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ABSTRACT 

To date, optimizing reactions let alone predicting the outcome (yield) of known reactions requires 

expert knowledge and can at best be obtained by computationally complex and expensive 

modelling. The present investigation tests if machine learning represents a viable approach for 

predicting a model reaction outcome that could be put into daily production. A prerequisite was 

replacing advanced scripting techniques with a more approachable data science platform such as 

Knime®. The Palladium catalyzed Suzuki-Miyaura, Negishi and Buchwald-Hartwig reactions 

were selected for a classification model of high/low yielding outcome combined with a selection 

of reaction conditions stemming from a commercial database. Here we present preliminary results 

of a random forest-based classification model using readily calculated standard medicinal 

chemistry descriptors from substrates and products yielded high ROC AUC of up to 96%. The 
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descriptors used in the model do not convey anything about the reactivity, only 1D- and 2D- 

structural information, and performed equal or better than fingerprints, both in terms of prediction 

and computational requirements. One of the major challenges was the quality of the data and its 

subsequent curation. 
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Introduction 

Every chemist knows the difficulty of a supposedly simple search for reaction conditions suitable 

for ones’ specific molecules. Deciding on any testing or final conditions is based on long term 

gathered experience or searching curated literature databases such as Scifinder® or Reaxys®. This 

task becomes troublesome and time consuming when the chemist has the luxury of having multiple 

possible transformational options to synthesize a target molecule. While the selection of a specific 

transformation is influenced by availability of starting materials, costs, and possibly even 

environmental factors, non or very little consideration outside of process chemistry development 

is paid to the optimization process prior to the selection of a transformation. Often, our decisions 

are based on experience and at best on similarity between reagents and products versus those 

reported in literature. Since large scale industrial processes must be optimized to the best 

possible/most suitable reaction conditions, it is necessary to know how much time and effort 

reaction condition optimization for a specific transformation would require.  Both, larger scale 

industrial applications as well as basic R&D investigations require a solid decision basis. Reducing 

the lead times of such findings will equal to gain of resources, costs, and a possible competitive 

edge. 
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Computer aided synthesis design (CASD) has been known since the 1960s,1 however, the main 

concern in all these systems is to find disconnections and the corresponding transformations to 

make the disconnected bonds. LHASA,2 ICSYNTH3 and ChemPlanner (now part of Scifindern)4 are 

clear examples of such software systems. All these systems have in common that the reaction 

conditions suggested for each transformation found are purely based on similarity with those 

examples described in the literature.5 In addition, CASD related publications using machine 

learning models designed to identify reactivity generally use more complex approaches than the 

one presented here, and are currently not easily implemented in a synthetic chemist’s daily work.6,7 

Considering how optimization work is a vital part of the route selection process, we found that non 

or very little attention has been paid to help experienced chemists to find the best possible reaction 

for a given transformation to maximize important outcomes such as yield, or purity. For example, 

the Negishi and Suzuki-type reactions can both generate the same product from different starting 

materials and conditions. 

The early goal was to develop a model to predict the feasibility in terms of expected yield of a 

known reaction such as a Suzuki-Miyaura cross coupling.8 We would then expand the scope of the 

model to other transition metal catalyzed reactions, e.g. Negishi and Buchwald-Hartwig cross-

coupling reactions.9-11  

Predicting the yield of a given transformation could help us to answer two important questions 

in process chemistry optimization: How much time would be needed to improve the yield of the 

transformation, and, did we select the right transformation for our target molecule? In other words, 

how effective is the transformation in terms of yield.  

We thus investigated classification models initially focusing on the afore mentioned Suzuki-

Miyaura cross coupling reaction. For practical purposes (see also Results and Discussion) the 

original hypothesis was to find correlations between the physico-chemical properties of the starting 

materials and the products. Since a single property cannot be used to describe a chemical 

transformation, we envisioned that a combination of 1D and 2D based properties would be enough 

for our first model. It remained to be seen if they suffice to describe the entities in question.12 While 

such descriptors do not convey anything about advanced 2D or even 3D structural information, 

they do render model creation simpler than otherwise commonly used fingerprints (FP).13 These 

bit-vector based fingerprints used for structural representation have their own limitations in 

information content, as well as in calculations requirements that increase exponentially with the 
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size of the FPs. The latter renders it difficult or even impossible to calculate on a regular PC, 

depending on the applications used (see below).  

