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Autocatalysis is essential for the origin of life and chemical evolution. However, the lack of unified framework8

so far prevents a systematic study of autocatalysis. Here, we derive general stoichiometric conditions9

for catalysis and autocatalysis in chemical reaction networks from basic principles. This allows for a10

classification of minimal autocatalytic motifs. While all known autocatalytic systems indeed contain11

minimal motifs, the classification also reveals hitherto unidentified motifs. We further examine conditions12

for kinetic viability of such networks, which depends on the autocatalytic motifs they contain and is notably13

increased by internal catalytic cycles. Finally, we show how this framework extends the range of conceivable14

autocatalytic systems, by applying our stoichiometric and kinetic analysis to autocatalysis emerging from15

coupled compartments. The unified approach to autocatalysis presented in this work lays a foundation16

towards the building of a systems-level theory of chemical evolution.17

PACS numbers: 05.40.-a 82.65.+r 82.20.-w18

INTRODUCTION19

The capacity of living systems to replicate them-20

selves is rooted in a chemistry that makes more of itself,21

i.e. an autocatalytic system. Autocatalysis appears22

to be ubiquitous in living systems from molecules to23

ecosystems1. It is also likely to have been continually24

present since the beginning of life and is invoked as25

a key element in prebiotic scenarios2–5. Surprisingly,26

autocatalysis is considered to be a rarity in chemistry6.27

Developments in systems chemistry are changing this28

view, with an increasing number of autocatalytic sys-29

tems synthesized de novo7–9. Chemical replicators30

have been endowed with biomimetic properties such as31

protein-like folding10 and parasitism11. Autocatalysis32

has also found technological applications, e.g. enan-33

tiomer enrichment and acid amplification12–14.34

Understanding autocatalysis represents a primary35

challenge for theory. Models based on autocatalysis36

were first built to explain a diversity of dynamical37

behaviors in so called dissipative structures, such as38

bistable reactions15, oscillating reactions, and chemical39

waves16. Autocatalysis then became a central topic in40

the study of self-replication dynamics in biological and41

prebiotic systems3,17–19 (see20–22 for recent reviews).42

Despite this history, a unified theory of autocatal-43

ysis is still lacking. Such a theory is needed to under-44

stand the origins, diversity and plausibility of autocatal-45

ysis. It would also provide design principles for artificial46

autocatalytic systems. Here, we present a framework47

that unifies the different descriptions of autocatalysis48

and is based on reaction network stoichiometry23–27.49

Let us start from basic definitions in chemistry50

as established by IUPAC28 (see SI Sec. I for full def-51

initions), where autocatalysis is a particular form of52

catalysis: A substance that increases the rate of a re-53

action without modifying the overall standard Gibbs54

energy change (∆G◦) in the reaction; the process is55

called catalysis. The catalyst is both a reactant and56

product of the reaction. Catalysis brought about by one57

of the products of a (net) reaction is called autocatalysis.58

From this definition, we derive conditions to de-59

termine whether a subnetwork embedded in a larger60

chemical network, can be catalytic or autocatalytic.61

These conditions provide a mathematical basis to iden-62

tify minimal motifs, called autocatalytic cores. We63

found that cores have five fundamental categories of64

motifs. They allow classification of all previously de-65

scribed forms of autocatalysis, and also reveal hitherto66

unidentified autocatalytic schemes. We then study the67

kinetic conditions, which we call viability conditions,68

under which autocatalytic networks can appear and69

be maintained on long times. We find that networks70

have different viabilities depending on their core struc-71

ture, and notably that viability is increased by internal72

catalytic cycles. Finally, we expand the repertoire73

of autocatalytic systems, by demonstrating a general74

mechanism for its emergence in multicompartment sys-75

tems (e.g. porous media, vesicles, multiphasic systems).76

This mechanism strongly relaxes chemical requirements77

for autocatalysis, making the phenomenon much more78

diverse than previously thought.79
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EXAMPLES, DEFINITIONS AND CONVENTIONS80

Catalysis and autocatalysis81

The following reactions have the same net mass82

balance but a different status regarding catalysis:83

A
(I)−−⇀↽−− B, A+E

(II)−−⇀↽−− B+E, A+B
(III)−−−⇀↽−−− 2B.

(1)
Since no species is both a reactant and product84

in reaction (I), it should be regarded as uncatalyzed.85

Reactions (II) and (III) instead contain species which86

are both a reactant and a product, species E in reaction87

(I) and species B in reaction (III) and following the88

definition above, these species can be considered as89

catalysts. In reaction (II), the amount of species E90

remains unchanged, in contrast to the case of reaction91

(III), where the species B experiences a net production.92

For this reason, reaction (III) represents genuine auto-93

catalysis. Although reaction (II) is usually referred to94

as simply catalyzed in the chemistry literature, we pro-95

pose to call it an example of allocatalysis to contrast it96

with the case of autocatalysis, catalysis being common97

to both.98

We emphasize that stoichiometric considerations99

are necessary but not sufficient to characterize catalysis,100

which according to the definition should also acceler-101

ate the rate of the net reaction. In the following, we102

will first generalize the stoichiometric conditions, then103

examine kinetic ones.104

Stoichiometric matrix and reaction vectors105

Reaction networks are represented as a stoichio-106

metric matrix ννν23,26, in which columns correspond to107

reactions and rows to species. The entries in a column108

are the stoichiometric coefficients of the species partic-109

ipating in that reaction, the coefficient is negative for110

every species consumed and positive for every species111

produced. A reaction vector ggg = [g1, .., gr]T results112

in a change of species numbers ∆nnn = ννν · ggg. The sup-113

port of ggg, denoted supp(ggg), is the set of its non-zero114

coordinates. A reaction cycle is a non-zero reaction115

vector ccc such that no net species number change occurs116

: ννν · ccc = 000, or equivalently, ccc belongs to the right null117

space of ννν. Vectors bbbT belonging to the left null space118

of ννν induce conservation laws, because in that case119

b · nb · nb · n represents a conserved quantity. The case of all120

coefficients bk nonnegative is referred to as a mass-like121

conservation law. For example in Fig.1a, conserved122

quantities are nE +nEA (catalysts) and nA +nEA +nB123

(total compounds).124

Lastly, catalyzed reactions may not always be dis-125

tinguished from uncatalyzed one in the stoichiometric126

matrix. For instance, in reactions (II-III), catalysts can-127
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Figure 1: Different representations for allocatalysis (a,b,c)
and autocatalysis (d,e,f). a) Combining reactions
(1’)+(2’) affords an allocatalytic cycle that converts
A to B. b) stoichiometric matrix of a), the dashed
square encloses the allocatalytic submatrix ν̄νν′ for
network b). c) Graph representation of the allocat-
alytic subnetwork. d) Combining (1”)+(2”) affords
an autocatalytic cycle converting A to B. e) stoichio-
metric matrix of d), the dashed square encloses the
autocatalytic submatrix ν̄νν′′ for network e). f) a graph
representation of the autocatalytic subnetwork.

cel on each side leading to the same column vector as128

for (I). This is avoided by describing catalysis through129

a sequence of reactions steps from which it emerges,130

so that a participating species is either a reactant or a131

product:132

A + E IIa−−⇀↽−− EA IIb−−⇀↽−− E + B, (2)

A + B IIIa−−⇀↽−− AB IIIb−−⇀↽−− 2B . (3)

We call this convention non-ambiguity and assume133

henceforth that it is respected.134

CATALYSIS AND AUTOCATALYSIS IN135

STOICHIOMETRIC MATRICES136

In this section, we will consider any possible sub-137

matrix ν̄νν of ννν, the stoichiometric matrix of a reaction138

network, and ask whether the stoichiometry of the cor-139

responding subnetwork, called a motif, is compatible140

with the definitions of allocatalysis or autocatalysis.141

Note that such identification neither makes a priori142

assumptions on the values and signs of reaction vector143

coefficients, nor on kinetics, or on which species are144

catalytic or not. A matrix ν̄νν is a restriction of ννν to145

certain rows and columns, which respectively corre-146

spond to the species and reactions of the motif under147

consideration.148

The restriction of the rows means that the species149

of ννν are separated into internal species of the motif150

(rows of ν̄νν) and external species (remaining rows of151

ννν). These external species could be, in some cases,152
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chemostatted26, and represent feedstock compounds,153

also called the food set29, and waste from the point of154

view of internal species of the motif. In Fig.1, external155

species have been colored in blue, while stoichiometric156

submatrices have been boxed in yellow. Fig 1a and 1d157

represent examples of allocatalysis and autocatalysis,158

respectively, with their respective submatrices ν̄νν′ and159

ν̄νν′′, and hypergraph representations Fig 1c and Fig 1f.160

Restriction of columns separates reactions which161

are part of the motif and those which occur outside162

of it. A motif such that each of its reactions has at163

least one reactant and at least one product is called164

autonomous. This means that every column of ν̄νν con-165

tains a positive and a negative coefficient. Below, we166

pose autonomy as a condition for catalysis. Indeed,167

it ensures that the production of any species of the168

motif is conditional on the presence of other chemi-169

cal species of the motif. Otherwise, rate acceleration170

would be allowed unconditional on an already present171

substance, in opposition to the definition of catalysis.172

Autonomy is less restrictive than former conditions for173

autocatalysis24, and is similar to the siphon concept174

in Petri Nets30, but without assumption on reaction175

signs (see SI Sec. I). Note that it does not forbid that176

reactions outside of the motif produce species of the177

motif.178

Criterion for allocatalysis179

By definition, allocatalysis is an ensemble of re-180

actions by which a set of species remain conserved in181

number (the catalysts) while other external species182

undergo a turnover which changes their numbers. This183

leads to the following conditions:184

There exists a set of species SSS, a submatrix ν̄νν of185

ννν restricted to SSS, and a non-zero reaction vector ccc186

such that: i) ν̄νν is autonomous; ii) supp(ccc) is included187

in the columns of ν̄νν; iii) ccc is a reaction cycle of ν̄νν188

(ν̄νν · ccc = 000), and; iv) ννν · ccc 6= 0. The members of SSS which189

participate in ccc (i.e. that are consumed and produced)190

are called allocatalysts, ccc an allocatalytic cycle and ν̄νν191

an allocatalytic matrix.192

Condition (i) has been discussed above. Condition193

(ii) expresses the involvement of the catalysts in the194

reactions ccc, where all columns of ν̄νν are non-zero due to195

(i), so that all reactions of ccc involve catalysts. Condition196

(iii) expresses the conservation of catalysts and (iv) the197

net reaction. Since the reaction cycle ccc is a cycle of the198

reduced matrix but not of the original matrix, some199

authors have qualified it as emergent and shown that200

it can establish a non-equilibrium steady state driven201

by the turnover of the external species26. Note that202

being allocatalytic is not a property of the sub-matrix203

ν̄νν alone but involves the larger matrix ννν as imposed by204

condition (iv).205

Criterion for autocatalysis206

By definition, autocatalysis is the process by which207

a combination of reactions involves a set of species208

which all increase in number conditional on species in209

the set itself (the autocatalysts), while other species210

undergo a turnover. This leads to the following condi-211

tions:212

There exists a set of species SSS, a submatrix ν̄νν of213

ννν restricted to SSS, and a reaction vector ggg such that:214

i) ν̄νν is autonomous, ii) all coordinates of ∆nnn = ν̄νν · ggg215

are strictly positive, or equivalently, ν̄νν has no mass-216

like conservation laws. The members of SSS consumed217

(and produced) by ggg are called autocatalysts, ggg an218

autocatalytic mode and ν̄νν an autocatalytic matrix.219

Condition (i) ensures the conditionality of the220

reactions on autocatalysts, as it forbids cases where221

species of SSS are produced from external reactants only,222

thus playing the role of conditions (i) and (ii) in the223

definition of allocatalysis. Condition (ii) expresses224

the increase in autocatalyst number. The equivalence225

between the two formulations of condition (ii) is an226

immediate consequence of Gordan’s theorem31. Impor-227

tantly, the second formulation of (ii) does not involve228

an autocatalytic mode ggg, so that (i) and (ii) can be229

expressed as properties of a matrix itself, in contrast230

with allocatalysis. This allows us to look for minimal231

autocatalytic motifs, which we do next. Note that232

external species must feed the autocatalytic system in233

order to guarantee the net mass increase imposed by234

condition (ii).235

Autocatalytic cores236

An autocatalytic core is an autocatalytic motif237

which is minimal because it does not contain any238

smaller autocatalytic motif. Consequently, an auto-239

catalytic system is either a core, or it contains one240

or several cores. The stoichiometric conditions show241

that characterizing cores is equivalent to finding all au-242

tonomous matrices whose image contains vectors with243

only strictly positive components. This well-posed for-244

mulation allowed us to show that the stoichiometric245

matrix ν̄νν of an autocatalytic core must verify a number246

of non-obvious properties reported below and demon-247

strated in the SI Sections II andIII.248

First, ν̄νν must be square (the number of species249

equals the number of reactions) and invertible. The250

inverse has a chemical interpretation. By definition of251

the inverse, the k-th column of ν̄νν−1 is a reaction vector252

such that species k increases by one unit, making it an253

elementary mode of production. Likewise, the reaction254

vector obtained by summing the columns of ν̄νν−1 leads to255

a net increase by one unit of every autocatalyst, which256

thus represents an elementary mode of autocatalysis.257

This shows how stoichiometry informs on fundamental258
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modes of autocatalysis27.259

Second, every forward reaction of a core involves260

only one core species as a reactant. While this ex-261

cludes reactions between two different core species, a262

single core species may react with itself. As ν̄νν is square,263

this also implies that every species of a core is con-264

sumed (none is only produced), thus is an autocatalyst.265

Furthermore, every species is the reactant of a single266

reaction. Overall, every species is uniquely associated267

with a reaction as being its reactant, so that ν̄νν admits268

a representation with a negative diagonal and zero or269

positive coefficients elsewhere, at least one coefficient of270

each column being strictly positive to ensure autonomy.271

These properties are constraining enough to allow272

an exhaustive enumeration of reaction graphs that273

are cores. Autocatalytic cores are found to belong to274

five categories, denoted as Type I to Type V. Fig. 2a275

represents typical members of each category as reaction276

hypergraphs (see SI Fig. S1 for general cases). As can277

be seen in these graphs, all minimal motifs contain278

a fork, which ends either in the same compound (or279

node) for Type I or in different compounds for Types280

II to V. The presence of this fork is consistent with281

the intuition that autocatalysis requires reaction steps282

that amplify the amount of autocatalysts. The orange283

square on the links between the nodes indicate that284

these links could contain further nodes and reactions285

in series, provided certain rules on cycles below.286

The five types differ in their number of graph287

cycles32 and the way these cycles overlap. Type I con-288

sists of a single graph cycle that is weight-asymmetric,289

defined as the product of the stoichiometric coefficients290

of its reaction products being different than that its291

reactants. Types II-V can be described as two overlap-292

ping graph cycles, where any such graph cycle involving293

a strict subset of the core species must be an allocat-294

alytic cycle, i.e. weight-symmetric (it would otherwise295

be of Type I, contradicting minimality).296

Unification of autocatalytic schemes297

The stoichiometric characterization of autocatal-298

ysis provides a unified approach to autocatalytic net-299

works reported in the literature. The examples below300

are further detailed in SI Sec. III. The formose reaction301

is a classic example of autocatalysis known to contain302

many autocatalytic cycles34. Fig.2b and c show Type I303

and III cores both found in the formose reaction. Simi-304

larly, autocatalytic cores of Type I and III can be found305

in the Calvin cycle and reverse Krebs cycle (SI Fig. S4).306

Some reaction steps Fig.2b may be catalyzed externally307

(e.g. by enzymes, base, ions), but external catalysis308

in general does not alter the core. By the same token,309

proposed examples of auto-induction introduced in21,35310

contain Type I and III cores (SI Fig. S3).311

In the GARD (Graded Autocatalysis Replication312
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Figure 2: a) Five minimal motifs. Orange squares indi-
cate where further nodes and reactions may be added,
provided this preserves the motif type (I,II,III,IV,V)
and minimality. b+c) Examples of chemical networks,
along with their autocatalytic cores. blue: external
species, yellow: autocatalysts. b) Type I: Breslow’s
1959 mechanism for the formose reaction33 c) Type
II: Another autocatalytic cycle in the formose reac-
tion. Species denoted as Cx inside the nodes refer to
molecules containing x carbon atoms, which are shown
below in standard chemical representation.

