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Results from non-linear analysis of bubbling fluidized beds are presented in this study.

The experiments were performed in cylindrical columns having internal diameters of

2.5 inches, 4 inches and 6 inches while operating conditions, material properties

and static bed height were held constant. Superficial velocity of air at the inlet

was varied from 2.97 to 5.35 times minimum fluidization velocity in each column.

The test procedure involved randomization and replication to estimate measurement

uncertainty and identify bias if present. The columns were split into regions based on

dominant physical mechanisms occurring within. Fractal parameters were evaluated

from differential pressure data which confirm deterministic chaos. These measures

represent a broad range of spatial and temporal scales and were used to elucidate

multiphase dynamics in different sections of these columns. Fractal analysis is hence

shown to provide more intuition particularly when a true scale-up study based on

non-dimensional groups becomes prohibitive.
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I. INTRODUCTION

Fluidization is caused by dynamic equilibrium between gravity and drag, which is known

to enhance mixing and heat transfer characteristics. Gas flowing through a granular medium

results in non-linear gas-particle and particle-particle interactions leading to a range of

spatio-temporal scales which are not linearly superimposable. At the micro-scale, particles

collide with other particles and walls of a column which dissipate energy due to their inelas-

tic nature. On the other hand, spatial inhomogeneities exist in the form of bubbles at the

meso-scale where particle concentration approaches zero. These propagate as concentration

waves while enhancing stream-wise and lateral transport of particles as well as providing

paths of least resistance to the gas-phase. Clusters and streamers are other meso-scale

structures which are formed due to a combination of hydrodynamic instability and inelastic

inter-particle collisions at higher flow rates. Characterizing these mechanisms is important

in determining the overall performance of a fluidized bed reactor. It is however challenging to

analyze a system having such a high degree of non-linearity using a naive approach. Under-

standing multi-phase hydrodynamics is also essential for successful scale-up of systems from

laboratory-scale to pilot-scale and industrial-scale. Though scaling laws have been proposed

for fluidized bed systems1, feasibility remains an issue while using non-dimensional groups

derived from continuum-based governing equations. This may require changing properties of

particulate- and carrier-phase along with operating conditions among other control param-

eters. Hence, geometric scale-up study in gas-solid flows without considering hydrodynamic

scaling laws is more common in literature, which is followed in the work presented.

Non-linear analysis often relies on transformation from physical space to spectral- or

phase-space. Development of mechanistic tools for chaos has made it possible to pro-

vide more granularity in complex multi-phase systems in engineering applications2–6 and

nature7. Previous use of this technique in gas-solid fluidization includes works of Pence and

Beasley 8 , Zhao and Yang 9 , Blomgren et al. 10 , Fullmer and Hrenya 11 , Higham, Shahnam,

and Vaidheeswaran 12 . Obtaining high-quality experimental data with measurement uncer-

tainty has also been a major challenge in granular and multi-phase flows Gel et al. 13 . A

systematic approach has been adopted recently by Gopalan et al. 14 and Vaidheeswaran,

Shaffer, and Gopalan 15 which involve replicates and randomization in the design of experi-

ments. This is critical in identifying individual contributions of uncertainties from different
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sources including instrumentation and chaos in the system. Therefore, a similar testing

procedure is followed in the current study.

In this work, non-linear characteristics in three different bubbling fluidized bed columns

are described using time series of differential pressure signals. As the name suggests, the

most dominant meso-scale structures in such units are bubbles which represent regions of

void or negligible particle concentration. Pressure signals inside a bubbling fluidized bed

originate due to multiple reasons16 including: (i) formation, coalescence and breaking of

bubbles, (ii) bubble eruption at the interface, (iii) passage of bubbles and (iv) interactions

between fluidized particles. These are prone to being amplified or attenuated depending on

the properties of emulsion phase and locations of pressure ports. As opposed to absolute

pressure, differential pressure has the ability to filter out fluctuations outside the region of

interest and represent the dynamics within16. Data were recorded across distributor plate,

dense region, dilute region and combination of dense and dilute regions. Measures from

chaos and recurrence quantification analysis (RQA) are used for a qualitative description

of features in these columns, although not hydrodynamically scaled. The remainder of the

article is organized as follows: Details regarding experimental set-up and procedure are

outlined in Section II. Discussion on estimated fractal measures is provided in III followed

by conclusions drawn from this study.

