approach introduced in our previous work.16 The main idea is

that most of the time-consuming target method calculations can be avoided by training a ∆-

machine learning33 based model that reliably represents the function ∆V (q). As the number

of configurations needed to obtain a good quality ∆V (q) can be, in favorable cases, as small

as ten or few tens,16 the use of the MLPT approach in combination with Eq. 9 represents

a highly effective method for computing the free energy barriers (or, more generally, free

energy differences) using multiple electronic structure methods.
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2.3 Machine learning algorithm

As in our original MLPT method described in Ref. 16, the kernel ridge regression (KRR)34

machine learning algorithm is used here along with the REMatch kernel35 defined as

Kγ(A,B) = TrPγC(A,B), (16)

where P is a doubly stochastic matrix that satisfies the condition

Pγ = argmin
P

∑
i,j

Pij(1− Cij + γlnPij), (17)

and γ is a hyperparameter that controls the entropic contribution. The elements of the

covariance matrix C(A,B) are defined as

Cij(A,B) = k(XA
i ,XB

j ), (18)

where the “local” kernel k provides a measure of the similarity between the XA
i and XB

j

environments belonging to structures A and B, respectively. An environment XA
i defined

for the structure A of a given material includes the atoms surrounding a specific atom i.

In this work, the smooth overlap of atomic positions (SOAP)35,36 is used to define Eq. 18.

Within this approach the density of the atoms (ρ) in the environment XA
i is defined as a

sum of Gaussians

ρXA
i
(r) =

∑
j∈XA

i

exp

{
−(r− qj)

2

2σ2

}
, (19)

with variance σ2 that are centered at the positions qj of all the atoms in the environment XA
i

with a certain cut-off radius (including the central one). Defining a different environment

for each species present in the system, the local SOAP kernel35,36 is then constructed as an
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overlap integral of the densities of pairs of environments

k̃(XA
i ,XB

j ) =

∫
dR̂

(∫
ρXA

i
(r)ρXB

j
(R̂r)dr

)2

. (20)

Note that the first integral is performed analytically over the three-dimensional rotations

yielding thus a rotationally invariant representation of the system. The normalized kernel

k(XA
i ,XB

j ) =
k̃(XA

i ,XB
j )√

k̃(XA
i ,XA

i )k̃(XB
j ,XB

j )
(21)

serves as a rotationaly and translationaly invariant measure of similarity whereby the max-

imum value (one) is attained when the two environments XA
i and XB

j are identical.

In practice, a certain number of configurations Ntrain is selected to build the REMatch

kernel Kγ
train used to train the ML model:

w = (Kγ
train + λ1)−1ytrain, (22)

where ytrain contains the terms ∆V (q) computed for the configurations in the training set

and λ is a regularization hyperparameter used to prevent overfitting. It is important to

notice that considering ∆V (q) rather than directly the target method energies is a crucial

point to obtain a ML learning algorithm that can be trained with small data sets and

whose predictive power extends beyond the expected range of applicability (see Sec. 4.4).

Indeed, assuming reasonable statistical correlation between production and target method

energies, their difference ∆V (q) presents a rather smooth behavior that allows for a much

more efficient learning process. This idea is based on the well established ∆−ML method.33

The weights w obtained from Eq. 22 are used to predict ∆V (q) for all the remaining

Npredict = Ntot −Ntrain configurations from the MD by applying the following formula:

ypredict = Kγ
predictw, (23)
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where ypredict contains the predicted potential energy differences and Kγ
predict is the Npredict×Ntrain

REMatch kernel.

3 Computational setting

As a test bench for our new methodology we consider the proton exchange reaction between

two oxygen sites in zeolite chabazite. Periodic density-functional calculations for this system

have been performed using the VASP code.37–40 The Kohn-Sham equations have been solved

variationally in a plane-wave basis set using the projector-augmented-wave (PAW) method

of Blöchl,41 as adapted by Kresse and Joubert.42 The calculations have been performed using

three different density functional approximation: (i) the PBE exchange-correlation approx-

imation proposed by Perdew et al.19 is a popular functional from the GGA (generalized

gradient approximation) family, (ii) optPBE-vdW20–23 is an example of a non-local density

functional designed to describe long range London dispersion forces, and (iii) HSE0624–26 is

a hybrid functional. These three methods were chosen because they predict distinctly dif-

ferent zero temperature activation energies for the reaction considered here: 0.65 eV (PBE),

0.75 eV (optPBE-vdW), and 0.79 eV (HSE06). Compared to the other two methods, PBE is

relatively inexpensive (10-30 times faster when a comparable simulation setting is used) and,

accordingly, this functional will be considered as the production method while optPBE-vdW

and HSE06 will be used as target methods. In all calculations, a plane wave cutoff of 400

eV was used and the integration in the first Brillouin zone was performed by including the

Γ point only. Default PAW potentials were used and projection operators were evaluated in

reciprocal space. The convergence criterion for the electronic self-consistency loop was set

to 10−6 eV/cell.