Domain) model for self-enhancing growth of amphiphile313

assemblies4,5, all underlying autocatalysis is described314

(SI Fig. S6) by Type I cycles with one fork and Type315

II cycles built up from sequential nonoverlapping al-316

locatalytic cycles (cross-incorporation, such as N3 in317

Fig. 3). More generally, when such catalytic cycles are318

compactly written as single reactions as in (1), they319

can be treated in the RAF (Reflexively Autocatalytic320

and Food-generated) framework29, where they form321

irreducible RAF-sets36. This formally establishes the322

recently suggested link5,37 between these models.323

Another reported form of autocatalysis is ‘chemical324

amplification’ due to cavitands38. The mechanism in-325

volves a reactive compound in a molecular cage, whose326

free counterpart can react to form two species that327

exchange with the caged species, thus amplifying its328

release. We find that this process can be described329

within our framework and corresponds to a Type III330

core (SI Fig. S5).331

Overall, previously described autocatalytic332

schemes comprise Types I, II and III. We have not yet333

found examples of Types IV and V.334
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VIABILITY OF AUTOCATALYTIC NETWORKS335

Stoichiometric conditions do not guarantee that336

autocatalysts within motifs amplify. Whether an ini-337

tial autocatalyst amplifies or degrades depends on ki-338

netic considerations. To address this so-called fixation339

problem17,22, we examined the probability Pex of ex-340

tinction (or 1− Pex of fixation) of species within auto-341

catalytic motifs, as a function of transition probabilities342

of reaction steps.343

Considering a homogeneous system with a steady344

supply of reactants, several authors have noted that345

in the highly dilute autocatalyst regime, appreciable346

rates require first-order autocatalysis17,22,39, i.e. each347

forward reaction step only involves one autocatalyst.348

Among first-order order networks, fixation models have349

so far focused on Type I networks (e.g. Fig.2b), which350

have a single graph cycle containing n species. In a351

transition step, a given species may either proceed352

irreversibly to the next species or disappear as a result353

of degradation. King found that if every reaction step354

k among n steps of the cycle has a success probability355

Π+
k (1−Π+

k being the degradation probability), fixation356

is possible for a doubling probability p2 =
∏n
k=1 Π+

k ≥357

1/239. This minimum value of p2 above which fixation358

is possible is called the decay threshold19,40. Bagley359

et al.17 used birth-death processes to derive Pex for360

an autocatalytic loop containing one species (n = 1).361

Schuster reported detailed time-dependent statistics362

for such networks in various contexts22.363

Here, we extend the treatment of the fixation364

problem so as to include reversible reactions and net-365

works beyond Type I using the theory of branching366

processes41. In these stochastic processes, an autocat-367

alytic species Xs is, after a sequence of reaction steps in368

the network, replaced by k copies. Reaction sequences369

yielding k copies happen with a probability pk, such370

that371

Xs
p0−−→ ∅, Xs

p1−−→ Xs, ... Xs
pk−−→ kXs, ... . (4)

The probability Pex that Xs goes extinct is then the372

probability that its k descendants independently go373

extinct:374

Pex = p0 + p1Pex + p2P
2
ex + ... =

∞∑
k=0

pkP
k
ex. (5)

The main difficulty here is to derive pk from transition375

probabilities Πk. A procedure for this is given in SI Sec.376

IV, where branching processes are constructed from377

reaction networks. Below, we exemplify this method by378

generalizing known results for Type I networks, solu-379

tions for other networks being detailed in the SI Sec. IV.380

We then apply it to compare the Pex of autocatalytic381

motifs which differ in their core structures.382

Reversible Type I cycles383

Consider a Type I cycle consisting of n reaction384

steps, such as N1 in Fig. 3b, and let us start at the385

first step with species X1 (marked node). Ultimately,386

X1 will either be successfully converted and yield 2X1387

or be degraded prematurely, which simplifies (4) to388

∅ p0←−− X1
p2−−→ 2X1, (6)

with p0 + p2 = 1. The overall outcome described by (6)389

corresponds to the simplest type of branching process:390

a birth-death process. (5) then becomes a quadratic391

equation that yields392

Pex =
{ 1

p2
− 1, p2 ≥ 1

2 ,

1, p2 <
1
2 .

(7)

This generalizes Bagley et al’s observation for Type393

I networks to n > 1 and reversible reactions. For re-394

versible reactions, p2 is found by considering all possible395

sequences of forward and backward reactions along the396

cycle. From Xk, let Π−k be the transition probability to397

revert to Xk−1, and Π+
k to convert to Xk+1. We have398

p2 =
n∏
k=1

Π+
k Γk, (8)

Γk+1 =
∞∑
s=0

(Π−k+1ΓkΠ+
k )s = 1

1−Π−k+1ΓkΠ+
k

, (9)

where Γk recursively (Γ1 = 1) counts the statistical399

weight of all back-and-forth trajectories from Xk to400

itself, in terms of Π−k and Π+
k . In the irreversible401

reaction limit Π−k → 0,Γk → 1 King’s expression for402

p2
39 is recovered.403

Viability of autocatalytic cores404

To investigate how autocatalytic motif structure af-405

fects survival, we calculated Pex for five different cores42406

(N1 to N5, Fig. 3): they are of equal size (6 reaction407

steps, 6 species), all reactions proceed irreversibly with408

the same success probability ζ, which plays a similar409

role as the transition probability Π+
k in the example410

above and is sometimes called specificity19,39,40.411

Fig. 3 highlights how Pex depends on ζ for each412

core structure. The highest ζ for extinction (Pex = 1)413

is observed for the Type I cycle N1, and progressively414

lower values are found for N2 to N4, which are all of415

Type II. Type V network N5 tolerates the lowest speci-416

ficity ζ before extinction, sustaining almost three times417

higher failure rates 1−ζ than N1. These differences can418

be qualitatively understood by counting the minimum419

number of steps needed to produce more autocatalysts.420

In respective order, networks N1 to N5 in Fig. 3b do so421
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Figure 3: a) Pex as function of ζ (legend: Pex(ζ) for
Pex < 1) for b) 5 autocatalytic networks of similar
size, starting at the dashed node. N1: Type I cycle.
N2: Type II with one fork. N3: Type II, two nonover-
lapping allocatalytic cycles, a common motif in GARD
with a 1st order RAF representation. N4: Type II:
allocatalytic cycles connected by intermediate steps.
N5: Type V. Symbols: Pex after 1000 simulated trials,
detailed in SI Sec. VII, lines: exact solution, derived
in SI Sec. V

in six, four, three, three and two steps. In particular,422

given their symmetries, the Pex of N3 and N5 have the423

same dependence on ζ as a 3 and 2-membered Type I424

cycle, respectively.425

It has been suggested that large networks are dis-426

favored in general39. The examples of Fig. 3 indicate427

that this can be counterbalanced by the presence of428

more allocatalytic cycles in the network. This is in429

particular the case for autocatalytic sets, as every net430

reaction must participate in an allocatalytic cycle.431

EXTENSIONS: MULTICOMPARTMENT432

AUTOCATALYSIS433

We finally show how stoichiometric criteria allow434

the identification of autocatalysis that emerges from435

compartments coupled via selective exchange, as found436

in systems comprising vesicles, pores, emulsions and437

complex coacervates43. The reaction network in Fig.438

4a is incapable of autocatalysis as it does not contain439

any autocatalytic core. However, when we place this440

network in two compartments α and β coupled by a441

membrane permeable to A and A2B, a Type II core442

emerges (Fig. 4b).443

The core identification indicates a possible setting444

for autocatalysis: U and V are chemostatted in α,445

+
+
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Figure 4: Multicompartment autocatalysis. a) Reaction
network with two reactions and five species in a sin-
gle compartment. The network does not contain any
autocatalytic core, thus cannot perform autocatalysis.
b) Same reaction network as in (a), but duplicated in
two compartments α and β, coupled by the selective
exchange of species A and A2B. A Type II core, high-
lighted in orange, emerges. c) Open reactor with two
compartments, a semi-permeable membrane, degra-
dation and exchange reactions. Chemostatted species
have a lighter background: U and V in α and AB in
β. d) Extinction probability Pex for multicompart-
ment autocatalysis in (c), starting from a single Aα,
as a function of exchange rate kex and degradation
rate kd, relative to other relevant reaction rates fixed
at k. Slanting asymptote: exchange-limited survival
kex = 2kd. Vertical asymptote: reaction-limited sur-
vival kd/k =

√
13−3

2 . Dashed white line: transition
between extinction and potential fixation (Pex < 1).
Expressions for Pex and asymptotes are derived in SI
Sec. VI.

and AB is chemostatted in β (Fig. 4c). The reaction446

involving U and V may in principle also take place in447

β, but it is not required for autocatalysis as it is not448

part of the type II core. In the present example, U and449

V are absent in β.450

We now apply our viability analysis to this autocat-451

alytic network in the presence of degradation reactions452

(r6 and r7 in Fig. 4c). Let us introduce a characteristic453

rate k for reactions r2, r4 and r5, a degradation rate454
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kd for reactions r6 and r7 and an exchange rate kex455

for reactions r1 and r3. Figure 4d shows the extinction456

probability as a function of the degradation rate kd457

and exchange rate kex, both normalized by k. To over-458

come the degradation threshold (Pex < 1), the ratio459

k/kd must lie above a certain threshold (vertical black460

dotted line in Fig. 4d), and the rate of exchange kex461

should outpace the rate of degradation (black slanting462

dotted line in Fig. 4d). Stochastic simulations (SI Sec.463

VII and Fig. S9) confirm autocatalytic growth in these464

conditions.465

In this example of coupled compartments, com-466

pounds are no longer restricted to one role: AB is an467

autocatalyst in α and a feedstock in β. Chemical re-468

actions are no longer restricted to one direction: The469

reaction used for reproduction in α is reused in β to470

provide the missing step to close the cycle. Such mul-471

ticompartment autocatalysis is however more general.472

For instance, a single reaction A −−⇀↽−− B + C can give473

rise to Type III motifs, given three compartments cou-474

pled by selective exchange as detailed in SI Sec. VIII475

and Fig. S9.476

DISCUSSION477

We presented a theoretical framework for auto-478

catalysis based on stoichiometry, which allows a precise479

identification of the different forms of autocatalysis.480

Starting with a large stoichiometric matrix, we provide481

criteria for reaction network motifs that allow allocatal-482

ysis and autocatalysis. A detailed analysis of the graph483

structure contained in these reduced stoichiometric484

matrices reveals that they contain only five possible re-485

current motifs, which are minimal in the sense that they486

do not contain smaller motifs. Fundamental modes of487

production of minimal autocatalytic cores are encoded488

in the column vectors of the inverse of the autocatalytic489

core submatrix. Autocatalytic cores are found to have490

a single reactant species for each reaction. This means491

that autocatalytic networks require the availability of492

certain chemical species in their cores to operate prop-493

erly, but also implies that the proper functioning of an494

autocatalytic network will guarantee the stable supply495

of certain products, a definitive advantage when these496

products are key enzymes or metabolites.497

We identified these minimal motifs in known ex-498

amples of autocatalysis such as the formose reaction,499

central metabolic cycles, the GARD model and RAF500

sets. Autocatalytic cores also provide a basis for algo-501

rithms to identify these recurring autocatalytic motifs502

in large chemical networks44,45, as has been done for503

gene regulatory networks46. In this way, we may be504

able to break the complexity of large chemical networks505

into smaller, more manageable structures47. Addition-506

ally, autocatalytic cores are the building block of evolu-507

tion in prebiotic chemistries36, thus their identification508

paves to the way of a systematic exploration of the509

possible modes chemical evolution48.510

Autocatalytic motifs provide different degrees of511

robustness, which we evaluated using the notion of via-512

bility. Viability can be computed as a survival probabil-513

ity in an appropriately defined branching process. This514

approach is generally applicable to autocatalytic mod-515

els upon identification of their cores, highlighting the516

interest of a unified framework. Viability results from517

a competition between reactions that produce autocat-518

alysts and side-reactions such as degradation. This is519

intimately related to the ‘paradox of specificity’19,40:520

autocatalytic motifs are more likely to be found in large521

networks with many different chemical components en-522

gaging in many different reactions, but putting many523

components together favors side-reactions, leading to524

extinction.525

Multicompartment autocatalysis introduced here526

offers a way around this problem: coupled compart-527

ments effectively enlarge the number of species without528

requiring new reactions. In multicompartment auto-529

catalysis, cycles rely on the environmental coupling530

of reaction networks, which allows access to condi-531

tions unattainable in a single compartment. In this532

way, autocatalysis can emerge from reaction schemes533

as simple as a bimolecular reaction, provided certain534

semi-permeability conditions are met for the exchange535

of compounds between compartments. In the example536

shown here (Fig. 4), this allowed us to reuse the com-537

pounds and reactions to complete autocatalytic cycles.538

The principle is more general, however: autocatalysis539

may also emerge from coupling phases with physical-540

chemical conditions conducive to different reactions, as541

observed in liquid-solid49, solid-gas50 interfaces. Liquid-542

liquid interfaces in cellular organization and multiphase543

coacervates43 are promising places to further explore544

such principles.545

Overall, our framework shows that autocatalysis546

comes in a diversity of forms and can emerge in unex-547

pected ways, indicating that autocatalysis in chemistry548

must be more widespread than previously thought.549

This invites to search for further extensions of auto-550

catalysis, which provides new vistas for understanding551

how chemistry may complexify towards life51.552

MATERIALS AND METHODS553

Theoretical methods and derivation of results are554

detailed in the Supplementary Appendix comprising555

the following sections: 1) Terminology and definitions,556

2) derivation of autocatalytic cores from Graph the-557

ory, 3) their chemical interpretation and 4) application558

to formose, autoinduction, metabolic cycles, chemical559

amplification, RAF sets, GARD 5) branching process560

derivation and determination of Pex. 6) determination561

of Pex for Fig. 3. 7) determination of Pex for Fig. 4d.562
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8) stochastic simulations. 9) autocatalysis from one563

bimolecular reaction and 3 compartments.564
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SUPPLEMENTARY INFORMATION681