II. SETUP AND PROCEDURE

Experiments on bubbling fluidization were performed using the cylindrical columns de-

picted in Figure 1. The initial static bed height was set to 15.24cm in each case which

translates to 0.79kg, 1.90kg and 3.74kg for the 2.5-inch, 4-inch and 6-inch units respec-

tively. Experiments were performed using glass particles having a density of 2510 kg/m3

and Sauter mean diameter of 332 µm which are classified under Group B based on Gel-

dart’s criterion17. Dry air at atmospheric conditions was used for fluidizing the particles.

A characteristic velocity in such systems is the minimum fluidization velocity, Umf which

represents transition from a packed to fluidized state. Rao et al.18 determined the effect

of channel diameter on Umf , and observed a drop in its value with reduction in wall fric-

tion as diameter increases. Umf values obtained in this study are summarized in Table I.

3



TABLE I. Minimum fluidization values from test sections used in this study

Internal diameter of column (inches) Umf (m/s)

2.5 0.079

4.0 0.073

6.0 0.070

TABLE II. Instrumentation range (in Pa) used in different test sections

Measurement 2.5-inch 4-inch 6-inch

∆P1 = P0 - P1 3732.60 3732.60 7465.19

∆P2 = P1 - P2 2488.40 2488.40 2488.40

∆P3 = P2 - P3 3732.60 3732.60 3732.60

∆P4 = P3 - P4 1244.20 1244.20 3483.76

∆P5 = P4 - P5
a - 622.10 622.10

∆P5 = P1 - P5
b 3732.60 - -

∆P6 = P1 - P5
c - 3732.60 3732.60

a 4-inch & 6-inch
b 2.5-inch
c 4-inch & 6-inch

Further details regarding minimum fluidization experiments have been avoided for the sake

of brevity. Henceforth, Umf refers to the value corresponding to the 2.5-inch unit unless

otherwise stated.

Pressure transducers are used to record differential pressure along different sections in

the cylindrical columns. Table II summarizes information regarding instrumentation in

different units. Air at the inlet is introduced through a mass flow controller at five superficial

velocities viz., [2.97, 3.57, 4.16, 4.76, 5.35] Umf . During the experiments, these settings were

randomized and five replicates were introduced for each case to quantify uncertainty in

measurements. Pressure values were recorded for each test for a duration of 180s. Initial

transients were removed during analysis to ensure stationarity in a statistical sense.

To facilitate better understanding, the respective test sections are divided into four re-

gions viz., distributor, dense, dilute and combined based on the location of pressure ports.
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The names have been chosen for the purpose of distinguishing while relaxing their strict

definitions. Distributor corresponds to the region between pressure ports on either side of

the distributor plate. Dense region corresponds to the dense portion where particle concen-

tration is relatively higher. Dilute region refers to the section covering interface between the

dense bed and freeboard where bubbles erupt. Combined region is a combination of dense

and dilute regions as defined. In terms of measurements, differential pressure across dis-

tributor corresponds to ∆P1. Pressure drop across dense region corresponds to ∆P2 + ∆P3

for the 2.5-inch column, and ∆P2 for the 4-inch and 6-inch columns. For the 2.5-inch

column, differential pressure across dilute region corresponds to ∆P4 and combined region

corresponds to ∆P5, while they correspond to ∆P3 + ∆P4 + ∆P5 and ∆P6 for the 4-inch

and 6-inch units respectively.

III. RESULTS

Fractal measures are estimated using differential pressure signals from different regions

in the columns. Procedures to evaluate these metrics are provided in the Appendix. Toler-

ance parameters used for chaos analysis and RQA are summarized in Table III. Accuracy

values are based on manufacturer-provided instrumentation accuracy of 0.14%, while the

neighborhood parameter, ε ∼ 5 times the measurement accuracy of instrumentation was

used as recommended by Marwan et al. 19 . In the plots that follow, error bars represent

95% confidence interval from t-statistic. The readers are urged to exercise caution while

making a quantitative comparison of these estimates since hydrodynamic similarity was not

preserved across the columns.

1. Chaos Analysis

Sample Entropy

The relationship between average sample entropy SampEn and U/Umf is shown in Figure

2. SampEn increases with U/Umf for the most part. Bubbles originating at the distrib-

utor propagate upwards as kinematic waves and coalesce with other bubbles. This occurs

at a higher frequency as U/Umf increases leading to an increase in SampEn in the dense
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TABLE III. Accuracy and Neighborhood parameters used for chaos analysis and RQA.