A primitive rhobohedral cell (space group R3m) with 37 atoms has been used to represent

the zeolite chabazite. The resulting lattice parameters used in calculations (a = 9.291 Å and

α = 93.9◦) are close to those reported in previous experimental work43 on highly silicious
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chabazite (a = 9.304 Å and α = 94.6◦). A model with one acid proton and one Al site per

a simulation cell has been considered whereby the acid proton was located in position O1,

designated according to the nomenclature of Jeanvoine et al.44

The integration of Eq. 4 has been performed using the Simpson’s method45 with a mesh

of 5 points evenly distributed between the states ξref,R and ξ∗. The blue moon ensemble

technique as implemented in VASP has been employed.46 The length of each constrained

MD run needed to determine free energy gradient for a given mesh point was 50 ps, whereby

the initial period of 20 ps was considered as equilibration and the corresponding data were

discarded. In order to avoid possible numerical problems due to the use of a relatively large

integration step of 1.0 fs, mass of tritium has been used for all H atoms. The simulation

temperature was controlled using the Andersen thermostat29 with a collision frequency of

0.05 fs−1. The geometric parameter

ξ = r1 − r2, (24)

with r1 and r2 being defined in Fig. 1, was used as an approximation to the reaction coor-

dinate of our model reaction. The length of unconstrained MD simulations of reactant was

100 ps, whereby the same simulation setting as in constrained runs was used.

The numerical implementation of the ML models considered in this work is based on the

DScribe libraries.47,48 Drawings of structures presented in this work have been created using

the program VESTA.49

4 Results and discussion

4.1 Production and reference calculations

Fig. 2 (left panel) shows the free energy profile (∆A(ξ)) computed using the PBE functional

(the production method) for temperature T=600 K. As a reference state, the point ξref,R =
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−1.546 Å has been chosen corresponding to a high probability density state (see Fig. 2 (right

panel)). We emphasize that the choice of the reference state ξref,R can not affect the value

of computed ∆A‡ (see Appendix A) and hence we are free to choose any arbitrary reactant

state for this purpose. The symmetry of the problem (see Fig. 1) largely determines the

geometry of the free energy transition state, fixing the value of ξ∗ at ∼0 Å, and the choice

of the electronic structure method turns out to have only a negligible effect on this value.

Hence instead of refining the value of ξ∗ for each method, we simply used the value of −0.026

Å found by the zero T relaxation of transition state at the PBE level. We show in Sec. SI in

Supporting Information that the error introduced by fixing ξ∗ is negligible. The free energy

of activation computed using the production method at 600 K is 0.66 eV.

In order to define an “exact” reference (Reference A) for our further analysis, we per-

formed full MD simulations also for the two target methods (i.e. optPBE-vdW and HSE06

in this work). While the aim of our methodology is to avoid MD simulations based on

expensive target methods, in this paper Reference A will help to establish the accuracy of

perturbation theory. As shown in Tab. 1, the free energies of activation increase by 0.09 eV

and 0.14 eV when the PBE method is replaced by optPBE-vdW and HSE06, respectively.

In order to distinguish the error introduced by ML from that of FEPT itself, we also in-

troduce another reference (Reference B) created by a brute force application (i.e. performing

explicit target method calculations instead of predicting the results with the ML model) of

the FEPT procedure to a large number of data points from the production run. To this end,

we defined a set (hereafter designated as a test set) consisting of every tenth configuration

from the production MD run. For each of the 5000 (TS) or 10000 (R) points of the test set,

a target method calculation was performed and the potential energy difference ∆V (q) was

computed. In order to apply Eq. 9, two independent test sets have been defined: one for

the transition (ξ = ξ∗) and another one for the unconstrained reactant state. In principle,

the difference in the results of Referece A and B reflects the systematic error introduced by

a possibly ineffective application of perturbation theory.32 In the case of the optPBE-vdW
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target method, the Reference A and B results agree within 0.003 eV showing that the simple

forward FEPT scheme used in this study is sufficient. A slightly more significant difference

(0.028 eV) is found for the HSE06 method suggesting that the overlap between configurations

generated by the production and target methods might be suboptimal (see Sec. SII in the

Supporting Information). As we discuss in Sec. 4.5, this problem can be reduced by using

more sophisticated sampling methods,50 which can greatly benefit from the ML acceleration.