I. TERMINOLOGY682

A. IUPAC Definitions683

To promote the consistent use of terminology,684

IUPAC committees establish recommendations which685

serve as a basis for the Compendium of Chemical Ter-686

minology (The Gold Book), of which some relevant687

entries are reproduced here. Comments in italic have688

been added for clarity.689

Chemical Reaction: A process that results in the690

interconversion of chemical species. Chemical reactions691

may be elementary reactions or stepwise reactions. (It692

should be noted that this definition includes experi-693

mentally observable interconversions of conformers.)694

Detectable chemical reactions normally involve sets695

of molecular entities as indicated by this definition,696

but it is often conceptually convenient to use the term697

also for changes involving single molecular entities (i.e.698

’microscopic chemical events’).699

Catalyst: A substance that increases the rate of a700

reaction without modifying the overall standard Gibbs701

energy change in the (net) reaction; the process is702

called catalysis. The catalyst is both a reactant and703

product of the (catalyzed) reaction. The words cata-704

lyst and catalysis should not be used when the added705

substance reduces the rate of reaction (see inhibitor).706

Catalysis can be classified as homogeneous catalysis,707

in which only one phase is involved, and heterogeneous708

catalysis, in which the reaction occurs at or near an709

interface between phases. Catalysis brought about by710

one of the products of a (net) reaction is called auto-711

catalysis. Catalysis brought about by a group on a712

reactant molecule itself is called intramolecular catal-713

ysis. The term catalysis is also often used when the714

substance is consumed in the (net) reaction (for exam-715

ple: base-catalysed hydrolysis of esters). Strictly, such716

a substance should be called an activator.717

Autocatalytic Reaction: A (net) chemical reac-718

tion in which a product (or a reaction intermediate)719

also functions as a catalyst. In such a reaction the720

observed rate of reaction is often found to increase721

with time from its initial value.722

B. Allocatalysis723

We refer to allocatalysis as the form of catalysis724

in which, at the end of a catalytic cycle, the catalyst(s)725

have not changed in number. By their equal participa-726

tion in either direction, allocatalysts will thus drop out727

of the net reaction. Some authors refer to autocatalysis728

as homocatalysis and allocatalysis as heterocatalysis,729

which is a lexicologically consistent choice of terms730

that express an opposition (same vs different). This731

opposition between same and different is e.g. found732

in the IUPAC terminology for a homogeneous cataly-733

sis (occurring in the same phase) and heterogeneous734

catalysis. For the IUPAC recommended terminology735

’autocatalysis’, a consistent choice that expresses this736

opposition is ’allocatalysis’ (self vs other).737

C. Remarks738

1. Directionality of autocatalysis739

In an allocatalytic reaction, catalysts are produced740

and consumed in equal amounts, and the term does741

not distinguish between the direction in which the re-742

action proceeds (catalysis equally increases the rates743

of ’forward’ and ’backward’ reactions by the thermo-744

dynamic criterion). In contrast, the term autocatalysis745

only applies in one direction, due to the requirement746

of having catalysts be the product of the net reaction.747

Consequently, in writing the simplest reaction balance748

A + B −−⇀↽−− AB −−⇀↽−− 2B, (10)

the definition applies when the net reaction A −−⇀↽−− B749

exhibits acceleration, owing to B being a catalyst and750

product of the net reaction. In the opposite sense,751

B −−⇀↽−− A, B is no longer a product, but it can still752

accelerate the reaction. This case is typically referred753

to as ’reverse autocatalysis’.754

A simple experimental example is the catalytic dis-755

proportionation of water adsorbed on a copper surface756

H2O(ads)52.757

2H2O(ads) 1−−⇀↽−− H2O ·OH(ads) + H(ads), (11)

H2O ·OH(ads) 2−−⇀↽−− H2O(ads) + OH(ads). (12)

Performing r1 and r2 from left to right, the catalyst758

H2O is consumed, yielding reverse autocatalysis for the759

net reaction:760

H2O(ads) −−⇀↽−− H(ads) + OH(ads). (13)

In the opposite sense, the stoichiometric conditions for761

autocatalysis are obtained:762

H(ads)+OH(ads)+H2O(ads) −−⇀↽−− 2H2O(ads). (14)

2. Inhibition763

A compound is a catalyst in the context of a par-764

ticular experimental condition where it accelerates the765

rate of a reaction. A change of those conditions may766

change this label, e.g. the compound may become an767
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inhibitor instead. Consider768

A + B 1−−⇀↽−− AB, (15)

A + E 2−−⇀↽−− AE, (16)

AE + B 3−−⇀↽−− AEB, (17)

AEB 4−−⇀↽−− E + AB. (18)

For a rate acceleration to occur for the net reaction769

A + B −−⇀↽−− AB, steps 2,3,4 must together proceed770

faster than reaction 1. Template-assisted ligation of771

DNA or RNA provides an example where this may not772

be the case: below a critical annealing temperature773

the detachment of the product (here, AB in step 4)774

becomes increasingly slower for longer strands, and the775

template becomes an inhibitor.776

3. Autonomy and siphons777

The concept of autonomy is closely related to the778

concept a siphon in Chemical Reaction Networks (CRN)779

theory53: A Siphon Σ is a subset Σ ⊂ S of all species780

S, which for each reaction that has a species in Σ as a781

product, has at least one of its reactants in Σ.782

In this definition, a reaction can be irreversible783

in a mathematical sense: the reverse reaction does784

not exist. For a reversible CRN, a reverse reaction785

does exist, and the siphon definition must apply to786

the forward and backward direction, thus becomes787

equivalent to autonomy. A reaction must then imply788

both one or more products and one or more reactants789

from Σ (siphon reactions), or none at all (external790

reactions). Note that autonomy is less restrictive than791

the conditions posed in Barenholz et al.24, where in792

addition species must be both reactant and product793

of a reaction. This last conditions is a proved as a794

consequence for minimal structures in our choice of795

formalism (see below).796

II. MATHEMATICAL DERIVATION OF797

AUTOCATALYTIC CORES798

A. Reaction graph definitions799

Reaction graphs described below correspond to800

weighted directed hypergraphs without self-loops in the801

language of graph theory. In this section, the word cycle802

is used in the sense of graph theory (see below), not803

in the sense of reaction cycle used to denote right null-804

vectors of the stoichiometric matrix. In the following,805

letters used for scalars indicate positive numbers, and806

cycles and paths are understood as directed.807

Definition 1. A reaction graph H is a triplet808

(S,R,M) where {s1, ..., sn} is the species set, R =809

{r1, ..., rm} is reaction set, each rj being an ordered810

pair (Xj, Y j) of non-empty and non-intersecting sub-811

sets of S respectively called reactants and products, and812

M is the stoichiometric matrix with coefficients mij.813

mij = 0 when the species si does not participate to the814

reaction rj, mij < 0 when species si is a reactant of815

rj, and mij > 0 when species si is a product of rj.816

The stoichiometric matrix M contains all the in-817

formation about the hypergraph, the column of M818

corresponding to reactions, and the rows to species.819

Definition 2. A subgraph of H = (S,R,M) is a820

triplet H′ = (S′, R′,M ′) where S′ is a subset of S, R′821

is a set of reactions which reactants and products are822

in S′ and intersect the reactant set and product set823

of a reaction in R, with corresponding stoichiometric824

coefficients M ′.825

Definition 3. A reaction graph is square if it has the826

same number of reactions and species.827

Definition 4. A directed path is a sequence of alter-828

nating species and reactions, all reactions and species829

being distinct, where species which precede and succeed830

a reaction are respectively a reactant and a product of it.831

A path is a minimal path if it is not possible to form832

a path starting and ending at the same species using a833

strict subset of its reactions. A path is semi-open if834

it either starts or ends with an edge.835

Definition 5. In a directed path, an edge has a back-836

branch if one of its products is a species located up-837

stream in the path, and this product is called a back-838

product. An edge has a forward-branch if one of its839

reactants is a species located downstream in the path,840

and this product is called a forward-reactant.841

Definition 6. A cycle has an identical definition as a842

path, except that the first and last species are the same843

species. A cycle is minimal if it is not possible to form844

a cycle with a subset of its species and reactions.845

Definition 7. A species S is the solitary reactant846

(product) of a reaction if S is the only reactant (resp.847

product) of this reaction, otherwise it is a co-reactant848

(resp. co-product).849

Definition 8. A reaction is simple if has a single850

reactant and a single product.851

Definition 9. Consider a simple reaction R with re-852

actant x and product y, with respective stoichiometries853

−a and b. The contraction of R consists of: (i) re-854

moving R; (ii) merging x and y into a single species z,855

and; (iii) multiplying by a (resp. b) the stoichiometric856

coefficients associated with z for all reactions formerly857

associated with x (resp. y).858

Definition 10. In a square graph, a perfect match-859

ing is a bijection between species and reactions. It860

corresponds to all pairs (i, σ(i))i=1...N , where i is the861
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index of a species, σ is a permutation of [1...N ], and862

σ(i) is the index of a reaction. A perfect matching of863

a graph, or a subgraph, G is called a G-matching.864

Remarks:865

• Consider reactions E = ({a}, {b, c}) and F =866

({b}, {c}); a− E − b− F − c is a path, but it is867

not minimal because it contains a−E−c. Simple868

paths are necessarily minimal (Fig. S1a).869

• Consider E = ({a}, {b}) and F = ({b}, {a, c});870

a−E − b−F − c is a minimal path and F has a871

back-branch (Fig. S1a). In particular, it contains872

a cycle a− E − F − a.873

• Simple paths are exactly cycle-free minimal874

paths.875

• More generally, a minimal path can have back-876

products and forward-reactants (Fig. S1a).877

• A hypergraph cycle can have reactions connecting878

several of its species, but a minimal cycle cannot.879

Thus, a minimal cycle only contains simple paths880

(it is identical to a cycle in a regular graph).881

• Cycles are square.882

B. Relationship with linear algebra883

x � 0 denotes a real vector with only strictly884

positive coordinates.885

Definition 11. A matrix M is productive if there886

exists a real vector γ such that M . γ � 0. Equivalently,887

M intersects the strictly positive orthant IRn
>0.888

Definition 12. A matrix is autonomous if its889

columns all contain a strictly negative and a strictly890

positive coefficient.891

Definition 13. A minimal cycle is weight-892

symmetric if the product of the absolute values893

of the stoichiometric coefficients associated with its894

reactants equals the product of the stoichiometric895

coefficients associated with its products. Otherwise, the896

cycle is weight-asymmetric.897

Remarks:898

• Autonomous matrices are stoichiometric matrices899

of reactions systems such that every reaction has900

at least one reactant and at least one product.901

• The Leibniz formula for the determinant shows902

that the non-zero terms of det(M) exactly cor-903

respond to the products of stoichiometric coeffi-904

cients mi,σ(i) determined by each possible perfect905

matching of the graph.906

• A minimal cycle C has exactly two perfect match-907

ings, which correspond to the matching of its908

reactions with their solitary reactants and soli-909

tary products respectively. det(C) = 0 if and only910

if C is weight-symmetric.911

• Be H′ the hypergraph obtained from H by con-912

tracting a simple reaction R. The cofactor expan-913

sion implies that |det(H′)| = |det(H)|. Addition-914

ally, any cycle C of H becomes a cycle C′ in H′ ob-915

tained by contracting R, and |det(C′)| = |det(C)|.916

C. Autocatalytic cores917

Definition 14. A core is a minimal productive reac-918

tion graph, i.e. a reaction graph that does not contain919

any productive subgraph.920

Finding cores is equivalent to finding minimal ma-921

trices which are productive and autonomous. In this922

section, we denote M ∈ IRn,m the stoichiometric ma-923

trix of the graph H, where n is the number of rows924

(species) and m the number of columns (reactions).925

If M is productive, we denote γ a vector such that926

M.γ � 0. Productivity of M is indifferent to the sign927

of its columns as the sign of the coefficients of γ is not928

constrained. Therefore, we choose the convention that929

any productive vector γ is positive, up to taking the930

opposite for some columns of M .931

Remarks:932

• M invertible implies M productive, as the image933

of M is then the full space IRn,m, which contains934

the strictly positive orthant.935

• Below, species or reactions ’can be removed’ is936

understood as ’can be removed while preserving937

productivity and autonomy’. Being able to re-938

move a row (a species) or a column (a reaction)939

contradicts the minimality of a core.940

• Removing columns (reactions) preserves auton-941

omy, but not necessarily productivity.942

• Removing rows (species) preserves productivity,943

but not necessarily autonomy.944

• A row corresponding to a species that is always945

a co-reactant or a co-product can be removed946

without affecting autonomy (every column still947

contains positive and negative coefficients) and948

productivity.949

Proposition 1. In a core, every species is both a950

reactant and a product.951

Proof. Every species must be produced, otherwise it952

would not be possible to find a positive γ verifying953

M.γ � 0. Now, suppose a species S is never a reactant954
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and only a product. All reactions such that S is their955