Region Accuracy Neighborhood

2.5-inch 4-inch 6-inch 2.5-inch 4-inch 6-inch

Distributor 6.0 6.0 11.0 30.0 30.0 60.0

Dense region 10.0 4.0 4.0 50.0 20.0 20.0

Dilute region 2.0 8.0 11.0 10.0 40.0 60.0

Combined 6.0 6.0 6.0 30.0 30.0 30.0

region. Larger bubbles after coalescence continue to rise albeit at a lower velocity having

a high-pressure nose region and a low-pressure wake. Passage of such bubbles across trans-

ducers and their eruption at the interface result in the observed pressure fluctuations in the

dilute region. These become more pronounced with increasing U/Umf causing SampEn to

increase. Measures from the combined region indicate that the dynamical scales are not

linearly super-imposable. SampEn values appear very similar to those in dense region, even

though measurements in the combined region include signals from the dilute region.

Hurst Exponent

Hurst Exponent (H) quantifies system’s memory. Data in Figure 3 indicates anti-persistence

in differential pressure signals across the distributor region. This is most likely due to com-

bination of piston-like motion of solids near the distributor, self-excited particle interactions

and formation of bubbles16. All these mechanisms are characterized by short-range temporal

features and the corresponding time series have high-frequency components. In the dense

region, H continues to indicate anti-persistent behavior in the 4-inch unit while 2.5-inch

and 6-inch columns show more persistence in the temporal dynamics. In the dilute region,

H indicates uniform persistence in all three columns. This imples larger temporal scales

corresponding to the eruption of bubbles at the interface compared to the dynamics in the

distributor and dense regions. H values in dense, dilute and combined regions are similar

in the 2.5-inch and 6-inch columns, while H values in combined region are similar to dense

region in the 4-inch column. It is more likely that pressure signals from bubble formation

and coalescence dictate the temporal variation relative to the dynamics at the interface in

the 4-inch unit. Besides, H was found to be insensitive to U/Umf in all the units used in
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the current study.

Correlation Dimension

Correlation dimension (D) is a measure of fractal nature in a time series. A higher value cor-

responds to tightly clustered points in the phase-space indicating more randomness. Figure

4 shows the response of correlation dimension to the fluidizing gas velocity U/Umf . Similar

estimates of D are observed in the 2.5-inch and 4-inch units across all regions, while showing

negligible dependence on U/Umf . Distributor region has higher D for the 6-inch unit, while

not being sensitive to U/Umf . In the other regions, D increases with increase in U/Umf ,

while D values in the combined region are lower than those from individual regions in the

6-inch unit. Results suggest more controlled and self-similar bubbling fluidization in this

unit, a phenomenon previously observed in pulsed systems8,12,20.

2. Recurrence Quantification Analysis

Recurrence is a property used to characterize the behavior of a dynamical system in

phase-space19. Recurrence of a state in a time series is when a point in the trajectory

repeats itself, within a suitably selected margin of error or neighborhood parameter ε. A

recurrence matrix, R(i, j) can be constructed for the time series ~x using the definition given

by,

R(i, j) =

1, ||x(i)− x(j)|| ≤ ε

0, ||x(i)− x(j)|| > ε
(1)

Indices i,j denote time instances. R(i, j) is an NXN matrix that represents systems’ re-

constructed phase-space attractor, where N is the total number of data points in the time

series. Zbilut and Webber 21 , Webber and Zbilut 22 developed recurrence quantification

analysis (RQA) to evaluate the morphology of recurrence plots which might otherwise be

challenging to interpret visually depending on the extent of non-linearity. RQA provides

a probabilistic tool to quantify the arrangement of data on recurrence plots. Properties

such as density of recurrent points, lengths of diagonals, vertical and horizontal lines, are

used to derive statistical measures, some of which are presented in the analysis that follows.
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The readers are referred to Marwan et al. 19 for further details regarding RQA. The RQA

parameters are obtained using the Python based library PyRQA23 in this study. Recurrence

plots from experiments are not shown here for the sake of brevity.