For the needs of presentation in Sec. 4.3, production, Reference A, and Reference B

calculations have been performed also for T=300 K. The corresponding numerical values are

compiled in Tab. 3 and the free energy profiles and probability distributions used in ∆A‡
R→P

calculations are presented in Sec. SIII of Supporting Information.

4.2 Performance of the MLPT method in free energy perturbation

theory calculations

As also discussed in Sec. 4.5, a direct application of FEPT could require a large number

of target method calculations. Here we show how most of these explicit calculations can

be effectively and inexpensively replaced by the predictions of a MLPT model. As a first

step of this approach, a certain number (Ntrain) of configurations is selected out of the

MD data generated with the production method. For these configurations single point

calculations using target methods are performed and the corresponding results are used to

train the ML algorithm described in Sec. 2.3. In principle, the free energy results obtained

via this procedure should ultimately converge to those of Reference B (see Sec. 4.1) as

the accuracy of the predictions improves by increasing the size of the training set. In this

section we examine the performance of the MLPT method and compare it with that of the

straightforward FEPT (namely without ML). We focus here on the ∆ATS term (see Sec. 2.2)

for the transition state computed at the HSE06 level of theory but similar conclusions can be

drawn also for the reactant term ∆AR as well as for the other target method optPBE-vdW

(see Sec. SIV in the Supporting Information). For our study we considered different sizes
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of the training set with Ntrain = 10, 20, 50, and 100. Although a carefully chosen selection

strategy can lead to significantly improved performance in some applications,6 the choice

of the specific training configurations contained in a set is to some extent arbitrary. To

understand the importance of this choice, for each value of Ntrain we considered 100 different

realizations of the training set. Specifically, to generate the different sets we selected at

random Ntrain configurations (separated from each other by at least 100 MD steps) and

repeated this procedure 100 times. The ∆ATS free energies for all sets of size Ntrain were

then computed both by direct application of FEPT (namely only on Ntrain configurations

without ML predictions) or by using the MLPT approach. For each value of Ntrain the

values obtained from the different sets were then averaged and standard deviation was used

as a measure of dispersion of individual results. These data, which are presented in Tab. 2,

indicate that the straightforward FEPT tend to converge to a correct average result, which is

close to the Reference B (see Sec. 4.1), with increasing number of configurations used in the

calculation. Nevertheless, the convergence is slow and the individual results for each of the

100 sets are spread over broad intervals of widths ranging between ∼0.50 eV for Ntrain=10

and ∼0.15 eV for Ntrain=100 (these numbers are well over the chemical accuracy threshold of

1 kcal/mol=0.043 eV). This behavior, which is also clearly illustrated in Fig. 3 for Ntrain=50,

leads to the large standard deviations of the FEPT results in Tab. 2. Clearly, such a large

uncertainty in predicted results (even larger than the difference in actual free energies of

activation between the methods considered here) makes the straightforward application of

the FEPT method unreliable when only small sets of data can be used.

On the other side it is evident from the data presented in Tab. 2 that the use of machine

learning reduces the uncertainty in ∆ATS significantly, leading to a dramatic reduction in

the standard deviations (at least by a factor of two) as compared to the straightforward

FEPT. Just like in the case of straightforward FEPT calculations, however, the averaged

free energies are systematically shifted to higher values. This trend of MLPT to overestimate

∆ATS is also evident in Fig. 3 for the results obtained using the different Ntrain=50 sets.
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Although this systematic error decreases by increasing the accuracy of the ML predictions

(becoming basically negligible for Ntrain=100), it is highly desirable to develop a correction

scheme to reduce this behavior. To better understand the origin of this systematic deviation

and correct it, let us substitute the term ∆V (q) in the second order cumulant approximation

of free energy:51

Ã− A ≈ ⟨∆V (q)⟩ − ⟨∆V 2(q)⟩ − ⟨∆V (q)⟩2

kB T
(25)

by ∆V ′(q)+ ϵ(q), where ∆V ′(q) is the potential energy difference predicted by ML and ϵ(q)

is the error in the prediction made by ML for the configuration q. Upon a trivial algebraic

manipulation, we arrive at the following expression:

∆ATS = ∆A′
TS +∆ϵ, (26)

where

∆A′
TS = ⟨∆V ′(q)⟩ξ∗ −

⟨(∆V ′(q))2⟩ξ∗ − ⟨∆V ′(q)⟩2ξ∗
2 kB T

(27)

represents the (biased) MLPT prediction obtained by using ∆V ′(q) and

∆ϵ = ⟨ϵ⟩ξ∗ −
⟨ϵ⟩ξ∗ − ⟨ϵ⟩2ξ∗

2 kB T
− ⟨ϵ (∆V ′(q))⟩ξ∗ − ⟨ϵ⟩ξ∗⟨∆V ′(q)⟩ξ∗

kB T
, (28)

is a systematic error due to the random error associated with the ML predictions. Following

the idea developed by Rocca et al.,16 we estimate the error ∆ϵ for our MLPT calculations

by using a fixed correction set of Ncorr=10 points not included in the training set (i.e., all

integrals ⟨· · · ⟩ are approximated by
(
1/Ncorr

∑Ncorr

i · · ·
)

where the summation runs over all

members of the correction set). As shown in Tab. 2 and Fig. 3, our simple correction pro-

cedure essentially eliminates the systematic error in calculations performed with the small

training sets. Importantly, the statistical uncertainty of the MLPT remains small in com-

parison to the straingthforward FEPT, as obvious from small values of standard deviation
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presented in Tab. 2. Altogether, our numerical tests showed that the MLPT approach can

yield accurate results already for small training sets and, importantly, the corresponding

statistical uncertainty given by a particular choice of the training set is significantly reduced

compared to the straightforward FEPT. An interesting implication of the form of correction

(Eq. 28) is that the error introduced to ∆Ã‡ due to inaccurate ML model for TS tends

to cancel that from the model for R if the quality of both models is similar. Indeed, the

convergence of ∆Ã‡ with the size of training set is often faster than that of ∆ATS or ∆AR.

Having explored the properties of the MLPT scheme, we can now proceed to the determi-

nation of the free energy of activation for T=600 K. To this end, the training set Ntrain=100

is used, which yields reliable predictions for both ∆AR and ∆ATS (see Sec. SIV in the

Supporting Information). As obvious from the data summarized in Tab. 1, the free energies

of activation computed for both target methods are in excellent agreement with the corre-

sponding Reference B values. A somewhat larger difference with respect to the exact result

(Reference A) in the case of the HSE06 method can be reduced by using a more sophisticated

algorithm for the realization of perturbation theory calculations. We will return to this point

in Sec. 4.5.

4.3 Changing the simulation temperature

The configuration space sampled at a lower temperature represents often a subset of that

sampled at a higher T. This is illustrated by Fig. 4, where the probability distributions com-

puted for the distances r1 and r2 (cf. Fig. 1) at T=300 K and T=600 K are compared. It is

reasonable to expect that a ML model trained to reliably describe the property of interest

for a broader set of configurations should work well also for its subsets. This property can be

exploited within the MLPT method to obtain free energies in a wide range of temperatures

with a significant reduction of computational time by avoiding additional target method

calculations. Once the MLPT approach has been applied to a broader high-temperature

set, free energies at lower temperatures can be obtained by performing only cheap produc-
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tion method MDs and using the same ML model to predict the ∆V (q)’s without further

retraining. As an illustrative example of such a procedure, we shall consider a calculation of

the free energy of activation of our reference reaction at the temperature of T=300 K. To

this end, we employ the ML model trained for the configurations generated at 600 K (see

Sec. 4.2) and the only additional calculations that we perform are the production method

MD simulations at 300 K. In Sec. SV of Supporting Information we show that the use of

the ML model trained at a higher T leads to only modest deterioration of the quality of the

∆V (q) predictions for lower temperature. As shown in Tab. 3, the computed MLPT results

are in a good agreement with the corresponding Reference B (see Sec. 4.1), indicating that

our MLPT scheme is indeed successful in avoiding additional target method calculations

needed to achieve converged free energies at lower temperature.