only product can be removed without affecting the956

productivity of other species. In the resulting graph,957

either S is not the product of any reaction anymore,958

or S is only a co-product of the remaining reactions.959

In both cases, S can be removed without affecting960

autonomy.961

Proposition 2. A core is square, invertible, every962

species is the solitary reactant of a reaction, and is963

reactant for this reaction only.964

Proof. Consider M ∈ IRn,m a productive stoichiomet-965

ric matrix with n species and m reactions, with rank966

k. Obviously k ≤ m,n. We must also have m = k,967

otherwise a column could be removed while preserving968

the image of M , thus productivity. Additionally, every969

species must be the solitary reactant of at least one970

reaction, otherwise it could be removed. This implies971

m ≥ n. Overall, k = m ≥ n ≥ k, so that k = m = n,972

meaning that M is square and invertible. As every973

species S is the solitary reactant of at least one reac-974

tion R and m = n, the species is a reactant for only975

R.976

Remark: Property 2 implies that M can be re-977

arranged in such a way that it has a strictly negative di-978

agonal, and only non-negative off-diagonal coefficients.979

Proposition 3. In a core, a square autonomous sub-980

matrix must have a product outside its set of species.981

Proof. Be A a square autonomous submatrix of M and982

write M =
(
A C
B D

)
. We need to show that B > 0.983

As A is autonomous, every A-reaction has a reactant984

in the set of A-species. By Property 2, reactants are985

always solitary, thus B ≥ 0. Now suppose B = 0. Then986

det(M) = det(A).det(D). Either det(A) = 0, implying987

det(M) = 0, contradicting M invertible, or det(A) 6= 0,988

then A is productive, contradicting the minimality of989

M .990

Proposition 4. A core is strongly connected.991

Proof. Consider a species x0 of M . Below, we recur-992

sively construct sets Dk = {x1, ..., xk} of increasing993

cardinal, such that every xi is downstream x0, until994

k = n− 1, implying that for any species y 6= x, there995

exists a path from x to y. We denote R(S) the only996

reaction with reactant S, which is well defined by Prop-997

erty 2. Step 1: We take x1 as a product of R(x0).998

Step k: Suppose Dk exists, k < n − 1. Re-arrange999

M such the top left block A of size k corresponds to1000

species set Dk and reaction set R(Dk). As A is au-1001

tonomous, by Property 3, there exists a species xk+11002

outside of Dk which is downstream Dk, hence Dk+11003

exists.1004

Proposition 5. In a core, every species is involved in1005

a cycle.1006

Proof. Obvious from Property 4, considering the back1007

and forth paths joining any two species.1008

Proposition 6. Consider a partition of a core into1009

two species sets V and W . V cannot be upstream of1010

W , i.e. reactions with products in W cannot have all1011

their reactants in V .1012

Proof. Suppose on the contrary that M can be written1013

M =
(
A B
0 C

)
where A and B span V , C spans W ,1014

and B ≤ 0. Given the latter inequality, Property 11015

implies that A is non-empty and autonomous. Consider1016

γ > 0 such that M.γ � 0. Be α and β the respective1017

restrictions of γ to the reaction spaces of A and B.1018

Then A.α + B.β � 0. As B.β ≤ 0, we have A.α � 0,1019

contradicting the minimality of M .1020

The definitions below are generalizations of the1021

notion of ear decomposition in regular graphs (Fig.1022

S1b).1023

Definition 15. A hyper-ear is a hypergraph compris-1024

ing a minimal cycle C, called the base cycle, such that1025

C has a reaction with a product x outside C, and a min-1026

imal path P starting at x, such that its last reaction,1027

R, has a product in C, R being the only P-reaction1028

to have a product in C. A proto-ear has a similar1029

definition, but where C is a simple path (called the base1030

path) instead of a minimal cycle.1031

Description of proto-ears and hyperears - In1032

a hyper-ear or a proto-ear, any C-reaction can have x1033

as a product, and any C-species can be the product of1034

R, the last reaction of P (Fig. S1b). We denote by u1035

a species which is the product of R, v any C-species1036

which is the reactant of a C-reaction which produces1037

x, ’−’ a simple path (including the empty path), o a1038

simple path comprising at least one species, o being a1039

subcase of the ’−’ category. By convention, a uv motif1040

can correspond to a single same species which is both a1041

R-product and a reactant for x production. Any proto-1042

ear falls into a class described by a chain made of the1043

symbols u, v, o, and ’−’, as soon as it contains at least1044

a u and a v. Reciprocally, any such chain represents1045

one or more proto-ears. Any hyper-ear is obtained by1046

cyclic closure of the base path of a proto-ear. Such1047

closure is denoted by the ′∗′ symbol at the beginning1048

and the end of the chain.1049

Theorem 1. Cores are of one of the following types:1050

• TYPE I: a weight-asymmetric minimal cycle;1051

• TYPE II: a cycle comprising all species as soli-1052

tary reactants, and one or more weight-symmetric1053

sub-cycles without intersection between them;1054
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• TYPES III-IV-V: one of the three types of hyper-1055

ears, any subcycle of which is weight-symmetric:1056

(III) ∗u−vo∗; (IV) ∗u−u−v∗; (V) ∗u−v−u−v∗.1057

Proof. Core type are represented in Fig. S1c. H1058

denotes the reaction graph and M its stoichiometric1059

matrix.1060

1061

SUFFICIENCY1062

1063

Step 1: All types have a non-zero determinant.1064

TYPE I: Invertibility is a direct consequence of1065

the remark on the determinant of minimal cycles.1066

TYPE II: Consider a minimal weight-symmetric1067

subcycle C of H. Any H-matching consistent with a1068

C-matching can be associated to another H-matching1069

obtained by reversing the C-matching. Thus, det(H)1070

has the form det(C).α + β, where the first term com-1071

prises all C-consistent H-matchings. As det(C) = 0, it1072

suffices to show that β is a single non-zero term. By1073

Property 3, C must have a reaction R1 with a prod-1074

uct x1 outside of C. As by definition of TYPE II,1075

subcycles are non-intersecting, R1 must be the only1076

C-reaction with a product outside C, and x1 must be1077

the only product of R1 outside C. All non-zero terms1078

in β require matching R1 to x1, otherwise R1 would1079

be matched with a C-species, which would impose a C-1080

matching (C being a minimal cycle), contradicting the1081

definition of β. We now order the indexes k following1082

the downstream order of the xk species along H, and1083

show recursively that β corresponds to the H-matching1084

where every Rk matches xk: (step 1) By construction,1085

R1 matches x1. (step k) Suppose Rk−1 matches xk−1.1086

Either Rk is a simple reaction, and, as its reactant xk−11087

is already matched, Rk necessarily matches its only1088

product xk. Or Rk has a back-branch forming a mini-1089

mal cycle. However, cycles are non-intersecting, so that1090

the back-product xi of Rk is necessarily downstream1091

xk and upstream xk−1, thus xi is already matched by1092

the recursion hypothesis. Thus, Rk can only match xk.1093

TYPES III-IV-V: Consider the stoichiometric ma-1094

trix M with non-negative off-diagonal coefficients:1095

M =

−1 c e
a −1 f
b d −1

 (19)

We have det(M) = −1+df +ac+ade+bcf +be. Strict1096

subcycles must be weight-symmetric, as otherwise, the1097

minimality of M would be contradicted. Consequently,1098

when their factors are both non-zero, the products df ,1099

ac, and be must be equal to 1. By contracting all1100

simple reactions and multiplying the columns of M1101

if necessary so that solitary reactant stoichiometries1102

are all normalized to −1, TYPE III corresponds to1103

d = f = 0 and a, b, c, e > 0, TYPE IV to f = 01104

and a, b, c, d, e > 0, and TYPE IV to all coefficients1105

strictly positive. In all these cases, we have det(M) >1106

−1 + ac+ be = 1.1107

Step 2: All types are minimal1108

TYPE I: Removing any subset of species or reac-1109

tions would result in an acyclic graph, contradicting1110

Property 5.1111

TYPE II: Removing any subset of species or reac-1112

tions either leads to a hypergraph where a subset of1113

species is upstream the rest, contradicting Property 6,1114

or to a non-invertible minimal cycle.1115

TYPE III-V: Removal of any set of reactions (and1116

a fortiori of species, given that they all are solitary1117

reactants) leaves at most one cycle in the graph, the1118

latter being non-invertible.1119

1120

NECESSITY1121

1122

By Property 5, there exists a minimal cycle C in1123

H. Either C is weight-asymmetric, then H = C is of1124

TYPE I. Or C is weight-symmetric. Then, by Property1125

3, there is a C-reaction with a product x outside C. By1126

Property 4, there exists a path P from x to any species1127

in C (Fig. S1d). We can take P minimal and such that1128

only its last reaction has a product in C, thus forming1129

a hyper-ear ∗mu−vm∗ where m symbols stand for any1130

other hyper-ear motif. Below, we show that hyper-ears1131

are either one of the types II-V, or contain a TYPE1132

II, III or IV core as a subgraph, overall demonstrating1133

that H is necessarily a hyper-ear of TYPE II-V.1134

Before continuing the proof of the theorem, we1135

show an additional property based on the sufficiency1136

of TYPE I and TYPE III.1137

Proposition 7. In a core, a minimal path can have1138

back-branches but no forward-branch, and the cycles1139

formed by back-branches are non-intersecting.1140

Proof. Consider a minimal path P in a core H.1141

Forward-branches require reactions to have multiple1142

reactants, contradicting Property 1. Therefore, P is1143

either a simple path or it has back-branches. Suppose1144

there exists two back-products y and z of the respective1145

reactions ry and rz, respectively forming intersecting1146

cycles Cy and Cz (Fig. S1e). Without loss of gener-1147

ality, y and z can be taken closest, y upstream of z,1148

and such that there is no other cycle nested within1149

Cy and Cz than possibly themselves. Cz is necessarily1150

weight-symmetric, as it would otherwise contradict the1151

minimality of H. There are two cases. Case 1: rz is1152

upstream ry (Cz is nested within Cy). Call P ′ the path1153

from the product of rz to ry then y then z. Then Cz1154

and P ′ form a TYPE III core. Case 2: ry is upstream1155

rz (Cz and Cy are entangled). Call P ′ the path joining1156

y to z. Then Cz and P ′ form a TYPE III core. Overall,1157

we have shown that the existence intersecting cycles1158

along a minimal contradicts the minimality of H.1159
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We now go back to the proof of the theorem.1160

Proof. Consider the minimal path P of the hyper-ear,1161

where P starts at x. By Property 7, P has no forward-1162

branch.1163

Case A (TYPE II): Suppose P has one or more1164

back-branch. Consider a reaction R′ of P which has a1165

back-branch, with back-product y′ and forming a cycle1166

C′. C′ is necessarily weight-symmetric by minimality of1167

H. Call x′ the product of R′ outside C′. Consider the1168

path P ′ starting at x′, then going downstream of P1169

until it reaches a shortest subpath u−v of C, then to x,1170

and finally from x to y′ in P . By Property 7, all cycles1171

along P are non-intersecting, and by construction, C1172

is non-intersecting with the cycles of P. Consequently,1173

P ′ only has non-intersecting cycles, so that C′ and1174

P ′ form a TYPE II motif. Thus, the base cycle of1175

the hyper-ear cannot have species outside u − v, as1176

otherwise the core made of C′ and P ′ would be a strict1177

subset of H, contradicting its minimality. This shows1178

that H is a ∗u − v∗ hyper-ear with a minimal path1179

comprising non-intersecting cycles, the latter being1180

necessarily weight-symmetric. Thus H is a TYPE II1181

core.1182

Case B (TYPES III-V): Suppose P has no1183

back-branch, in other words P is a simple path.1184

Subcase B.1 (TYPE III): Suppose H a hyper-ear1185

which has only one u and one v symbol, thus a ∗u−v−∗1186

hyper-ear. The case ∗u − v∗ with a simple path is1187

covered by the definition of TYPE II. If the ′−′ symbol1188

does not represent an empty path, then it comprises1189

at least one species, so that H is a ∗u− vo∗ hyper-ear1190

with simple path P, corresponding to TYPE III.1191

Subcase B.2 (TYPE IV): Suppose the hyper-ear1192

comprises one u or v symbol in addition to the u− v1193

motif. We first note that u−u− v and u− v− v proto-1194

ears are isomorphic to ∗u− v − ∗, which falls into the1195

categories of TYPE II or TYPE III cores. Therefore,1196

in a core, a hyper-ear containing two successive u or v1197

symbols is necessarily of the form ∗u− u− v∗ or ∗v −1198

v − u∗, or their cyclic permutations, as any additional1199

symbol would allow to find a strict subgraph u− u− v1200

or u−v−v forming a core, contradicting the minimality1201

of H. Furthermore, ∗u− u− v∗ and ∗v− v− u∗ hyper-1202

ears are isomorphic. Indeed, the matrices of their1203

reduced forms correspond to the matrix shown in the1204

SUFFICIENCY section of the theorem, where exactly1205

one coefficient is set to zero. Thus, these motifs as well1206

as all their cyclic permutations, fall into the category1207

of TYPE IV.1208

Subcase B.3 (TYPE V): Subcase B.2 imposes that1209

any motif containing four or more u or v symbols must1210

alternate u and v symbols. Any motifs with five or1211

more u or v symbols contains, up to permutation, a1212

u−v−u−v proto-ear as a strict subgraph. However, the1213

latter is isomorphic to TYPE IV cores, which implies1214

that ∗u − v − u − v∗ (TYPE V) is the only motif in1215

this class which does not contradict the minimality of1216

H.1217

1218

III. CHEMICAL INTERPRETATION OF1219

AUTOCATALYTIC CORES1220

We remind that the notion of ’graph cycle’ (closed1221

successions of nodes and edges) differs from the notion1222

’reaction cycle’ (right null vectors of the stoichiomet-1223

ric matrix). The latter name was historically chosen1224

because the two notions overlap in the particular case1225

of the simplest catalytic cycles, but there are counter-1226

examples for both (we give one later). We employ1227

’reaction cycle’ and ’graph cycle’ to distinguish these1228

notions.1229

By the minimality of autocatalytic cores, an au-1230

tocatalytic motif is either a core, or it contains one or1231

several cores. If P is a property of cores, then for any1232

autocatalytic motif, either it verifies P , or it contains1233

an autocatalytic motif verifying P . In particular,1234

• by Property 1, every autocatalytic motif contains1235

an invertible autocatalytic motif;1236

• by Property 2, every autocatalytic motif contains1237

an autocatalytic motif such that every product1238

is also a catalyst of the reaction, or equivalently,1239

such that every species appears on both side of1240

the total chemical equation.1241

The five categories of cores are schematically rep-1242

resented in Fig. S1c. The convention of representation1243

are as follows. The edges of the graph correspond to1244

reactions and the yellow nodes to species. Reaction1245

have two sides, the reactant side and product side, and1246

each side of the edge representing the reaction connects1247

to one or several nodes representing the species, with1248

a stoichiometry for each connection. In the Type I1249

core, the edge from the top node to the bottom node1250

ends with a fork, the two ends of which connect to a1251

single bottom node (S1c). This means that the bottom1252

species is produced with a stoichiometry of 2 by this1253

reaction. For simplicity, we have represented the con-1254

nection between all other edges and nodes without fork.1255

However, in all generality, any connection between a1256

edge and a node could be a fork (e.g. could be of1257

stoichiometry >1), as soon as the rules on graph cycle1258

symmetry are respected, as explained below. Forks also1259

appear in Types II-V, but where they connect to two1260

distinct nodes, which are two distinct product species.1261

The orange squares indicate that the reaction repre-1262

sented can be replaced by a chain of reactions with a1263

single reactant species and a single product species.1264

The mathematical derivations are done without1265

constraint on the number of reactants or products a1266

reaction step can have. However, in a chemical system,1267
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elementary reactions are in principle either unimolecu-1268

lar or bimolecular. This restricts the range of possible1269

core graphs. This restriction operates only at the level1270

of the stoichiometry of each single reaction, not at the1271

level of the overall structure of cores. Indeed, even1272

without invoking the restriction on bimolecularity, the1273

mathematical derivation results in cores such that ev-1274

ery reaction step involves at most a single species as1275

reactant and at most two species as products, so that1276

bimolecularity can always be respected, provided rules1277

on the stoichiometry of each connection.1278

In a chemical autocatalytic core, an edge with a1279

fork connecting to two distinct nodes (e.g. a reaction1280

with two distinct product species) must have a stoi-1281

chiometry 1 for each connection in order to respect1282

bimolecularity. If a reaction has only one product1283

species, then its stoichiometry can be 1 or 2, as soon1284

as it respects rules on cycle stoichiometry, which we1285

detail now.1286

Consider a simple graph cycle C, simple meaning1287

that every reaction as a single reactant species and1288

a single product species. Note ai (resp. bi) the stoi-1289

chiometry of the reactant (resp. product) of reaction i.1290

If
∏
i ai 6=

∏
i bi, we say that C is weight-asymmetric,1291

otherwise it is weight-symmetric. Weight-asymmetric1292

simple graph cycles are an example of graph cycle1293

which has no reaction cycle. Weight-symmetric graph1294

cycle taken in isolation have a reaction cycle (their1295

determinant is zero as shown in the derivation of cores1296

above), thus they correspond to allocatalytic cycles1297

in the context of a larger reaction graph where the1298

reactions of the graph cycle consume and/or produce1299

species outside of its own species set. The most classic1300

example of an allocatalytic cycle is represented in Fig1301

S1f, where reactant S is provided from the environment,1302

binds to catalyst E to form complex ES converted into1303

EP, finally dissociated into E which is recycled, and1304

product P.1305

Type I cores are weight-asymmetric simple graph1306

cycles, as C in S1c . Consequently, in types II-V, any1307

simple graph cycle must be weight-symmetric (these1308

graph cycles corresponding reaction cycles), otherwise1309

the core would contain a Type I core, contradicting its1310

minimality. For example in S1c: in Type II, C must1311

be symmetric, but this does not apply to C′ because1312

it is not even a simple cycle; in types III-V, C, C′ and1313

C′′ must be symmetric. Type II cores consist of a1314

large graph cycle (C′ in Fig S1c) comprising smaller1315

graph cycles embedded within it (for example C in Fig1316

S1c). Given the above, each of these smaller cycles1317

must be weight-symmetric, and obeys the definition of1318

an allocatalytic cycle. The Type II category includes1319

circularly closed successions of such allocatalytic cy-1320

cles, where the product of one allocatalytic cycles is1321

the catalyst of the next allocatalytic cycle, which is1322

a typical example of autocatalytic set. In addition1323

however, Type II allows intermediate non catalyzed1324

reaction steps.1325

Notably, every core follows the basic structure1326

represented on Fig S1d, comprising a base cycle C and1327

a minimal path (in the sense of reaction hypergraphs,1328

see former section) starting from a reaction fork and1329

joining back to a node of C. This structure should1330

enable a systematic algorithmic search for autocatalytic1331

motifs in large stoichiometries.1332

We illustrate the concepts of autocatalytic sub-1333

motif and the properties demonstrated above on a toy1334

model for the Formose reaction, to which we have added1335

one auxiliary reaction C3 −−⇀↽−− D3, so that we obtain1336

a stoichiometric matrix1337

1 2 3 4

ννν =

C1

C2

C3

D3

C4


−1 −1 0 0
−1 0 2 0
1 −1 0 −1
0 0 0 1
0 1 −1 0


C1 + C2

1−−⇀↽−− C3

C1 + C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2 C2

C3
4−−⇀↽−− D3

(20)

this full matrix has a left nullvector lll = (1, 2, 3, 3, 4),1338

i.e. we have a mass-like conservation law1339

L = nC1
+ 2nC2

+ 3nC3
+ 3nD3

+ 4nC4
. (21)