Recurrence Rate

Recurrence rate (RR) is the probability that the difference between two points in a time

series falls within the specified neighborhood parameter, ε. The magnitude of RR indicates

the degree of invariance in the signal being analyzed. A highly chaotic system with nu-

merous overlapping frequencies from pressure signals would correspond to lower values of

RR as observed in the distributor region in Figure 5. Solids undergo significant piston-like

motion very close to the distributor. Besides, numerous tiny bubbles are formed in this

part of the column. Both these sources are characterized by shorter temporal scales and

contribute to small but rapid fluctuations in pressure signals. Hence, RR is lower in this

region, where sensitivity to U/Umf is negligible. RR in other sections show dependence

on U/Umf and follow varying trends. RR is greater in dense region for the 2.5-inch unit,

while it is greater for the 6-inch unit in dilute and combined regions. The dense bed is

dominated by a continuous cycle of bubble coalescence and breakup, whereas the dilute

region is influenced by bubbles erupting at the interface. The corresponding pressure signals

have dominant low-frequency components relative to the signals from distributor region.

However, the high-frequency content in these signals increase with U/Umf thereby lowering

the RR estimates.

Determinism

Determinism (DET ) measures the probability of recurrent points lying along diagonals of

a recurrence plot. Diagonals represent periodicity while broken or intermittent period lines

represent unstable orbits of attractors in a chaotic system Marwan et al. 19 . DET measures

in the distributor region decreases with increasing U/Umf in all the columns used in the

current study. This is indicative of higher levels of chaos in this region at higher fluidization

velocities. Also, DET values for the 6-inch unit are higher across all regions suggesting a

more controlled fluidization process compared to the 2.5-inch and 4-inch units. The obser-

vations are consistent with chaos measures in Section III 1.
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Trapping Time

Results presented so far suggest decreased levels of chaos in the 6-inch unit relative to the

2.5-inch and 4-inch units. This is more apparent from Trapping Time (TT ), which repre-

sents the length of average vertical line in recurrence plot. TT provides an estimate for the

average time a system remains “trapped” in a given state or condition. As a consequence,

TT measures are lower for a chaotic system. TT values are similar for all three columns in

the distributor region as noticed in Figure 7. TT is high in the dense region in the 2.5-inch

unit, and in the dilute region in the 6-inch unit. TT values from differential pressure signals

in the combined region are significantly higher for the 6-inch column at lower U/Umf , and

drop with increasing U/Umf possibly due to vigorous bubbling as well as bubble eruption

at the interface between dense bed and freeboard.

IV. CONCLUSIONS

The work presented highlights the potential of non-linear analysis to characterize different

mechanisms in bubbling fluidized beds. Deterministic chaos was confirmed using differential

pressure signals from three fluidized bed columns. Fluctuations in these signals arise from

formation of bubbles, their passage across pressure transducers and their eruption at the

interface. Chaos and recurrence analyses are used to characterize multi-phase flow dynamics

in dense and dilute portions of the test section. The distributor region is highly chaotic

compared to the rest. Sample Entropy was found to increase with U/Umf for the most part.

Hurst Exponent values were insensitive to U/Umf , and indicate anti-persistent behavior

near the distributor, becoming more persistent along each column. Pressure signals due to

bubble formation and coalescence appear to dictate the temporal scales in the combined

region relative to interface dynamics in the 4-inch column. Correlation dimension measures

as well as estimates from RQA suggest possible suppression of chaos in the 6-inch unit.

Caution must be exercised while drawing further conclusions from the current study since

the systems were not hydrodynamically scaled. Finally, estimates in the combined region

reveal the extent of non-linearity in these systems based on the fact that the values are not

a trivial combination of measures from dense and dilute regions.
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Appendix: Formulas to estimate chaos and recurrence analysis parameters

Parameters used in chaos and recurrence analysis are evaluated as follows:

Sample entropy:

Sample entropy proposed by Richman and Moorman 24 is used to quantify the complexity
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or information content of a system. It is defined as:

SampEn(m, r,N) = −lnC
m+1(r)

Cm(r)
(A.1)

where, C is the correlation sum, m is the embedded dimensional space (here m=2) of the

set of vectors derived from the system data used to obtain C, and r is coordinate difference

criteria for comparing the embedded space vectors. For this study, the sample entropy was

calculated via the Nolds python library using r values equal to the accuracy values provided

in Table III. A more detailed explanation of sample entropy can be found in Zurek et al. 25 .