4.4 Extending the machine learning predictions beyond the train-

ing set scope

In this section we explore the possibility to use the models trained specifically for the ∆ATS

and ∆AR calculations to estimate the differences (both terms on the left hand side are defined

analogously to Eq. 4):

∆Ãξref,R →ξ′ −∆Aξref,R →ξ′ = −kB T ln
⟨Z−1/2exp [−∆V (q)/kB T ]⟩ξ′

⟨Z−1/2⟩ξ′

+ kB T ln
⟨Z−1/2exp [−∆V (q)/kB T ]⟩ξref,R

⟨Z−1/2⟩ξref,R
, (29)

for arbitrary intermediate states ξ = ξ′. Such a correction is useful when full free energy

profiles such as those shown in Fig. 2 are needed, in which case the last constant term on

the right hand side of Eq. 29 becomes irrelevant (as the profile can always be shifted by an

arbitrary constant). In particular, by using MLPT we shall attempt here to estimate the full

free energy profile for the target method HSE06 using only the data presented in Sec. 4.1,

i.e., without performing any additional target calculations. To this end, we examine three
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different strategies for the training set selection restricted here to the size of Ntrain =100

configurations.

In our first test, we employ a ML model trained using 100 transition state configurations

to predict free energies of all 4 remaining points considered in our bluemoon ensemble sim-

ulations. As the training set configurations are very different from the other intermediate

states, this strategy is expected to fail and we consider it here only for illustrative purposes.

Fig. 5 and the statistical data presented in Tab. S10 show that the free energy profile pre-

dicted in this way is indeed very inaccurate and the quality of the predictions decreases with

the distance of given microstate from the TS. The largest root mean square error (RMSE)

in ∆V (q) computed with respect to the Reference B is as large as 0.108 eV.

Somewhat surprisingly then, the performance of the model trained on 100 reactant con-

figurations performs relatively well and the predicted free energy profile is close to that

obtained from Reference B (see Fig. 5). As before, the quality of predictions decreases with

the distance from the state for which the ML was trained and the largest value of the RMSE

(0.039 eV) is found for the states close to TS.

Finally, the best performance is found for the training set composed of 50 reactant and

50 transition state configurations. With this training set, a consistent quality of ∆V (q)

predictions is achieved for all intermediate states with the largest RMSE being reduced

by about a factor two compared to the predictions made with ML trained on reactant

configurations (see Tab. S10 of Supporting Information).

The ability of the ML scheme to make reliable predictions also for the parts of config-

uration space beyond those spanned by the training set demonstrated in this section can

be used in many different ways, e.g., for refining of TS position, which may vary with the

choice of the target method. An example of another application making use of this prop-

erty is presented in Sec. 4.5, where we propose a scheme to improve accuracy of our FEPT

predictions.
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4.5 Improving the accuracy of free energy perturbation theory

calculations

While formally exact, FEPT is in practice based on MD simulations that span a finite

time interval and, accordingly, a limited part of configurational space. This is at the origin

of errors that manifest themselves as deviations between Reference B and Reference A (see

Sec. 4.1). Although MLPT allows for a fast convergence towards the Reference B free energies

with only few tens of target method calculations, its straightforward application cannot

overcome the intrinsic limitations of FEPT. As discussed in detail in Sec. SII in Supporting

Information, a worse performance of FEPT in calculations with the HSE06 target method

as compared to optPBE-vdW is caused by the fact that the phase space overlap with the

production method is much smaller. This in turn means that the configurations receiving

the highest reweighting factors exp [−∆V (q)/kB T ], contributing thus most significantly to

the resulting target method free energy, are generated only rarely by the production method,

leading thus to a slow convergence with respect to the number of configurations. An effective

solution to this problem is to use a multistage sampling52 where one or more intermediate

states are introduced so as to improve the overlaps between the phase space distributions of

intermediate states and the distributions generated by the production and target methods.

One of the simplest realizations of this idea is represented by the Simple Overlap Sampling

(SOS) method53 where a single intermediate state M is chosen such that the corresponding

Hamiltonian fulfills the condition HM = (H + H̃)/2. The corresponding expression for

the difference in free energies of activation (cf. Eq. 9) between the production and target

methods then writes:

∆Ã‡ −∆A‡ = −kB T ln

{
⟨exp [−∆V (q)/2kB T ]⟩ξ∗,H
⟨exp [−∆V (q)/2kB T ]⟩H

}
+ kB T ln

{⟨exp [∆V (q)/2kB T ]⟩ξ∗,H̃
⟨exp [∆V (q)/2kB T ]⟩H̃

}
, (30)
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where ⟨· · · ⟩H and ⟨· · · ⟩H̃ indicate canonical ensemble averages corresponding to Hamiltoni-

ans H and H̃, respectively. In order to establish the effect of the SOS correction we have

generated reference results (denoted as Reference B (SOS)) obtained by a brute-force eval-

uation of Eq. 30. As shown in Tab. 1, the application of the SOS decreases the deviation of

the bare Reference B value with respect to the “exact” Reference A from 0.028 eV to 0.004

eV.