Thus, this matrix does not correspond to an autocat-1340

alytic motif. Upon removing C1 (then considered as a1341

feedstock molecule), we obtain an autocatalytic matrix1342

ννν∗1343

1 2 3 4

ννν∗ =

C2

C3

D3

C4

−1 0 2 0
1 −1 0 −1
0 0 0 1
0 1 −1 0


C2

1−−⇀↽−− C3

C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2 C2

C3
4−−⇀↽−− D3

(22)

This matrix is autonomous and invertible with1344

inverse:1345

ννν−1
∗ =

1
2
3
4

1 2 2 2
1 1 1 2
1 1 1 1
0 0 1 0

 = (gggC2 , gggC3 , gggD3 , gggC4). (23)

The columns of the inverse are reaction vectors1346

associated to a given species, of which they produce1347

one extra unit. We will refer to them as elementary1348

production modes.1349

Among the production modes, gggD3 = (2, 1, 1, 1)T1350

is the sole vector which uses the auxiliary reaction, and1351

D3 only ever occurs as a product1352

2C2 + 2C3 + C4
gggD3
−−−⇀↽−−−−
−gggD3

2C2 + 2C3 + C4 + D3. (24)

If we now consider ΓΓΓ = gggC2 + gggC3 + gggD3 + gggC4 , we1353
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obtain a reaction balance such that every species has a1354

net increase:1355

ΓΓΓ : 7C2 +6C3 +4C4 −−→ 8C2 +7C3 +5C4 +D3. (25)

ννν∗ is not minimal as D3 is only produced, and does1356

not participate as a catalyst. Indeed, Property 2 im-1357

plies the existence of an autocatalytic submotif without1358

species which does not participate as a catalyst. An1359

autocatalytic submotif is obtained by removing the1360

reaction1361

C3 −−⇀↽−− D3, (26)

and the species D3, to obtain the autonomous subma-1362

trix ν̄̄ν̄ν1363

1 2 3

ν̄̄ν̄ν =
C2

C3

C4

−1 0 2
1 −1 0
0 1 −1

 C2
1−−⇀↽−− C3

C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2 C2

(27)

The matrix ν̄̄ν̄ν is also invertible1364

ν̄̄ν̄ν−1 =
1
2
3

1 2 2
1 1 2
1 1 1

 = (gggC2 , gggC3 , gggC4). (28)

The columns of ν̄̄ν̄ν−1 correspond to reaction vectors,1365

whose application yields one net copy of the corre-1366

sponding molecule, e.g. ∆nk = (ν̄̄ν̄ν · ggg(k))k = 1. This is1367

illustrated for C2 in Fig. S2.1368

The individual replication cycles are1369

C2 + C3 + C4
gggC2
−−−⇀↽−−−−
−gggC2

2C2 + C3 + C4 (29)

2C2 + C3 + C4
gggC3
−−−⇀↽−−−−
−gggC3

2C2 + 2C3 + C4

2C2 + 2C3 + C4
gggC4
−−−⇀↽−−−−
−gggC4

2C2 + 2C3 + 2C4

We can construct ΓΓΓ = gggC2 + gggC3 + gggC4 , which leads to1370

the overall reaction1371

5C2 + 4C3 + 3C4
ΓΓΓ−−⇀↽−−
−ΓΓΓ

6C2 + 5C3 + 4C4. (30)

We see here that every species has a net production1372

and is on both sides of the balance, thus participates1373

as a autocatalyst. Furthermore, ν̄̄ν̄ν is a Type I core and1374

consequently does not contain any smaller autocatalytic1375

submotifs.1376

A. Autoinduction1377

The concept of autoinduction was put forward by1378

D. Blackmond21, to distinguish between autocataly-1379

sis that is mediated by external catalysts (i.e. not1380

part of the autocatalysts that are reproduced) called1381

’autoinduction’, and autocatalysis that functions with-1382

out the aid of external catalysts (i.e. all catalysts are1383

autocatalysts). We thus obtain a hybrid of pure al-1384

locatalysis and autocatalysis, for which the simplest1385

example would be1386

A + B + E −−⇀↽−− 2A + E. (31)

The IUPAC definitions impose that autoinduction quali-1387

fies as autocatalysis. It follows then from our framework1388

that we can find autocatalytic cores in autoinduction1389

networks, which is indeed confirmed in Fig. S3 for the1390

two types of autoinduction that have been proposed21.1391

The concept of ’autoinduction’ addresses a no-1392

tion of self-sufficiency (also encountered in RAF sets,1393

Sec.IIID): external allocatalysts become essential to1394

succesful autocatalysis, yet they are not reproduced.1395

Depending on the context, they could be seen as part1396

of the environment, in the same sense as essential feed-1397

stock species. Examples of autoinduction occur in1398

autocatalytic metabolic networks (with locally allocat-1399

alytic enzymes) or e.g. the formose reaction which is1400

often catalyzed by base and divalent metal ions.1401

The presence of external allocatalytic cycles does1402

not add new cycles to the autocatalytic core. A practi-1403

cal consequence is that one can write catalyzed reac-1404

tions very compactly for the core, while still maintain-1405

ing nonambiguity, which we make use of in our analysis1406

of metabolic cycles.1407

B. Metabolic cycles1408

At least two metabolic cycles are known to be1409

autocatalytic. In our analysis of autoinduction, we1410

pointed out that the core does not contain external1411

allocatalysts (here: enzymes). Written purely in terms1412

of autocatalysts, we find a Type II autocatalytic core1413

for the reverse Krebbs cycle (Fig. S4a). For the Calvin1414

cycle depicted in Fig. S4b, we identify three Type I1415

cores (two structurally equivalent, differing only in the1416

reaction chosen to link the same core species) and 4 of1417

Type II.1418

C. Chemical amplification1419

Chen et al.38,54 advanced a general strategy to1420

achieve self-amplifying behavior, demonstrated by the1421

encapsulation of the reactive compound DCC in a cav-1422

itand (indicated by an oval around the molecule in1423
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EDCC, Fig. S5), which they referred to as chemical1424

amplification. This phenomenon is consistent with the1425

IUPAC definition of autocatalysis, which we will now1426

illustrate by finding its autocatalytic core.1427

Let us first assess a reaction network formed by1428

two reactions proposed by Chen et al, in absence of1429

the cavitand complexes. In that case, applying our for-1430

malism readily reveals that the network cannot exhibit1431

autocatalysis: there are no autocatalytic submatrices.1432

1 2

ννν =

DCC
X
I1
Y

DCU
Z


−1 0
−1 0
1 −1
0 −1
0 1
0 1


DCC + X 1−−⇀↽−− I1,
I1 + Y 2−−⇀↽−− DCU + Z.

(32)

Now, let us add the species EDCC and two exchange1433

reactions with DCU and Z that liberate DCC, i.e.1434

DCC + X 1−−⇀↽−− I1, (33)

I1 + Y 2−−⇀↽−− DCU + Z, (34)

EDCC + DCU 3−−⇀↽−− DCC + EDCU, (35)

EDCC + Z 4−−⇀↽−− DCC + EZ, (36)

for which we have the matrix1435

1 2 3 4

ννν =

DCC
X
I1
Y

DCU
Z

EDCC
EDCU

EZ



−1 0 1 1
−1 0 0 0
1 −1 0 0
0 −1 0 0
0 1 −1 0
0 1 0 −1
0 0 −1 −1
0 0 1 0
0 0 0 1


(37)

This network admits an autocatalytic submatrix, and1436

we obtain an autocatalytic core of Type III consisting1437

of the species DCC, I1, DCU and Z, as can be seen in1438

Fig. S5b. The new reagent EDCC serves as a feedstock1439

compound, that allows to dispense new DCC, that can1440

now serve as an autocatalyst. The generality of the1441

mechanism follows from an exchange that could have1442

been performed with different reactants than DCU and1443

Z to yield an equivalent network, as shown in Refs38,54.1444

D. Autocatalysis in RAF sets1445

A definition of Reflexively Autocatalytic Food-1446

generated sets can be found in Ref.20: a set of reactions1447

R is RAF if every reaction is catalyzed by at least one1448

molecule involved in a reaction in R, and every reactant1449

in R can be constructed from the food set f by successive1450

applications of reactions from R. The philosophy1451

behind the RAF set is that ’every reaction’ in a RAF-1452

set can be accelerated by the catalysts themselves.1453

RAF sets do not perform autoinduction, except when1454

members of the food set f within a RAF-set also serve1455

as allocatalysts.1456

In the RAF-set formalism, reaction and catalysis1457

are distinct mathematical objects. Graphically, RAF-1458

sets are typically represented as bipartite graphs (S6a),1459

with nodes (white squares) corresponding to reactions,1460

which connect to nodes (colored circles) which serve1461

as reactants (entering bold arrow) and products (leav-1462

ing bold arrow) via directed edges. A dashed arrow1463

connecting to a reaction indicates that a species is a1464

catalyst for a reaction. Within the RAF framework,1465

the following terms are employed as distinct: i) auto-1466

catalytic reaction ("is a single chemical reaction for1467

which one of the products also catalyzes the reaction"),1468

ii) autocatalytic cycle ("is a sequence of reactions that,1469

once completed, results in two (or more) copies of the1470

molecule that was started with"such as the toy formose1471

reaction), iii) autocatalytic set (or RAF set).1472

It is important to note that the RAF-set formalism1473

and the distinctions above depend on the chosen level of1474

coarse-graining of the description. In that description1475

(see Fig. S6a) allocatalysts in the same allocatalytic1476

cycle are represented by a single species. The combi-1477

nation of reactions that form the allocatalytic cycle1478

is represented by a single dashed line, connecting to1479

an uncatalyzed reaction. Here, there exists a level of1480

description where a RAF set appears as autocatalytic1481

reaction involving catalytic cycles. By comparing Figs.1482

S6a, we see that the level of description is critical in1483

assessing whether a network is a RAF-set or not. From1484

the definition of a RAF-set, the detailed version of the1485

network in Fig.S6a would not be a RAF, but the less1486

detailed description next to it would be.1487

Another example is the toy formose reaction,1488

where two different choices of coarse-graining yield1489

two different description in the RAF framework. Even1490

when neglecting the role of catalytic base and metal1491

ions, the toy formose reaction without coarse-graining1492

is not a RAF-set29, since its individual steps are not1493

catalyzed:1494

C1 + C2 −−⇀↽−− C3, C1 + C3 −−⇀↽−− C4, C4 −−⇀↽−− 2C2.
(38)

Framed solely in terms of C1 and one autocatalyst (e.g.1495

C2, C4) one could propose a description in which we are1496

oblivious of these steps, and write it as an autocatalytic1497

reaction in the sense of RAF sets, such as1498

2C1 + C2 −−⇀↽−− 2C2, 4C1 + C4 −−⇀↽−− 2C4. (39)

This would work as long as we consider them satisfac-1499

tory levels of description, depending on the context1500
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(e.g. further reactivity of intermediates, separation of1501

timescales): either of these hypothetical cases satisfy1502

the RAF criteria.1503

An interesting contrast occurs between RAF sets1504

and our formalism: RAF-sets require a level of coarse-1505

graining without intermediates to define catalysis in1506

terms of single catalysts, which ensures a compact and1507

unique description. Our formalism requires each cat-1508

alytic cycle to have at least one intermediate to satisfy1509

nonambiguity. Although less compact, the description1510

is flexible: adding further steps is always possible and1511

does not alter the conclusions, which must remain in1512

accord with chemical definitions.1513

In describing catalysis in terms of uncatalyzed1514

reactions, it becomes possible to formalize the under-1515

lying structure of catalysis in different models. We1516

will now illustrate how this formally establishes that1517

all autocatalysis in the GARD model qualifies as a1518

RAF-set.1519

E. GARD model1520

GARD stands for graded autocatalysis replica-1521

tion domain18, and is a model for the autocatalytic1522

assembly of amphiphile assemblies (e.g. micelles). It1523

describes micelles with a composition nnn = {n1, ..., ns},1524

that follow an evolution equation1525

dni
dt

=
(
k+
i ρiN − k

−
i ni

)1 + 1
N

s∑
j=1

βijnj

 . (40)

The surfaces are in contact with a reservoir, that con-1526

tains species Zi at concentration ρi and that can enter1527

the surface, which has an area proportional to N . The1528

incorporation happens with a base rate of k+
i , but can1529

be facilitated by other amphiphiles, for which the cat-1530

alytic rate enhancement is characterized by βij . A1531

special ingredient in GARD is the division process,1532

which splits a mature aggregate in two new ones, after1533

achieving a maximal size.1534

We examine here stoichiometric mechanisms lead-1535

ing to (40). Let us consider amphiphiles A and B,1536

which can be in the micelle or reservoir, labelled I1537

and II (see Fig. S6). To catalyze incorporation of the1538

other, a complex is formed with a reservoir species, and1539

subsequent dissociation takes place in the micelle1540

AI + BII −−⇀↽−− [AB]I −−⇀↽−− AI + BI, (41)
BI + AII −−⇀↽−− [BA]I −−⇀↽−− AI + BI. (42)