Hurst Exponent:

Hurst Exponent is a measure of system’s memory, ranging from 0 to 1; where values less

than 0.5 denote anti-persistent behavior, values greater than 0.5 denote persistent behavior,

and 0.5 denotes Brownian motion. Persistent behavior here refers to whether local increas-

ing/decreasing value trends in system data will continue in the short term. Hurst Exponent

is obtained from the rescaled-ranged function following the work of Cabrejos and Klinzing 26 ,

given by:

R/S = (ατ)H (A.2)

where R is the range (max value – min value) of the signal, S is the standard deviation, α

is a proportionality constant, τ is time period, and H is the Hurst Exponent. H is obtained

form the slope of log-log plot between R/S and τ . For this study, Hurst Exponent was

calculated via the python library Nolds27.

Correlation Dimension:

Correlation dimension is a measure of fractal dimension of a system often used to character-

ize strange attractors. Correlation dimensions in this study were calculated using Nolds27,

in which the underlying algorithm is based on the approach of Grassberger and Procaccia 28 .

In summary, the correlation sum Cm(r) is calculated as a function of separation distance

r, where an embedded dimension value of m=2 is used. The correlation dimension is then

obtained from the plot between ln(Cm(r)) and ln(r) using linear fit.
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Recurrence rate:

The recurrence matrix is constructed using 1. The recurrence rate (RR) is defined as the

percentage of recurrent points that fall within specified neighborhood. It is obtained using

the following expression:

RR =
1

N2

N∑
i,j=1

R(i, j) (A.3)

A value of 0 indicates no matching points while a value of 1 means all points in the time se-

ries fall within the specified neighborhood. Values used for different sections in the columns

are summarized in Table III.

Determinism:

Determinism (DET) is calculated as the proportion of recurrent points that form diagonal

lines given by,

DET =

∑N
l=lmin,N

lP (l)∑N
l=1,N lP (l)

(A.4)

l is the length of diagonal, lmin is the minimum length of line (usually 2) and P (l) is the

probability of line having length l. DET is typically high for periodic systems and reduces

as they become more chaotic.

Trapping time:

Trapping time (TT) measures the time period which indicates how long a system remains

trapped in a specific state. It is calculated as,

TT =

∑N
v=vmin,N

vP (v)∑N
v=vmin,N

P (v)
(A.5)

The system is expected to be more stationary when the value of TT is larger.

REFERENCES

1L. R. Glicksman, “Scaling relationships for fluidized beds,” Chemical Engineering Science

39, 1373 – 1379 (1984).

12



2F. Franca, M. Acikgoz, R. Lahey, and A. Clausse, “The use of fractal techniques for flow

regime identification,” International Journal of Multiphase Flow 17, 545 – 552 (1991).

3T. Al-Wahaibi and P. Angeli, “Transition between stratified and non-stratified horizontal

oil–water flows. part i: Stability analysis,” Chemical Engineering Science 62, 2915 – 2928

(2007).

4M. Duponcheel, S. Mimouni, S. Fleau, and Y. Bartosiewicz, “Experimental and numerical

investigations of a two-phase wavy flow,” Nuclear Engineering and Design 321, 199–218

(2017).

5A. Vaidheeswaran and M. Lopez de Bertodano, “Stability and convergence of computa-

tional eulerian two-fluid model for a bubble plume,” Chemical Engineering Science 160,

210 – 226 (2017).

6A. Vaidheeswaran, A. Clausse, W. D. Fullmer, R. Marino, and M. Lopez de Bertodano,

“Chaos in wavy-stratified fluid-fluid flow,” Chaos: An Interdisciplinary Journal of Nonlin-

ear Science 29, 033121 (2019).

7R. J. Wilson, P. A. Delamere, F. Bagenal, and A. Masters, “Kelvin-helmholtz instability

at saturn’s magnetopause: Cassini ion data analysis,” Journal of Geophysical Research:

Space Physics 117 (2012), 10.1029/2011JA016723.

8D. V. Pence and D. E. Beasley, “Chaos suppression in gas-solid fluidization,” Chaos: An

Interdisciplinary Journal of Nonlinear Science 8, 514–519 (1998).

9G.-B. Zhao and Y.-R. Yang, “Multiscale resolution of fluidized-

bed pressure fluctuations,” AIChE Journal 49, 869–882 (2003),

https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690490407.

10P. Blomgren, A. Palacios, B. Zhu, S. Daw, C. Finney, J. Halow, and S. Pannala, “Bifurca-

tion analysis of bubble dynamics in fluidized beds,” Chaos: An Interdisciplinary Journal

of Nonlinear Science 17, 013120 (2007), https://doi.org/10.1063/1.2712309.