For the specific goals of the present work, a direct use of Eq. 30 as done to obtain Reference

B (SOS) turns out to be disadvantageous as it requires the sampling to be performed at both

the production (H Hamiltonian) and target (H̃) method levels. However, one can design a

simulation protocol in which the potentially CPU heavy target method sampling is performed

with the aid of the MLPT method at the cost of the production method calculation. In this

respect, the ability of the MLPT method to reliably predict energies of configurations outside

the configuration space spanned by the training set, demonstrated in Sec. 4.4, turns out to

be very useful. Specifically, it is crucial for our purposes that the ML model trained on R or

TS configurations generated by the production method canonical ensemble sampling allows

for reasonable ∆V (q) predictions also for the configurations that would be generated by the

target method sampling.

Our tests done on the ML model trained using 100 HSE06 energies corresponding to

R or TS configurations generated by the production method show that this is indeed the

case. For R the RMSE in the predictions of this model is 0.018 eV for PBE-generated

configurations and 0.015 eV for HSE06 configurations; analogously, for TS we have 0.019 eV

and 0.018 eV, respectively. Furthermore, Fig. 6 shows that the ML model trained using the

configurations generated by the production method generates correct ∆V (q) distributions

also for the configurations generated by the target method.

Based on the observations described above, we devise a simulation protocol in which we

determine the computationally demanding terms ⟨exp
[
−∆V (q)

2kB T

]
⟩H̃ needed in Eq. 30 by means

of the Metropolis Monte Carlo (MC) algorithm.29 Within this approach the target method
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potential energy Ṽ (q) = V (q) + ∆V (q) of each configuration is obtained by predicting

∆V (q) using the same ML model for reactant or transition state configurations discussed in

Secs. 4.2 and 4.3. Randomly generated Maxwell-Boltzmann distributed velocities multiplied

by a time step (∆t=1 fs) chosen so as to achieve the acceptance rate of ∼50 % were used to

produce atomic displacements needed in the MC procedure. In the case of constrained TS

simulation, the value of ξ(q) = ξ∗ was fixed by using the SHAKE algorithm.31 Altogether,

100000 MC steps have been performed out of which the initial 20000 steps were considered

as equilibration. As shown in Tab. 1, the free energies of activation predicted by MLPT at

600 K combined with the SOS scheme are in excellent agreement with the Reference B (SOS)

data. We further stress here that these MLPT results were obtained from previously trained

ML models without any additional target method calculations. The ML-based strategy

described here can be easily adapted for the use with more sophisticated schemes combining

the forward and backward sampling, such as the Bennett acceptance ratio method,54 or

with the multistage stratification schemes.50 Finally we note that, in principle, a similar

strategy could be used to improve the MLPT results for the HSE06 target method at 300 K.

However, due to a very poor phase space overlap between the distributions generated by the

production and target methods (see Sec. SII in the Supporting Information), a multistage

sampling with more than one intermediate would be needed.

5 Conclusions

We proposed a new method that couples machine learning and perturbation theory to effi-

ciently compute free energies at multiple levels of theory and possibly also employing quan-

tum chemical approaches that would normally be considered too expensive. Starting from a

numerically affordable production method, free energies at different levels of theory can be

obtained by performing only a few tens of single point energy calculations, which is achieved

by complementing the small number of results with the predictions of a machine learning
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model. Remarkably, the extra calculations need to be performed only for the initial (reac-

tant) and the final (transition state) states of the process of interest. The great potential

of this method is demonstrated by computing the free energy of activation for the proton

exchange reaction in chabazite. The ML model that we developed provides accurate pre-

dictions also beyond the range of applicability that could be expected from the training set.

This observation has been exploited to inexpensively evaluate free energies at different tem-

peratures and to devise a correction scheme when FEPT does not reach a fully satisfactory

level of accuracy.

In this work we primarily focused on the free energies of activation but the generalization

of our method to free energy differences between two stable states (∆ÃR→P ) is straight-

forward. By the similar arguments as used in Sec. 2.2, it is easy to prove the following

equality

∆ÃR→P = ∆AR→P − kB T ln

{
⟨exp [−∆V (q)/kB T ]⟩P
⟨exp [−∆V (q)/kB T ]⟩R

}
, (31)

where ⟨· · ·⟩R and ⟨· · ·⟩P indicate ensemble averages over initial and final stable states,

respectively.