This network corresponds exactly to the network dis-1541

cussed in Fig. S6a, where the products of two allocat-1542

alytic cycles serve as a catalyst for each other, a Type1543

II core in our stoichiometric formalism.1544

More generally, labelling amphiphiles as Ak (k ∈1545

{1, 2, .., s}, the entry βij encodes the contribution for1546

the allocatalytic cycle1547

AII
i + AI

j
ccc∗−−⇀↽−−−
−ccc∗

AI
i + AI

j (43)

where ccc∗ denotes a reaction vector for the catalytic1548

cycle, for any description that verifies nonambiguity.1549

When i = j, this is a Type I autocatalytic cycle (Fig.1550

S6c). When i 6= j (cross-incorporation), Type II auto-1551

catalytic cycles are obtained, which are built up from n1552

sequential allocatalytic incorporation steps and which1553

end in the incorporation of the original amphiphile.1554

Fig. S6 shows examples for n = 2 and n = 3. The1555

importance of the allocatalysis step (43) is graded by1556

the entry βij . For a given n-step autocatalytic motif1557

to exist, we require1558

n∏
k=1

βsk+1sk > 0, s1 6= s2 6= .. 6= sn. (44)

In practice, all βij > 0, so all motifs exist in principle.1559

The starting point of GARD is (40), i.e. a coarse-1560

grained description in which allocatalysis can be de-1561

scribed as a single step and a single allocatalyst. From1562

Fig. S6, we see that we can obtain networks in GARD1563

that would be RAF-sets in the RAF-framework by1564

coarse-graining an incorporation cycle to convert it to1565

catalysis in the RAF sense. The illustrated procedure1566

extends to all autocatalysis in GARD, which is fully1567

characterized by the continuation of the structures in1568

Fig. S6 to their n-step Type II analogues. (44) guar-1569

antees that each reaction in GARD is catalyzed. It1570

follows that all autocatalysis in the GARD model can1571

formally be treated as a RAF-set.1572

Interestingly, the RAF-set formalism treats catal-1573

ysis as pertaining to chemistry in single phases, with1574

the environment supplying food locally through rapid1575

exchange. In GARD, we instead have phase-transfer1576

catalysis between a bulk medium (II) and an interface1577

(I). A species in the bulk then serves as the food. Once1578

the exact same species enters the interface, however, it1579

may cease to be abundant or have a fixed concentration1580

due to rapid exchange. It may thus no longer have1581

the properties ascribed to the food set in the bulk and1582

should ipso facto be treated as a different species as1583

described in the final section of the main text.1584

IV. THE EXTINCTION PROBLEM AND FIXATION1585

In this section, we show that the extinction prob-1586

lem (finding the extinction probability at long times,1587

Pex) can be solved by a mapping to a branching pro-1588

cess. We will first derive how in a system initially at1589

steady-state perturbed with dilute autocatalysts, key1590

statistical properties emerge: autocatalytic species can1591
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be treated as independent, and their environment as1592

fixed. Extinction becomes exponentially less likely as1593

the population size continues to grow, which means1594

Pex can be determined in the dilute limit.1595

We then proceed by applying the framework to a1596

variety of networks.1597

A. Context1598

We consider a reaction network, in a macroscopic1599

system (letting N denote the amount of chemical1600

species, let us say N > 1023, or similarly, let the system1601

volume V be large) in a steady-state. For simplicity, let1602

us first consider a CSTR (single phase, ideally mixed),1603

with a residence time τ , corresponding to a uniform1604

degradation rate kd.1605

Now, we perturb the steady-state with a handful1606

(O(1)) of new (not yet present in the system) autocata-1607

lysts {Xk} = {X1,X2, ...,Xs} that are part of the same1608

autocatalytic core.1609

We consider that the population can grow due to1610

catalysis by autocatalysts, and the population decays1611

by degradation reactions and effective degradation. For1612

example, outflow out of a CSTR is considered as a first-1613

order degradation process:1614

Xk → ∅ (45)

The problem we wish to solve is the extinc-1615

tion problem: For an initial population of autocat-1616

alysts {NXk
} = {NX1

, .., NXs
} what is the probability1617

Pex({NXk
}), that, after a long time, the autocatalyst1618

population goes extinct (∀k NXk
= 0)?1619

B. Large system limit1620

Let us first note that we (deliberately) consider1621

the initial stochastic kinetics in a large system, with1622

a small number of autocatalysts, such that reactions1623

among autocatalysts of the kind1624

Xk + Xj −−→ ”Product(s)” (46)

are exceedingly rare and slow (the probability that a1625

given Xk molecule encounters another Xj in a given1626

time-frame scales with NXj
/N), where NXj

is initially1627

of the order 1. It follows survival of autocatalytic1628

cycles requiring such reactions in the forward sens is1629

hampered in large systems.1630

Reactions that are first order in terms of autocat-1631

alysts are not hampered1632

Xk −−⇀↽−− ”Product(s)” (47)
Xk + Yj −−⇀↽−− ”Product(s)” (48)

where Yj is a feedstock compound that was already1633

(abundantly) present in the system at a fixed molar1634

fraction xYj
. The probability for one Xk molecule to1635

encounter a Yj does not change with N , as xYj
remains1636

fixed (and macroscopic).1637

Note furthermore that, when autocatalysts are1638

rare, reactions producing more autocatalysts are ’irre-1639

versible’1640

Xk + Yj −−→ Xl + Xm (49)

in the sense that the reverse reaction is exceedingly1641

more rare than the forward reaction.1642

C. Constant composition, constant transition rates1643

The effect of rare autocatalysts on the steady-state1644

composition (maintained by influx and degradation in1645

a CSTR) is initially small: every reaction introduces1646

changes in molar fraction of the order 1/N (or in con-1647

centration terms, 1/V ∝ 1/N). For large N , the al-1648

terations of the composition will be vanishingly small1649

while the autocatalysts are rare.1650

Consequently, we can approximate the reactor1651

composition in which an autocatalyst is placed, as1652

the steady-state composition before perturbation. We1653

then assume that the molar fractions of species Yk1654

consumed by autocatalysts are sufficiently abundant1655

i.e. xYk
� 1/N , which was also required for (48).1656

For sufficient N , deviations from this approximation1657

become vanishingly small.1658

A given Xk will therefore have a fixed transition1659

rate w+
k = kxYj

to perform (48). Similarly, for (47)1660

and CSTR degradation, a fixed transition rate w = k1661

is found, depending only on a rate constant.1662

D. Independence1663

In the rare-autocatalyst regime, all reaction steps1664

we consider for autocatalysts are first-order, and they1665

occur at fixed rates. It follows that autocatalysts do1666

not influence each other, and they can each be treated1667

independently. Thus, we can treat each autocatalyst1668

type separately:1669

Pex({NXk
}) = Pex(NX1

)Pex(NX2
)..Pex(NXs

). (50)

Also each individual autocatalyst can be treated as1670

such:1671

Pex(NXk
) = Pex(Xk)NXk (51)

Where Pex(Xk) denotes the extinction probability of a1672

population initially composed of a single Xk species.1673
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We thus need a method for finding Pex(Xk). This1674

will be obtained by mapping the problem to a branching1675

process.1676

E. A branching process1677

An attractive method we propose for finding1678

Pex(Xk) (from here on simplified to Pex), is by con-1679

sidering the distribution of ’descendants’ Xk a species1680

Xk will generate. From this, we construct a Branch-1681

ing Process, represented chemically as a single parent1682

molecule Xs yielding k descendants:1683

Xs
Pk−−→ kXs, (52)

with pk a distribution of the number of descendants1684

which depends on the network topology.1685

Knowing pk suffices to find Pex, since the probabil-1686

ity to go extinct is the probability that all descendants1687

independently ( (51)) go extinct:1688

Pex = p0 + p1Pex + p2P
2
ex + ... =

∞∑
k=0

pkP
k
ex, (53)

We will now highlight some possible choices for Branch-1689

ing Processes and their associated pk.1690

F. A Birth-Death Process for the Type I cycle1691

Consider a simple Type-I cycle such as in Fig1692

S7a. Here, simple refers to there being a direct path1693

of (effective) unimolecular steps between the starting1694

compound (B1) and final compound (B2), followed by1695

a single fragmentation step producing two B1 from one1696

B21697

B2 −−→ 2B1. (54)

Starting from the marked node (B1), let p2 be the1698

probability of successfully forming 2B1, i.e.1699

B1
p2−−→ 2B1, (55)

where p2 contains the contribution of all possible tra-1700

jectories (here: going back and forth between B1 and1701

B2) that precede the irreversible fragmentation step,1702

i.e.1703

B1
Π+

1−−→ B2
Π−2−−→ B1...

Π+
1−−→ B2

Π+
2−−→ 2B1 (56)

Where Π+
1 , Π−2 and Π+

2 are success probabilities for1704

the single reaction steps. These transitions compete1705

with irreversible degradation processes1706

B1
Π∅1−−→ ∅, B2

Π∅2−−→ ∅. (57)

Where Π∅1, Π∅2 are success probabilities for the degra-1707

dation reaction. Due to total probability conservation,1708

we have1709

Π∅1 + Π+
1 = 1, (58)

Π∅2 + Π−2 + Π+
2 = 1 (59)

Ultimately, a B1 species will either be replaced by 21710

new ones (2B1), or none (∅):1711

∅ p0←−− B1
p2−−→ 2B1, (60)

which is a chemical representation of the simplest type1712

of branching process: a birth-death process. In (53),1713

the only nonzero terms will come from 0 descendants1714

(p0) and 2 descendants (p2):1715

Pex = p0 + p2P
2
ex = 1− p2 + p2P

2
ex. (61)

Solving the quadratic equation yields two solutions1716

P±ex = 1± (1− 2p2)
2p2

. (62)

For our problem, the ’physical’ solution is P+
ex while1717

p2 ≥ 1/2. Beyond that point, P+
ex > 1, while we require1718

0 ≤ Pex ≤ 1, so P−ex = 1 becomes the only physical1719

solution.1720

Pex =
{ 1

p2
− 1, p2 ≥ 1

2 ,

1, p2 <
1
2 ,

(63)

The average number of descendants is 2p2, which means1721

that below p2 = 1/2 (the decay threshold) B1 is on aver-1722

age replaced by less then one B1 species and extinction1723

is guaranteed.1724

G. A Branching Process for the same type I cycle1725

To illustrate that there is a variety of choices for1726

the stochastic process under study, we will here consider1727

an alternative choice for the simple Type-I cycle, which1728

is more generally applicable. Noting that a single1729

cycle is successful with probability p2, we now consider1730

the number of successful cycles a single B1 provides,1731

knowing that at some point degradation intervenes with1732

probability 1− p2. A succession of k cycles preceding1733

a failure will thus lead to k successors1734

B1
pk−−→ kB1. (64)

The probability to spawn k descendants, pk, is the1735

probability of k successful Bernoulli trials followed by1736

failure, and follows a geometric distribution1737

pk = pk2(1− p2). (65)
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Injecting this distribution in (53), we find a geometric1738

series1739

Pex =
∞∑
k=0

(1− p2)(p2Pex)k = 1− p2

1− p2Pex
. (66)

Multiplying both sides by 1 − p2Pex then yields the1740

quadratic equation (61) previously found for the Birth-1741

Death process. This is necessary, since we are calcu-1742

lating the same quantity Pex for the same network. It1743

highlights that we may construct a variety of branching1744

processes to find Pex.1745

H. Microscopic expressions for p21746

We can construct p2 from microscopic details. In1747

terms of transition probabilities, we find p2 by summing1748

over all trajectories in (56):1749

p2 =
∞∑
k=0

Π+
1 (Π−2 Π+

1 )kΠ+
2 = Π+

1 Π+
2

1−Π−2 Π+
1

(67)

A more detailed description is possible when our de-1750

scription is Markovian (i.e. reactions are sufficiently1751

elementary). Let w+
k denote a forward transition rate,1752

to go from Xk to Xk+1. Let w−k denote a backward tran-1753

sition rate from Xk to Xk−1 and w∅k the degradation1754

rate for Xk. We may then write1755

Π+
1 = w+

1

w+
1 + w∅1

, Π−2 = w−1
w−1 + w∅2 + w+

2
, (68)

Π+
2 = w+

2

w−1 + w∅2 + w+
2
. (69)

I. The irreversible reaction limit1756

Simple Type-I cycles have been studied in the1757

limit where all reactions proceed irreversibly17,19,401758

(∀k w−k → 0). In this limit backward reactions are1759

ignored (Π−2 = 0), which for our example leads to1760

p2 = Π+
1 Π+

2 = w+
1

w+
1 + w∅1

w+
2

w+
2 + w∅2

. (70)

In this limit, there is only one trajectory that con-1761

tributes to pc, and each step involves a competition1762

between the forward reaction and degradation only.1763

In studies using simple Type-I cycles, the fraction1764

ζk =
w+
k

w+
k + w∅k

, (71)

has been referred to as the specificity of reaction1765

step19,39,40,55 k, which for irreversible reactions coin-1766

cides with the transition probability Π+
k1767

lim
w−
k−1→0

Π+
k = lim

w−
k−1→0

w+
k

w−k−1 + w+
k + w∅1

= ζk (72)

For simple Type-I networks with n reaction steps1768

(n distinct edges), the irreversible limit ((70)) general-1769

izes to39,551770

p2 =
n∏
k=1

Π+
k =

n∏
k=1

w+
k

w+
k + w∅k

, (73)

which we will show more formally in the next section.1771

J. The simple Type I cycle with n steps1772

To expand our discussion on simple Type I cycles,1773

we will now derive a general expression for p2, when1774

there are n steps, of which the first n− 1 are treated1775

as reversible. The problem is illustrated in Fig. S7c.1776

Let us denote PXk→Xj
the probability to reach1777

Xj, starting from Xk. For PX1→X2
, there is only one1778

trajectory:1779

X1
Π+

1−−→ X2, (74)

and hence PX1→X2
= Π+

1 . For PX2→X3
, we need to1780

consider that we can go back and forth between X21781

and X1:1782

X1
Π+

1−−⇀↽−−
Π−2

X2
Π+

2−−→ X3. (75)

We can absorb the contribution of hopping back-and-1783

forth in the factor Γ2:1784

PX2→X3
= Γ2Π+

2 (76)

Γ2 =
∞∑
k=0

(Π−2 Π+
1 )k = 1

1−Π−2 Π+
1

(77)

Now, let us consider this argument when we want to1785

find PX3→X4
for1786

X1
Π+

1−−⇀↽−−
Π−2

X2
Π+

2−−⇀↽−−
Π−3

X3
Π+

3−−→ X4. (78)

Now, we need to consider that we can go back and1787

forth between X3 and X2, and that at X2 we can go1788

back and forth between X2 and X1 (captured by Γ2)1789

before moving to X3. We absorb all this in the factor1790

Γ3:1791

PX3→X4
= Γ3Π+

3 (79)
Γ3 =

∑∞
k=0(Π−3 Γ2Π+

2 )k = 1
1−Π−3 Γ2Π+

2
(80)
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We can repeat this argument, e.g. for the kth step1792

X1
Π+

1−−⇀↽−−
Π−2

X2
Π+

2−−⇀↽−−
Π−3

...
Π+
k−1−−−−⇀↽−−−

Π−
k

Xk
Π+
k−−→ Xk+1, (81)

which then yields the following recursive expressions1793

for k ≥ 11794

PXk→Xk+1
= ΓkΠ+

k (82)