Skoraczyñski et al. discussed the need of new and better descriptors to represent chemical 

reactions providing the possibility of developing prediction models more efficiently.12 While we 

agree with the affirmation that today we do not have enough general descriptors to represent all 

interactions present in all chemical transformations, we believe that for a specific transformation 

one could find such key molecular descriptors that best describe the transformation from starting 

materials to product. For example, during our investigation we found that the applied molecular 

descriptors used by the model may differ depending on the reaction.14  

Some recent approaches attempting to expand the toolbox of predicting or explaining outcomes 

of reactions are based on machine learning models using initially smaller curated datasets and, 

more recently, big datasets, i.e. examples with millions of reactions.15 Sources of data are either 

tediously curated open-source databases such as USPTO, commercial databases, or in-house 

generated reactions serving as training sets.  

Due to this imperfect availability of amount vs quality, additional curation or data-generation is 

often required as can be seen in our analysis below and also described by for example Davies.16 To 

the best of our knowledge no non-commercial reaction-based database is currently available, aside 

from USPTO also requiring additional curation in order to obtain a useful dataset as described by 

Coley et al.17  

These issues can also be seen in previous attempts of predictive approaches. For example, 

attempting to encompass most parameters of interest for predictions of organic reactions Jensen et 

al. applied neural network algorithms to predict catalyst, solvent, reagents, and temperature from 

10 million compounds from Reaxys®.15 Their overall goal seemed to be to develop one general 

model, though as in most cases so far, predicting a single parameter alone such as yield, tended to 

perform better than multiple ones (yield, temperature, solvent, etc.) simultaneously. They were also 

forced to compromise regarding data curation such as the handling of missing data. The 

computational infrastructure required to achieve this is also not of practical use for everyone. In 

another approach, Ahneman et al. focused on only one reaction using physicochemical properties 

instead of fingerprints to describe their model. Using molecular, atomic and vibrational properties 

calculated using Spartan they achieved up to 92% (R2 value) in yield prediction for a small set of 

reactions.18,19 They also attempted to explain the data obtained with experimental NMR data and 
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thus to show how ML can be used to give insight into reaction mechanisms. Their data creation 

required in-house generated experimental data, which, albeit certainly more reliable than external 

data, is time and resource consuming unless already existent.  

Thus, while existing approaches show promising results in the ranges of around 80% accuracy, 

with few exceptions of over 90% with certain caveats, the outcomes are not practical enough to be 

deployed for daily use, if only due to computational requirements and accessibility. 

Here we present our initial findings on using only molecular descriptors in a binary machine 

learning model approach. To do so, we choose for starters to remove certain parameters to enable 

a first proof-of-concept. For example, although certainly an important factor to be optimized, the 

selection of the catalyst becomes the most troublesome due to the different mechanisms acting in 

a catalytic cycle. Solvent selection is normally dictated by the polarity and solubility of the starting 

materials and reagents. In addition, there are various solvent selection models already reported 

elsewhere.20 Finally, although the reaction temperature might theoretical be considered a critical 

parameter for a reaction to take place, in practice and in the actual context of Suzuki-Miyaura 

transformations, it is usually a transformation carried out under refluxing conditions. Therefore, at 

this stage and from a practical point of view, we did not consider temperature prediction as a vital 

parameter for process optimization. 

 

Results and Discussion 

The proof-of-concept was limited to analyzing properties of the components involved in a 

chemical reaction to see if there was a way to predict if said reaction was possible at all. With a 

potential daily-use implementation in mind the approach should not involve a too complex 

procedure such as quantum chemical property calculations or mechanism-based calculations, 

where computational power and user-accessibility would pose a large obstacle. Although an ever-

growing library of 3D-based quantum mechanical descriptors are becoming available, they are not 

yet capable of providing a wide enough range in structural diversity, and neither do they offer an 

easy way to data-mine on a larger scale, yet.21,22 Both model-building as well as implementation 

should be possible on a standard office computer. For instance, a FP based descriptor model in our 

hands was only possible with bit-vectors up to 1k in size, achieving lower accuracies than the model 

described below. Although fingerprints represent a structure as graph-based bit-vector and are 

commonly used for molecular representation in structural similarity analysis,23,24 they do require 
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high dimensional representations to perform well. While the actual fingerprint calculations might 

be fast requiring only modest memory requirements even on a regular PC, the actual model creation 

is not. Using larger fingerprints such as 4k in size, or Jensen’s 16k approach,15 was therefore not 

possible on a memory limited computer. 