Finally, the schemes to access the free energy of chemical reactions by multiple levels of

theory have been proposed in several previous publications and we wish to comment here

on the relation of our method to these previously published works. The common feature of

our method with those of Shen et al.,10 Li et al.,11 and Piccini and Parrinello13 is the use

of FEPT to determine the free energy at the level of theory different from that at which

the sampling of configuration space has been performed. Another feature common with

some previous reports is the use of the machine learning in the calculation. Similar to our

work, Shen et al.10 employed ML to compute ∆V (q) needed in the FEPT calculations.

An alternative usage of ML reported in the context free energy calculations of chemical

reactions involves acceleration of the configuration space sampling12 and effective smoothing

of free energy profiles at the post-processing stage.11 The problem of ineffective phase space

overlap between the production and target methods (which we discus in Sec. 4.5) has been

24



addressed by Shen and Yang12 and Pan et al.14 Despite sharing some common features,

our method differs in several important details from the schemes proposed previously. Most

importantly, our method is primarily designed to determine free energy of activation (Eq. 3)

rather than the free energy profile (Eq. 29) considered in the previous work.10–14 Although

the two quantities are related, because the knowledge of ∆Aξref,R →ξ′ allows for calculation

of ∆Aξref,R →ξ∗ needed in Eq. 3, the expression for ∆A‡
R→P contains also additional terms

⟨|ξ̇∗|⟩ and P (ξref,R) whose calculation has not been discussed in Refs.10–14 In our work, we

show for the first time that FEPT can be efficiently combined with ML to compute ∆A‡
R→P

when bluemoon ensemble technique is used, leading to disarmingly simple expression Eq. 9

containing only the perturbation terms for the free reactant and constrained transition state.

Since only the energetics of reactant and TS (but not that of any intermediate state) is

relevant according to this formula, two independent ML models can be used for these two

states to accelerate the FEPT calculations employing only a very small number of training

configurations. This is a very important difference compared to other methods where FEPT

(with or without ML acceleration) was employed to study activated processes,10,11,13 in which

the target method calculations were performed also for many intermediate states. We note

that the fact that training of ML is necessary only for the two thermodynamic states located

at the end points of the transformation path, but not for the intermediate points, was realized

also by Jinnouchi et al.8 in a the context of calculations of chemical potential of Si and LiF

in water via thermodynamic integration.

Another original contribution presented in our work is the analysis of effect of systematic

error introduced by the ML model on the free energy computed perturbatively. We derived a

simple correction (Eq. 28) that allows for an inexpensive reduction of this error. In connection

with our target quantity ∆A‡
R→P , it is important to note that the form of Eq. 28 suggests

that the error introduced by the inaccurate ML model for TS cancels with that for R if the

quality of models trained for both states is similar. This result provides explanation for our

empirically observed fact that the convergence of ∆A‡
R→P with respect to the training set
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size is faster than that of the individual free energy correction terms for TS and R.

Altogether, the ML-based approach proposed in this work is general and holds the

promise to improve the accuracy of ab initio free energy calculations for many applications

in chemistry and materials science.
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A Independence of ∆A‡
R→P on the choice of the refer-

ence state

Let us consider two different choices of reference states labeled as ξref,R and ξref,R′ and let

us rewrite Eq. 3 as follows:

∆A‡ = ∆Aξref,R′ →ξ∗ − kB T ln

(
h

kB T

⟨|ξ̇∗|⟩
2

P (ξref,R′)

)

+ ∆Aξref,R →ξref,R′ + kB T ln

(
P (ξref,R′)

P (ξref,R)

)
.

The last two terms on the right hand side cancel each other because, by definition,

∆Aξref,R →ξref,R′ = −kB T ln

(
P (ξref,R′)

P (ξref,R)

)

leading to a desired result

∆A‡ = ∆Aξref,R →ξ∗ − kB T ln

(
h

kB T

⟨|ξ̇∗|⟩
2

P (ξref,R)

)

= ∆Aξref,R′ →ξ∗ − kB T ln

(
h

kB T

⟨|ξ̇∗|⟩
2

P (ξref,R′)

)

proving the independence of ∆A‡ on the choice of the reference reactant state.
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Table 1: Free energy of activation (eV) computed for the proton exchange reaction in
chabazite at T=600 K. The reference free energies for the target methods optPBE-vdW
and HSE06 were obtained by a direct MD calculation (Reference A) or through the appli-
cation of FEPT to 5000 (TS) or 10000 (R) configurations selected from data generated by
the production (PBE) method at T=600 K (Reference B). The MLPT results have been
obtained as described in Sec. 4.2. The values in parentheses have been determined using the
simple overlap sampling (SOS) method as discussed in Sec. 4.5.