Γk+1 =
∑∞
s=0(Π−k+1ΓkΠ+

k )s = 1
1−Π−

k+1ΓkΠ+
k

. (83)

where Γ2 imposes that Γ1 = 1.1795

The total probability p2 to reach Xn from X11796

and then perform the final irreversible fragmentation1797

reaction rn, is then1798

p2 =
(
n−1∏
k=1

PXk→Xk+1

)
Π+
nΓn =

n∏
k=1

Π+
k Γk, (84)

When backward transitions become negligible1799

(∀k Π−k → 0), we have ∀k ≥ 1 Γk = 1, and p2 then1800

acquires its well-known limit expression described by1801

(73).1802

K. A Branching Process for a Type II cycle1803

As an example of a simple Type II cycle, we con-1804

sider the network in Fig. S7e, starting with the species1805

C1. Our approach will be reminiscent of our branching1806

process in Sec. IVG, but with a repeated branching1807

step.1808

With a probability pC, C1 will successfully perform1809

the allocatalytic cycle r1 + r2 + r3 (with some possible1810

back-and-forths), yielding overall1811

C1
pC−−→ C1 + D1. (85)

The probability PD
k that k successful cycles occur before1812

the first failure (i.e. degradation Ck → ∅) is1813

PD
k = (1− pC)pkC. (86)

Corresponding effectively to the overal reaction1814

C1
PD
k−−→ kD1. (87)

Now, let pD be the probability that D1 succesfully1815

completes a cycle r4 + r2 + r3 (including back-and-1816

forths):1817

D1
pD−−→ C1 + D1. (88)

The probability of k successful cycles before failure1818

becomes1819

PC
k = (1− pD)pkD. (89)

Combined, a single C1 has been then replaced according1820

to1821

C1 −−→ sD1 −−→ (n1 + n2 + ...+ ns)C1. (90)

Let us denote k =
∑s
l=1 nl as the number of descen-1822

dants. The distribution of the number of descendants1823

pk then becomes1824

pk =
∞∑
s=0
PP
s

∞∑
n1,..,ns

s∏
r=0
PDCU
nr δkn1+...+ns , (91)

which simplifies to1825

p0 = 1− β α

1− α, pk = βαk, k ≥ 1 (92)

where1826

α = pD

1− pC(1− pD) , β = pC(1− pD)(1− pC)
1− pC(1− pD) .

(93)
From (53), we then find Pex. By rewriting the geomet-1827

ric series due to (93), we have1828

Pex = 1− β α

1− α − β
αPex

1− αPex
, (94)

which admits the solutions Pex = 1 and1829

Pex = β

α− 1 + 1
α

= 1− pC

pD
. (95)

L. Microscopic expressions for pC and pD1830

Let us first consider how pC can be constructed1831

from smaller reaction steps. To do so, we observe that1832

the first step must be1833

C1
Π+

1−−→ C2, (96)

with Π+
1 the probability of success, competing with1834

degradation1835

C1
Π∅1−−→ ∅, (97)

for which Π∅1 = 1−Π+
1 .1836

Arrived at C2, going back-and forth reversibly1837
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becomes possible for neighboring nodes C1, C3 and D1:1838

C1
Π+

1−−⇀↽−−
Π−2

C2
Π+

2−−⇀↽−−
Π−3

C3, (98)

D1
Θ+

1−−⇀↽−−
Θ−1

C2, (99)

Where Π+
k ,Π

−
k ,Θ

−
k ,Θ

+
k all denote success probabilities.1839

Starting at C1, a successful trajectory necessarily starts1840

with reaction r1 (Π+
1 ) and ends with r2+r3 (Π+

2 Π+
3 ), all1841

in the forward sense. In between, we can go back-and-1842

forth to C1,C3 and D1 (Π−2 Π+
1 + Θ−2 Θ+

1 + Π+
2 Π−3 ) any1843

number of times. Summing over all possible trajectories,1844

pC then becomes1845

pC =
∞∑
k=0

Π+
1 (Π−2 Π+

1 +Θ−2 Θ+
1 +Π+

2 Π−3 )kΠ+
2 Π+

3 (100)

which sums to1846

pC = Π+
1 Π+

2 Π+
3

1− (Π−2 Π+
1 + Θ−2 Θ+

1 + Π+
2 Π−3 )

(101)

Starting at D1, a successful trajectory necessarily starts1847

with r4 (Θ+
1 ) in the forward sense, to form C2. From1848

there on, a successful trajectory follows the previous1849

calculation, i.e. pD =
(
Θ+

1 /Π
+
1
)
pC:1850

pD = Θ+
1 Π+

2 Π+
3

1− (Π−2 Π+
1 + Θ−2 Θ+

1 + Π+
2 Π−3 )

(102)

In the limit where all reactions proceed irreversibly1851

forward (Sec. IV I), pC and pD only have a contributing1852

from a single straight trajectory1853

pC = Π+
1 Π+

2 Π+
3 , pD = Θ+

1 Π+
2 Π+

3 . (103)

M. Type III cycles with one fragmentation step1854

Let us now consider a Type III network composed1855

of n species {X1, ..,Xn} and reaction steps {r1, .., rn},1856

where the final fragmentation step rn produces1857

Xn −−→ X1 + Xs, 1 < s < n, (104)

as shown in Fig. S7e1858

We may then introduce the success rates for the1859

allocatalytic cycles for X1 and Xs1860

X1
pc,1−−→ X1 + Xs, (105)

Xs
pc,s−−→ X1 + Xs. (106)

Which was exactly our starting point in Sec. IVK.1861

Starting at Xs, we may thus directly use Pex, upon1862

replacing pC with ps and pD with p1, thus finding1863

Pex = 1− pc,s
pc,1

. (107)

We now turn to the problem of finding expressions for1864

pc,s and pc,1.1865

By structural analogy to simple Type I cycles1866

(apart from the fragmentation step), we may again1867

write1868

PXk→Xk+1
= Π+

k Γk (108)

Γk+1 =
∑∞
s=0(Π−k ΓkΠ+

k )s = 1
1−Π−

k+1ΓkΠ+
k

. (109)

with Γ1 = 1.1869

Since pc,s =
(∏n−1

k=s PXk→Xk+1

)
Π+
nΓn we find1870

pc,s =
(

n∏
k=s

Π+
k Γk

)
(110)

N. Symmetric motifs1871

When the network motif is symmetric in struc-1872

ture, and if the transitions preserve this symmetry,1873

this can be exploited to simplify calculations and gain1874

insight in topological aspects of autocatalysis and ro-1875

bustness. Experimentally, this symmetry rarely applies1876

for the transitions, but it can be made applicable for1877

the purpose of our analysis, e.g. by setting transi-1878

tion probabilities to values that reflect the structural1879

symmetry.1880

Consider a series of m linked allocatalytic cycles1881

(Fig. S8b), all consisting of n nodes and n edges which1882

are structurally equivalent:1883

Xkn+1
Π+
kn+1−−−−→ ..

Π+
(k+1)n−−−−−→ Xkn+1 + X(k+1)n+1, (111)

which loops back at the mth cycle:1884

Xm−n+1
Π+
m−n+1−−−−−→ ..

Π+
mn−−−→ X1 + Xm−n+1, (112)

As before, Π+
k denotes a forward transition probability,1885

and we also introduce reverse reactions and degradation1886

in the usual sense:1887

Xk
Π−
k−−→ Xk−1, (113)

Xk
Π∅k−−→ ∅. (114)

Now, let us choose transition probabilities such that1888

they are equivalent among the equistructural allocat-1889

alytic cycles, i.e. periodic in n: Π+
k = Π+

k+n and idem1890

for reverse steps (Π−k = Π−k+n) and by extension, degra-1891
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dation (Π∅k = Π∅k+n), since Π+
k + Π−k + Π∅k = 1.1892

Then, finding Pex(Xk) is no different [footnote:1893

provided we choose 1 ≤ k ≤ m − n] from finding1894

Pex(Xk+n), which is seen readily in Fig. S8a by rotating1895

the networks and interchanging the labels. Applying1896

this symmetry to Fig.S8a for the six-membered cycle1897

(n = 2,m = 3), we can thus write1898

Pex(X1) = Pex(X3) = Pex(X5). (115)
Pex(X2) = Pex(X4) = Pex(X6).

We characterize the success of each equivalent allocat-1899

alytic cycle (n steps) by the same probability p2. We1900

can then express the extinction probability in terms of1901

the reaction products of one allocatalytic cycle:1902

Pex(X1) = 1− p2 + p2Pex(X1)Pex(X3) (116)
= 1− p2 + p2Pex(X1)2, (117)

where we have used the symmetry in (116), which1903

yields the exact second order equation we obtained for1904

a simple Type I cycle of n steps. We can thus resolve the1905

general problem using our previously derived solutions.1906

V. EXPRESSIONS FOR FIG 3, A SURVEY OF Pex1907

FOR VARIOUS STRUCTURES1908

In Fig. 3 in the main text, the behavior of Pex1909

is compared for a number of networks (N1 to N5), in1910

the limit where all reaction steps proceed irreversibly1911

(Sec. IV I), and where all reaction steps do so with a1912

common success probability ζ (also known in the liter-1913

ature as specificity). Of course, this is an abstraction1914

that is hard to realize experimentally, and its purpose1915

is the following: by controlling for kinetics, we can1916

systematically investigate and compare how survival is1917

affected by network topology. In this section, we will1918

derive the functional dependence of Pex on ζ for the1919

structures discussed in the main text.1920

A. N1: a 6-membered Type I cycle1921

In Sec. IV J, we derived the general solution for1922

n-membered Type I cycles in terms of the probability1923

p2 to reach Xn and perform rn. Starting from X1, we1924

can now recover the solution for n = 61925

For n = 6, p2 becomes1926

p2 =
( 5∏
k=1

PXk→Xk+1

)
Π+

6 Γ6 =
6∏
k=1

Π+
k Γk (118)

Moving to the irreversible reaction limit, and control-1927

ling the reaction specifity (∀k ≥ 1 Π+
k = ζ, Γk = 1),1928

we obtain p2 = ζ6. Upon injection in the solution1929

Pex = (1− p2)/p2 (for p2 ≥ 1/2) ((63)), we then find1930

Pex = 1− ζ6

ζ6 (119)

B. N2: a 6-membered asymmetric Type III cycle1931

In Sec. IVM, the general solution for n-membered1932

Type III cycles with one fragmentation reaction was de-1933

rived. For a 6-membered cycle with the fragmentation1934

reaction1935

X6 −−→ X1 + X4, (120)

which corresponds to network N2 in the main text.1936

Having X4 as the starting species, we can express1937

Pex(X4) in terms of (110)1938

Pex = 1− pc,4
pc,1

. (121)

In the irreversible reaction limit with fixed specificity1939

(∀k ≥ 1 Π+
k = ζ, Γk = 1), Pex becomes1940

Pex = 1− ζ3

ζ6 (122)

C. N3: 6-membered Type II network with RAF1941

representation1942

The network N3 consists of two nonoverlapping1943

allocatalytic cycles, which produce each other’s allocat-1944

alyst:1945

A1
Π+

1−−⇀↽−− A2
Π+

2−−⇀↽−− A3
Π+

3−−→ A1 + B1, (123)

B1
Θ+

1−−⇀↽−− B2
Θ+

2−−⇀↽−− B3
Θ+

3−−→ A1 + B1. (124)

Choosing our transition probabilities Π+
k = Θ+

k , we can1946

exploit the network symmetry as outlined in Sec. IVN1947

and Pex(A1) = Pex(B1). Let pc be the probability that1948

either A1 or B1 successfully finishes an allocatalytic1949

cycle. We may then write1950

Pex(A1) = 1− pc + pcPex(A1)Pex(B1) (125)
= 1− pc + pcPex(A1)2. (126)

The success rate pc can be expressed in the familiar1951

way1952

pc = Π+
1 Π+

2 Π+
3 Γ1Γ2Γ3. (127)
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In the irreversible limit (∀k ≥ 1,Γk = 1) with fixed1953

specificity ζ, pc = ζ3, and thus we find for pc ≥ 1/21954

Pex = 1− ζ3

ζ3 . (128)

D. N4: 6-membered symmetric Type III network1955

The network N4 consists of two nonoverlapping1956

allocatalytic cycles, which produce a precursor (A0,B0)1957

for each other’s allocatalyst:1958

A0
Π+

0−−⇀↽−− A1
Π+

1−−⇀↽−− A2
Π+

2−−→ A1 + B0, (129)

B0
Θ+

0−−⇀↽−− B1
Θ+

1−−⇀↽−− B2
Θ+

2−−→ A0 + B1. (130)

Choosing our transition probabilities to follow the sym-1959

metry of the network, we can write Π+
k = Θ+

k , and1960

Pex(Ak) = Pex(Bk). Finally, we note that B0 can ei-1961

ther i) degrade with probability Θ∅0 = 1 − Θ+
0 , or ii)1962

form B1 with probability Θ+
0 = Π+

0 , such that1963

Pex(B0) = 1−Π+
0 +Π+

0 Pex(B1) = 1−Π+
0 +Π+

0 Pex(A1).
(131)

Denoting pc the probability that A1 performs a suc-1964

cessful allocatalytic cycle (yielding A1 + B0), we can1965

write the extinction probability as1966

Pex(A1) = 1− pc + pcPex(A1)Pex(B0), (132)

which upon injecting (131) yields the following expres-1967

sion for Pex(A1)1968

Pex = 1− pc + pc(1−Π+
0 )Pex + pcΠ+

0 P
2
ex. (133)

Solving the quadratic equation (133), we find1969

Pex(A1) =
1− pc(1−Π+

0 )±
√

(pc(1 + Π+
0 )− 1)2

2pcΠ+
0

(134)
which yields Pex = 1 and1970

Pex = 1− pc
pcΠ+

0
. (135)

We can write pc in terms of back-and-forths starting1971

at A1, terminating with an irreversible fragmentation1972

pc =
∑∞
k=0(Π−1 Π+

0 + Π+
1 Π−2 )kΠ+

1 Π+
2 (136)

= Π+
1 Π+

2
1−Π−1 Π+

0 +Π+
1 Π−2

, (137)

so that in the irreversible limit with fixed specificity1973

(∀k ≥ 1 Πk+ = ζ, Πk− = 0), we obtain1974

Pex = 1− ζ2

ζ3 . (138)

An alternative way of seeing this is that, by symmetry,1975

Pex is the same as that for a 3-membered Type III1976

cycle with one fragmentation step (forming X2), for1977

which we can directly use the solution derived in Sec.1978

IVM.1979

E. A trio of symmetric analogues1980

As derived in Sec. IVN, the interlinked allocat-1981

alytic cycles of size n behave, due to symmetry, as1982

an n-membered simple Type-I cycle. Reproducing the1983

solution for the 2-membered cycles (see Sec. IVF) in1984

the irreversible limit with ∀k ≥ 1 Π+
k = ζ, Π−k = 0, we1985

thus find1986

Pex = 1− ζ2

ζ2 (139)

F. N5: a type V core1987

In N5 we have the reactions1988

A1 −−⇀↽−− A2 −−→ B1 + C1, (140)
B1 −−⇀↽−− B2 −−→ A1 + C1, (141)
C1 −−⇀↽−− C2 −−→ A1 + B1. (142)