Thus, we focused on using 1- and 2-D based molecular properties that are commonly applied in 

for example in medicinal chemistry. A somewhat similar approach was described recently by Doyle 

et al., though they used R programming as modelling tool, for our requirements a less useful 

approach.25 On the other hand, Knime,26 an open source platform that simplifies “programming” 

allowing for easier adoption by users not equally skilled in advanced computer science, was utilized 

for data-curation, model building and implementation. A caveat of this system is the memory 

handling, which is most likely why above-mentioned fingerprint approaches were not possible in 

our hands, while they would most likely be less of a problem via for example sklearn & rdkit in 

Python.  

As a proof-of concept we focused on the in medicinal chemistry highly popular and very useful 

Suzuki-Miyaura reaction used for C-C bond formation,8 as well as similar types of Pd-catalyzed 

reactions such as Negishi9 and Buchwald-Hartwig couplings.10,11 The Suzuki-Miyaura reaction is 

based on a Boron (B) and halide/triflate (Hal) containing substrates yielding a product (P), see 

Figure 1. A search in Reaxys® alone reveals over 162k reactions with more than 213k compounds 

involved (October 2019).27 Since the Reaxys API for large automated data-extraction is not 

available to general subscribers, manual export was conducted for the smaller dataset employed in 

this proof-of-concept investigation. 
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Figure 1. Generalized representation of the Suzuki-Miyaura coupling depicted as Hal/B 

components. Negishi is similarly depicted as Hal/Zn components and Buchwald-Hartwig 

amination as Hal/N components.  

 

Despite the high-quality information stemming from a commercial database, further data-

curation of the exported dataset was required. The main structures of interest were extracted from 

the reaction field that contains Smiles based structures. For this, semi-automatic resorting of the 

input order was applied to obtain “pure” meta-fields for especially B-containing structures vs Hal-

structures. In addition, the stoichiometry of substrates/products had to be normalized, as well as 

byproducts filtered out. Purely text-based fields are currently not deemed suitable due to none-

structured input and conversion difficulties to correct structures, including the catalyst itself. In the 

Reaxys® dataset one finds it in at least two meta-fields not only as “Catalyst” but also mixed with 

“Reagent”, without an associable ID, and is therefore difficult to curate. Attempts to one-hot 

encoding of the text-based catalysts did not lead to an enhanced model. Therefore, the catalyst, 

base and solvent were removed from the dataset and will be part of future investigations. Multi-

step reactions and duplicates were removed and finally only one example with the highest yield 

was selected (see also discussion below). After curation, the dataset contained a total of 

approximately 95.000 reactions with yields in the range from 5 to 100%.  

For the resulting dataset we then calculated molecular properties for the B, Hal, and P structures 

via the Indigo, CDK and RDKit nodes available in Knime. In case of Negishi this corresponded to 
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Zn, Hal, and P, for Buchwald-Hartwig N, Hal, and P. These properties consist of 0D, 1D as well 

as 2D descriptors, where 0D and 1D descriptors are based on the molecular formula and represent 

numerical features such as the molecular weight, bond, and atom counts. 2D descriptors are 

fragment- or graph-based and contain spatial type of information of the molecules such as 

Topological Surface Area (TPSA), fragment counts, etc. All descriptors are only a portrayal of the 

components and not of the reactivity since neither 3D-structural information, nor any form of 

kinetic or thermodynamic information are being considered. Some descriptors though do convey 

within limits steric or electronic information.24,28 On the other hand, these descriptors are simple 

and fast to calculate, as a dataset of nearly 300.000 components is readily computed within minutes 

(100k of each B, Hal and P). For the final model we limited the descriptors to the RDKit ones since 

we obtained comparable and even slightly better results using less descriptors.14 See also 

Supplementary S2 containing a Knime work-flow performing the clean-up and calculations. 

 

Very early attempts of finding any form of correlation within this dataset based on (multi)-linear 

regressions or PCA models did not show any form of practical correlations and are therefore not 

discussed here. Machine learning (ML) algorithms were deemed more promising, certainly in the 

case of binary classifications. For this, the Random Forest (RF) model offers both predictive 

accuracy and flexibility. It can be used for both classification and regression tasks. While RF may 

also overfit a model, it is less prone to do so compared to other models.29 Furthermore, it performs 

exceptionally well compared to other learning methods in context of pharma-applications, one of 

many reasons why the current deep-learning approaches were not considered to offer an advantage, 

rather the opposite.30 The Knime platform offers an out of the box solution to implement such ML 

methods, as well as easy solutions to tweak parameters of such a model.  