11W. D. Fullmer and C. M. Hrenya, “The clustering instability in rapid granular and gas-solid

flows,” Annual Review of Fluid Mechanics 49, 485–510 (2017).

12J. E. Higham, M. Shahnam, and A. Vaidheeswaran, “On the dynamics of a quasi-two-

dimensional pulsed-fludized bed,” (2018), arXiv:1809.05033 [physics.flu-dyn].

13A. Gel, A. Vaidheeswaran, J. Musser, and C. H. Tong, “Toward the Development of a

Verification, Validation, and Uncertainty Quantification Framework for Granular and Mul-

tiphase Flows – Part 1: Screening Study and Sensitivity Analysis ,” Journal of Verification,

13



Validation and Uncertainty Quantification 3 (2018).

14B. Gopalan, M. Shahnam, R. Panday, J. Tucker, F. Shaffer, L. Shadle, J. Mei, W. Rogers,

C. Guenther, and M. Syamlal, “Measurements of pressure drop and particle velocity in a

pseudo 2-d rectangular bed with geldart group d particles,” Powder Technology 291, 299

– 310 (2016).

15A. Vaidheeswaran, F. Shaffer, and B. Gopalan, “Statistics of velocity fluctuations of

geldart a particles in a circulating fluidized bed riser,” Phys. Rev. Fluids 2, 112301 (2017).

16X. Bi, Flow regime transitions in gas-solid fluidization and transport, Ph.D. thesis (1994).

17D. Geldart, “Types of gas fluidization,” Powder Technology 7, 285 – 292 (1973).

18A. Rao, J. S. Curtis, B. C. Hancock, and C. Wassgren, “The effect of column diameter

and bed height on minimum fluidization velocity,” AIChE Journal 56, 2304–2311 (2010),

https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.12161.

19N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis

of complex systems,” Physics Reports 438, 237 – 329 (2007).

20A. Vaidheeswaran, J. E. Higham, and M. Shahnam, “Analysis of a small-scale pulsed-

fluidized bed,” in 71st Annual Meeting of the APS Division of Fluid Dynamics (American

Physical Society, 2018).

21J. P. Zbilut and C. L. Webber, “Embeddings and delays as derived from quantification of

recurrence plots,” Physics Letters A 171, 199 – 203 (1992).

22C. L. Webber and J. P. Zbilut, “Dynamical assessment of physiological systems and states

using recurrence plot strategies,” Journal of Applied Physiology 76, 965–973 (1994), pMID:

8175612, https://doi.org/10.1152/jappl.1994.76.2.965.

23T. Rawald, M. Sips, and N. Marwan, “Pyrqa—conducting recurrence quantification anal-

ysis on very long time series efficiently,” Computers and Geosciences 104, 101 – 108 (2017).

24J. S. Richman and J. R. Moorman, “Physiological time-series analysis us-

ing approximate entropy and sample entropy,” American Journal of Physiology-

Heart and Circulatory Physiology 278, H2039–H2049 (2000), pMID: 10843903,

https://doi.org/10.1152/ajpheart.2000.278.6.H2039.

25S. Zurek, P. Guzik, S. Pawlak, M. Kosmider, and J. Piskorski, “On the relation between

correlation dimension, approximate entropy and sample entropy parameters, and a fast

algorithm for their calculation,” Physica A: Statistical Mechanics and its Applications

391, 6601 – 6610 (2012).

14



26F. J. Cabrejos and G. E. Klinzing, “Characterization of dilute gas-solids flows using the

rescaled range analysis,” Powder Technology 84, 139 – 156 (1995).

27C. Schölzel, “Nonlinear measures for dynamical systems,” (2019).

28P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.

50, 346–349 (1983).

15



FIG. 1. Schematic of cylindrical columns used in this study having internal diameters of 2.5-inch

(a), 4-inch (b) and 6-inch (c).
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FIG. 2. Sample entropy as a function of U/Umf
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FIG. 3. Hurst Exponent as a function of U/Umf
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FIG. 4. Correlation dimension as a function of U/Umf
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FIG. 5. Recurrence rate as a function of U/Umf
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FIG. 6. Determinism as a function of U/Umf
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FIG. 7. Trapping time as a function of U/Umf
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