If our transitions follow the symmetry of the network,1989

we have Pex(Ak) = Pex(Bk) = Pex(Ck). Denoting pc1990

the success probability of the allocatalytic cycle, we1991

can write Pex in terms of (140)1992

Pex(A1) = 1− pc + pcPex(B1)Pex(C1) (143)
= 1− pc + pcPex(A1)2, (144)

which is the solution found for the 2-membered cycle.1993

Noting that1994

pc = Π+
1 Π+

2 Γ1Γ2 (145)

the irreversible limit with fixed specificity (∀k ≥1995

1 Π+
k = ζ, Γk = 1) yields, as in Sec. IVF,1996

Pex = 1− ζ2

ζ2 (146)

VI. EXPRESSIONS FOR FIG 4D, A PHASE1997

DIAGRAM FOR MULTICOMPARTMENT1998

AUTOCATALYSIS1999

Fig. 4d represents a case of a Type III core with2000

one fragmentation reaction (Sec.IVM), consisting of 52001
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members:2002

ABα
r1−−⇀↽−− Aα

r2−−⇀↽−− Aβ
r3−−⇀↽−− A2Bβ

r4−−⇀↽−− A2Bα,(147)
A2Bα

r5−−→ ABα + Aα, (148)

There are two degradation reactions (r6 and r7), both2003

taking place in the compartment β:2004

Aβ
r6−−→ ∅, A2Bβ

r7−−→ ∅. (149)

Here rk refers to the reaction label as found in Fig.4d,2005

α, β to the compartments and A,AB,A2B to species2006

as defined in Fig.4d.2007

We are guaranteed that, starting from Aα or ABα,2008

eventually Aβ will be formed with probability 1. We2009

can thus simplify the problem by only considering re-2010

actions r3 to r5 and species Aβ ,A2Bβ and A2Bα, i.e.2011

we can then write for the transition probabilities2012

Aβ

Π+
1−−⇀↽−−

Π−2
A2Bβ

Π+
2−−⇀↽−−

Π−3
A2Bα

Π+
3−−→ 2Aβ , (150)

Aβ
Πd1−−→ ∅, A2B Πd2−−→ ∅. (151)

We readily find that this effective description obeys the2013

solution for a simple Type-I network with 3 members,2014

with p2 a success probability for a cycle2015

p2 = Π+
1 Π+

2 Π+
3 Γ1Γ2Γ3 (152)

Pex = 1− p2

p2
(153)

Where we have used Γk for calculating back-and-forth2016

trajectories, as derived in sec. IV J:2017

Γk+1 =
∞∑
s=0

(Π−k+1ΓkΠ+
k )s = 1

1−Π−k+1ΓkΠ+
k

. (154)

with Γ1 = 1. Let us now give a microscopic kinetic2018

interpretation to the competing processes, by consider-2019

ing sufficiently elementary transitions on the level of a2020

single species for which we can introduce rate constants2021

• w+
3 = k+

3 xABβ , sequestration of ABβ (present2022

with a fixed molar fraction xABβ ), which plays2023

the role of a feedstock species in compartment β2024

in r3 proceeding forward.2025

• wd3 = kd6 degradation, reaction r6.2026

• w−4 = k−3 release of ABβ , r3 proceeding back-2027

ward.2028

• w+
4 = k+

4 exchange of A2B from compartment β2029

to α, when r4 proceeds forward.2030

• wd4 = kd7 degradation, reaction r7.2031

• w−5 = k−4 exchange, from compartment α to β,2032

when r4 proceeds backward.2033

• w+
5 = k+

5 release of A2Bα through locally irre-2034

versible reaction r5.2035

We then obtain2036

Π+
1 = w+

3
w+

3 +wd3
, Πd

1 = wd3
w+

3 +wd3
, (155)

Π+
2 = w+

4
w+

4 +wd4 +w−4
, Π−2 = w−4

w+
4 +wd4 +w−4

, (156)

Πd
2 = wd4

w+
4 +wd4 +w−4

, (157)

Π+
3 = w+

5
w+

5 +w−5
, Π−3 = w−5

w+
5 +w−5

. (158)

Noting that Γ1 = 1, the product Γ2Γ3 simplifies to2037

Γ2Γ3 = 1
1−Π−2 Π+

1 −Π−3 Π+
2
. (159)

This allows to fully express Pex in terms of 8 micro-2038

scopic coefficients. Reactions r1 and r2 would give 42039

more rate constants and two more molar fractions (for2040

chemostatted species). However, their values do not2041

alter Pex.2042

For the purpose of illustration, we will consider2043

the competition between exchange, degradation, and2044

other transitions. To do so, we choose one rate for2045

exchange k+
4 = k−4 = kex and one rate for degradation2046

kd6 = kd7 = kd. Furthermore, we let the sequestration-2047

release steps be equally probable in compartment β,2048

and match release in α: w+
3 = w−4 = w+

5 = k. The2049

transition success probabilities can then be expressed2050

in terms of two ratios2051

∆ = kd/k, Ξ = kex/k (160)

which upon substitution yields2052

Π+
1 = 1

1+∆ , Πd
1 = ∆

1+∆ , Π+
2 = Ξ

1+∆+Ξ , (161)
Πd

2 = ∆
1+∆+Ξ , Π−2 = 1

1+∆+Ξ , (162)
Π+

3 = 1
1+Ξ , Π−3 = Ξ

1+Ξ . (163)

This permits to construct the phase diagram for Pex2053

in Fig. 4D in terms of the variables ∆ and Ξ.2054

A. Phase boundaries and limits2055

Let us first find an expression for the boundary be-2056

tween autocatalysis and deterministic extinction, which2057

occurs when Pex = 1 and (153) coincide, i.e. when2058

pc = 1/2, which upon substitution of (159) becomes:2059

Π+
1 Π+

2 Π+
3 = 1

2(1−Π−2 Π+
1 −Π−3 Π+

2 ) (164)
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In terms of Ξ and ∆, we have2060

2 1
1+∆

Ξ
1+∆+Ξ

1
1+Ξ (165)

= 1− 1
1+∆+Ξ

1
1+∆ −

Ξ
1+Ξ

Ξ
1+∆+Ξ

Which rearranges to a linear dependence in Ξ2061

∆2Ξ + ∆2 + 3∆Ξ + 2∆− Ξ = 0, (166)

from which we obtain for the phase boundary2062

Ξ = ∆(∆ + 2)
1− 3∆−∆2 . (167)

In the regime where reactions outpace degradation2063

(∆ � 1), extinction will be due to rate-limiting ex-2064

change (Ξ � 1). Taking (167), dividing by ∆ and2065

letting ∆→ 0, the ratio Ξ/∆ tends to2066

Ξ
∆ = 2, (168)

as also seen in the phase diagram. When exchange is2067

very rapid (Ξ→∞), it ceases to be rate-limiting, and2068

degradation will only compete with other reactions.2069

This occurs when we let the denominator of (167)2070

become 0, i.e.2071

1− 3∆−∆2 = 0, (169)

which has solutions2072

∆± = −3±
√

13
2 , (170)

of which ∆ = −3+
√

13
2 ≈ 0.30 is the only physical2073

solution, as can also be seen in the phase diagram.2074

VII. STOCHASTIC SIMULATIONS2075

We can numerically sample the extinction proba-2076

bility Pex({NX}0), with {NX}0 the initial autocatalyst2077

population, by performing stochastic simulations of the2078

kinetics using Gillespie’s algorithm which start from2079

the initial composition {NX}0, using transition rates2080

as discussed previously. The compositions obtained2081

from the algorithm are used to sample extinction or2082

survival, as detailed below.2083

When the total autocatalyst population in a run2084

reaches zero, this is sampled as an extinction event.2085

When the population is not extinct at the end of a2086

prescribed number of reactions nr, the total number2087

Nac of autocatalysts is compared with a threshold2088

population Ntresh. If Nac > Ntresh, the run is sampled2089

as survival (The error in this approximation scales as2090

PNtreshex ). Otherwise, the composition after nr steps is2091

used as an initial composition to repeat this protocol,2092

again for nr steps (and so forth if again the threshold2093

is not reached). Once either the threshold is reached2094

or extinction occurs, it is sampled accordingly and the2095

run is terminated.2096

For networks N1 to N5, the symmetry of the prob-2097

lem is used to sample reactions: a random number χ2098

between 0 and 1 is drawn, and if χ < ζ, a forward2099

reaction step is performed for an autocatalyst picked2100

at random. If χ > ζ, a degradation step is performed2101

for an autocatalyst picked at random.2102

In Fig. S9a a short time interval is shown for 102103

simulation runs performed for the multicompartment2104

network using, for completeness, all 5 autocatalysts2105

ABα,Aα,Aβ ,A2Bβ ,A2Bα (Since ABα,Aα return to2106

Aβ with probability 1, the exact solution for Pex can2107

also be found with the three-species network as shown2108

in Sec. VI). We start with NAβ = 1.0 and all other2109

autocatalysts at 0. Rate parameters for r3 to r7 follow2110

the conventions outlined above, and are set at kex =2111

1.0,kd = 0.3, k+
3 = 100, k = 10.0. r1 is treated as2112

irreversible with an effective rate constant k+
1 = 10.02113

and exchange of A is performed with a rate kex. From2114

100000 simulation runs (Ntresh = 40) we obtain the2115

numerical estimate of Pex = 0.698 ± 0.004. This is2116

consistent with our exact solution (153), which yields2117

Pex = 0.6999.2118

Among the 10 short runs for the multicompart-2119

ment network in Fig. S9a, 4 runs reach extinction2120

within the simulation time, whereas the autocatalysis2121

in one run (green) has reached an exponential growth2122

regime that is close to deterministic with a total popu-2123

lation of 40 autocatalysts.2124

VIII. MULTICOMPARTMENT AUTOCATALYSIS2125

WITH THREE COMPARTMENTS2126

Let us consider a bimolecular reaction2127

A + B −−⇀↽−− C, (171)

which can occur in three different compartments labeled2128

α, β, γ, as shown in Fig. S9b. Let us couple these2129

compartments through the following exchanges2130

Aα −−⇀↽−− Aβ , Bβ −−⇀↽−− Bγ , (172)
Cα −−⇀↽−− Cβ −−⇀↽−− Cγ . (173)

Removing Aγ , Cα then immediately yields the Type2131

III autocatalytic core shown in Fig. S9c.2132
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Figure S1: a) Hypergraph paths and cycle examples. b) Examples of hyper-ears (left) and associated proto-ears (right)
obtained by removing green species. The syntax below graphs (see section IIC) describes the relationships between
non-P species and path P. Nodes ’u’ are products of r, nodes ’v’ are reactants of reactions producing x, ’-’ is any
series of reactions with a single reactant and product, ’*’ denotes the closure of C by the green path. c) Autocatalytic
cores. Edges are oriented consistently along cycles, so that reaction have a single reactant. Orange squares are chains
of arbitrary length made of reactions with a single reactant species and product species. Edge-to-node connections
are weighted by a stoichiometric coefficient, represented explicitly only for Type I by a fork (stoichiometry of 2). C,
C′ and C′ are cycles. In Type II, the dotted path may comprise multiple cycles similar to the green box. In main text
Fig. 2, only the case of a single green box is represented for simplicity. In Type I, detC 6= 0; in Type II, det(C) = 0
and det(C′) can be any value; in Types III-V, det(C) = det(C′) = det(C′′) = 0. d) Generic hyper-ear structure of cores.
e) Nested and entangled back-branches. f) Example of allocatalytic cycle.
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Figure S2: a) A decorated Toy Formose reaction given by the submatrix ννν∗, obtained by removing C1. The replication cy-
cle gggD3 is illustrated in blue. In this network, only species C2,C3 and C4 are autocatalysts. b) The minimal formose
reaction in its autocatalytic subnetwork, an example of an SFA. Arrows illustrate the replication cycle gggC2 .
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Figure S3: a) top: A product-enhanced cycle, Blackmond’s first type of autoinduction. bottom: Hypergraph, containing a
Type I autocatalytic core (yellow). External food and allocatalysts are marked in blue. b) top: A ligand-accelerated
cycle, Blackmond’s second type of autoinduction. bottom: Hypergraph, containing a Type II autocatalytic core
(yellow) and supporting external food (blue). Note that, in both cases, external allocatalytic cycles are not part of the
core. Allocatalysts are treated on equal footing with feedstock and waste in isolating a core.
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Figure S4: a) Autocatalysts in the Reverse Krebbs cycle, which yield a Type II core. b) Autocatalysts in the Calvin Cycle.
We find 3 cores of Type I (2 equivalent, up to the choice of reaction to link 5 and 9), and 4 cores of Type II.
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Figure S6: a) A Type II autocatalytic network with its feedstock compounds (or Food set), as encountered in GARD. Col-
ored nodes highlight two distinct allocatalytic cycles that yield an autocatalytic cycle when combined. b) The same
network, in a bipartite graph representation used in the RAF sets formalism. Specifying the mechanism in terms
of uncatalyzed reaction steps removes the RAF property. c) A coarse-grained representation, where allocatalysts in
the same allocatalytic cycle are represented by a single species, and each allocatalytic cycle has been replaced with a
dashed line, to indicate the net reaction being catalyzed. b. A catalytic incorporation mechanism: the red (telephone
shape) amphiphile forms a complex with the purple (square shape) amphiphile, which mediates its incorporation in a
micelle or vesicle. c. Autocatalytic networks of co-assembling amphiphiles. Amphiphiles in square nodes are reservoir
species, those in circular nodes represent amphiphiles in a micelle or membrane. Diagonal terms of the catalytic ma-
trix encode Type I autocatalysis, i.e. direct self-incorporation. All other autocatalysis (cross-incorporation) is of Type
II: sequences of nonoverlapping allocatalytic cycles.
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Figure S7: a) A Type I subnetwork. B1 and B2 reversibly interconvert, B2 can also irreversibly form two B1, marked by
the forked edge. b) transition network, Π+

k denotes the probability that, starting at Bk, the next transition will be a
step forward in the cycle, Π−k a step backward, and Π∅k a degradation. Fragmentation (yielding 2B1) and degradation
(∅) are absorbing states, attained with probabilities pc and 1− pc respectively. c) Autocatalytic core for a Type I cycle
with n nodes. d) Transition network for c e) schematic for an autocatalytic core for a Type III cycle. f) Transition
network for e) g) General schematic for an autocatalytic core for a Type II cycle with a single fragmentation step. h)
Transition network for g.
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work structure. b) A more general case: a multiple of allocatalytic cycles of size n. c) 6-membered Type I cycle. d)
a 6-membered Type II cycle. e) a 6-membered Type III cycle. f) Transition network for one of the two allocatalytic
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autocatalytic core. k) Transition network for j.
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Figure S9: a) Simulation using Gillespie’s Algorithm. Each of the 10 colored lines represents the sum of autocatalysts
(
∑

X NX) over time in a single run. Extinction events (
∑

X
NX = 0) are marked with a black pin at their correspond-

ing timepoint. b) Three-compartment network with a single bimolecular chemical reaction A + B −−⇀↽−− C. The pink
wall separating α from β is permeable to B and C. The orange wall separating β from γ is permeable to A and C. c)
Autocatalytic core. The use of three compartment allows to construct the reactions to complete the cycle (the ears)
directly from the reproduction step.
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