With a binary model in mind, we chose the yield as a factor of a reaction’s success, separating 

the data into Good (>= 60% reported yield) and Bad (<= 40% yield). One reason is the difficulty 

in defining a “good” or “bad” reaction in terms of yield, not including any reasoning of human 

error that reported results might include. Since we are interested in predicting the success of a 

reaction in terms of high yields, we accepted to deselect this intermediate range. Further separation 

is possible, and one may also envision a ternary model that includes the complete range of yields.  
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The overall model was entailed following steps: 

 Curation as described above 

 Randomizing the dataset entry order after curation 

 Testing with and without equal size sampling  

 10-fold cross validation 

 Splitting 80/20 into training/test set. 

 Dimensionality reduction to determine most relevant factors for the following model 

 

With the RF model being rather robust, only minor optimization was performed, e.g. the number 

of trees of 500 were deemed optimal.14 See also supporting information S1 and S2 or the open 

access Knime workflow containing above approach in “Examples > 50_Applications > 

21_Model_Selection_and_Managmenet > 01_Model_selection_Sampled”. 

While duplicate removal might seem obvious and has been discussed elsewhere,31 it seems 

important to highlight that what constitutes as duplicate for reactions may differ for duplicates of 

single compound comparison used e.g. in biological activity modelling. Two reactions are different 

as long as they differ in one single variable, such as temperature, additives, stoichiometry, etc. 

However, for this study, all reactions of the same starting materials and products, independent of 

conditions, are considered as duplicate. 

The highest yield duplicate was kept since it implies the reaction is possible to make at such a 

yield. Lower yields could be due to a variety of reasons and are therefore dismissed, except in those 

cases where they are the only example. At this early proof-of-concept stage this is furthermore 

within our goal of mainly predicting high yielding reaction examples.  

This duplicate bias of the data-set was indeed seen in a first approach with a Suzuki dataset was 

yielding “a too good to be true” ROC of over 98% (Table 1, entry 1a; see also supplementary Table 

S1).14 When compared to entries 2a/b one could be led to believe it was due to the larger dataset. 

Artificially reducing it to the same size (1b vs 2a/2b) the performance impact was noticeable but 

not substantial. As a result, the AUC was reduced to 89% which is nevertheless a respectable result. 

The original dataset from entry 1 contained a large number of duplicates stemming from same 

reactions with different conditions. In terms of imbalance of Good vs Bad, upon comparing entry 

2a with 2b no significant difference was observed.  
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Table 1: Random Forest outcomes for the different data-sets 

Entry Data Set Sizea No. of 
Descriptors 

Sizea,b 
Total/Good/Bad 

ROC 
AUC 
[%] 

Sensitivity 
(True 
positives)e 

Specificity 
(True 
negatives)f 

1a Suzukic 95.4  357 -> 75 75.5 / 37.2 / 38.3 98.2 0.91 0.95 

1b Suzukic 39.3 357 -> 88 39.3 / 19.6 / 19.6 95.6 0.87 0.93 

2a Suzukid 48.9 357 -> 89 39.3 / 21.8 / 17.6 89.1 0.85 0.76 

2b Suzukid 48.9 357 -> 88 35.1 / 17.5 / 17.5  88.7 0.82 0.81 

3 Negishi 3.3 357 -> 150 2.9 / 2.7 / 0.2 83.4 1.00 0.25 

4 
Buchwald 
Hartwig 

26.5 357 -> 88 21.7 / 15.7 / 6.0 90.0 0.94 0.63 

a) Numbers given in thousands. b) Data set size after yield split >=60% (good) / <= 40% (bad) and 
the amount remaining for each binary class. Due to rounding of numbers they might not add up to 
same as total in Sizea. c) First tests of data as examined in 14. d) After additional curation leading 
to more duplicate removal than initial identified. e) Sensitivity describes proportion of actual 
positives that are correctly identified. f) Specificity describes the proportion of actual negatives 
that are correctly identified. 

 

For comparison we also briefly investigated the Negishi and Buchwald-Hartwig cross-coupling. 