PBE optPBE-vdW HSE06
Production/Reference A 0.657 0.752 0.802
Reference B - 0.749 0.774 (0.798)
MLPT - 0.751 0.770 (0.797)

Table 2: The performance of the FEPT (without ML), MLPT and MLPT corrected using
Eq. 26 (corrected MLPT) methods in predicting the term ∆ATS (see Sec. 2.2) for the tran-
sition state of the proton exchange reaction in chabazite at T=600 K. The reported values
(eV) for the target method HSE06 have been obtained by averaging over 100 independent
random choices of the training set with Ntrain configurations and the values after the ± sign
indicate the corresponding standard deviation. The reference free energies (Reference B)
were obtained by a direct application of FEPT to 5000 configurations selected from data
generated by the production method at T=600 K.

Ntrain FEPT MLPT corrected MLPT
10 -105.4698± 0.0609 -105.4402± 0.0305 -105.5191± 0.0075
20 -105.4780± 0.0587 -105.4729± 0.0178 -105.5209± 0.0066
50 -105.4926± 0.0438 -105.5017± 0.0090 -105.5184± 0.0068
100 -105.4965± 0.0368 -105.5140± 0.0053 -105.5155± 0.0105
Reference B -105.5163 - -

Table 3: Free energy of activation (eV) computed for the proton exchange reaction in
chabazite at T=300 K. The reference free energies for the target methods optPBE-vdW
and HSE06 were obtained by a direct MD calculation (Reference A) or through the appli-
cation of FEPT to 5000 (TS) or 10000 (R) configurations selected from data generated by
the production (PBE) method at T=300 K (Reference B). The MLPT results have been
obtained as described in Sec. 4.3.

PBE optPBE-vdW HSE06
Production/Reference A 0.631 0.707 0.738
Reference B - 0.727 0.756
MLPT - 0.728 0.756
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Figure 1: Reactant (R), transition state (TS) and product (P) of the proton exchange
between oxygen sites O1 and O2 in zeolite chabazite. The distances between hydrogen
and the two oxygen atoms (r1 and r2) used in the definition of approximation to reaction
coordinate are indicated. The oxygen atoms are labelled according to the nomenclature of
Jeanvoine et al.44
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Figure 2: Free energy profiles along the approximation to reaction coordinate (ξ) (left)
and the probability distribution functions of ξ (right) determined for the proton exchange
reaction in chabazite at 600 K using the PBE, optPBE-vdW, and HSE06 methods. The
reference reactant (ξref,R) and transition (ξ∗) states are indicated by dashed lines.
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Figure 3: Free energy difference ∆ATS for the proton exchange reaction in chabazite at
T=600 K computed using FEPT, MLPT and MLPT corrected using Eq. 26 (corrected
MLPT) for the target method HSE06 in 100 independent random choices of the training set
with 50 configurations. The reference free energy indicated by the dashed line (Reference
B) was obtained by a direct application of FEPT to 5000 configurations selected from data
generated by the production method.
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Figure 4: Probability distribution functions of coordinates r1 (left) and r2 (right) computed
for the reactant state of the proton exchange reaction in chabazite at 300 K and 600 K using
MD at the PBE level of theory. In both cases, the low T data form subsets of the high T
data.
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Figure 5: The HSE free energy profile for the proton exchange reaction in chabazite at
T=600 K determined using the MLPT method trained on 100 transition state configurations
(MLPT(TS)), 100 reactant cofigurations (MLPT(R)), and 50 reactant and 50 transition state
configurations (MLPT(R+TS)). The reference free energy profile indicated by the dotted line
(Reference B) was obtained by a direct application of FEPT to 5000 configurations of each
of 5 intermediate states between ξRef,R and ξ∗.
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Figure 6: Probability distributions of ∆V (q) computed for PBE production and HSE06
target methods. The distributions are determined using ensembles of structures generated at
the HSE06 (full lines) and PBE (dotted lines) levels of theory whereby the ∆V (q) terms were
obtained by direct calculation performed for 5000 (TS) or 10000 (R) configurations generated
by MD (Ref) or by using the machine learning model trained on 100 configurations generated
by MD performed at the PBE level (ML). Results for reactants (left) and transition state
(right) configurations are presented.
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