The former dataset is much smaller, only 3.3k reactions after curation. Not counting duplicates, the 

exported dataset had 7.5k reactions. One of the reasons for this loss is the at times incompatible 

description of the Zn-components with regards to the descriptor calculations. Nevertheless, a 

smaller dataset with the same yield separation and RF-model resulted in an AUC ROC value above 

80% with an overall high accuracy (Table 1, entry 3). We have not studied if this is possibly due 

to a high similarity of reactants/products in this smaller data-set. In contrast, the Buchwald-Hartwig 

amination reaction with an amine component instead of a zinc or boron, was made up of a larger 

data-set leading to ROC and sensitivity/specificity similar to the Suzuki model (Table 1, entry 4). 

This might indicate the necessity for larger data-sets greater tens of thousands or more for increased 

accuracy, although it does not answer how similar/dissimilar the structural information in the data-

sets actually is. Many examples in the literature are done on model-reactions with the same 

substrates (although with small variation in the reaction conditions such as different temperature 
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or solvents ratio) which in our cased were removed since they were counted as duplicates, one of 

the reasons for reduced data-set sizes compared to the total entries in the database. The two latter 

data-sets for Negishi and Buchwald-Hartwig are in addition more imbalanced than the Suzuki set 

which is somewhat reflected in the lower specificity.  

Finally, following up on a comment towards a study by Ahneman and coworkers,18 published by 

Keiser et al.,32 we randomized the selection of the molecular descriptors to be used in our model. 

In the case of the Suzuki set 2a (Table 1), using 5, 10 or 20 randomly chosen descriptors, the 

maximum ROC AUC value obtained was 77% with sensitivity and specificity in the same range, 

indicating that a larger number of descriptors is required to obtain higher accuracies, respectively 

that more work concerning appropriate descriptors is required.12  

Our results show that basic, easy to calculate molecular descriptors may suffice to create a 

selection model for the prediction of the chemical yield of a specific transformation. The 

information thus obtained can be used to estimate whether an optimization process might be 

worthwhile, or if it were less troublesome to investigate another type of transformation to 

synthesize the target molecule. (Figure 1). 

At present we are still investigating which molecular descriptors are key for each type of 

transformation, as different descriptors seem to be used in different transformations (Table 1). 

Thus, currently, a model directly comparing two or more transformations lies outside the scope of 

this paper. 

Class imbalance does have an impact the performance, as is indicated for example by the low 

numbers of the minor class, i.e. low yields. One approach to counter this could be performed by 

conformal predictions approach.33 

Finally, during our investigations we considered experimental validation of the results obtained 

using the described model. Several experiments were performed to confirm the positive yielding 

reactions and in all cases the experiments followed the predictions. However, the validation of 

potential negative results has been troublesome and time consuming and remain therefor part of 

ongoing investigations.14   
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Conclusion and Outlook 

The open source platform Knime® and a “standard laptop” allowed for a simple, still useful and 

competitive result in order to understand if a transformation is worthy to optimize or not, as in this 

case, based on the yield as “high versus low”. 

Model building alone is only one part of approaching this type of reaction prediction, the other 

is the data and its quality. For common purposes, only non-commercial databases may offer enough 

data, but their curation remains an issue. Commercial databases are not available to everyone and 

even they suffer, to some extent, of curation issues. In-house generated data should give the best 

quality but is restricted to larger efforts from chemists to generate such data and is not possible for 

everyone.  

As discussed, one important factor, curation of catalyst related information requires more 

extensive work depending on the data-origin. Catalyst and e.g. solvent inclusion should enrich the 

data-sets in terms of data-set size and information content. Imbalance issues might be able to be 

countered by conformal prediction.33 

Another approach for better models will be to use (different) descriptors.12 What type of 

descriptors is yet to be seen, especially in terms of complexity. For example, the interesting 

quantum chemical descriptors approach alone may not suffice, considering Merck’s approach, 

which aside from having a number of caveats, one critical factor certainly being computational 

power.34  

In summary, we were able to curate specific reaction sets and create a binary yield predicting 

model based solely on easily calculated property descriptors. While the predictiveness is yet to 

come into what we believe would be a practical range of for example >95%, we were able to 

demonstrate equal or enhanced accuracies versus more complex ones described in the literature. 

Careful curation of the datasets versus complex calculations poses in our opinion a larger 

contribution to obtain better models. Nevertheless, we are currently successfully applying the 

described model and ongoing development ones on in-house cases with the purpose of enhancing 

the predictiveness. 

During the review process some related work in the field of machine learning and synthesis was 

suggested. Since we have cited other related work, the authors deemed these initially not relevant 
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due to their arguably (dis)similar approach in methodology or purpose.35-37 Others were published 

during manuscript preparation or after submission.38-40  
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