Fluorogenic Probe Using a Mislow-Evans Rearrangement for Real-Time Imaging of Hydrogen Peroxide

Dianne Pham¹, Upamanyu Basu¹, Ivanna Pohorilets¹, Claudette M. St Croix², Simon C. Watkins², and Kazunori Koide^{1*} ¹Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States

²Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, United States

In memory of Professors Kurt Mislow and Hans J. Reich and dedicated to Professor David A. Evans

Abstract: Hydrogen peroxide (H_2O_2) mediates the biology of wound healing, apoptosis, inflammation, etc. H_2O_2 has been fluorometrically imaged with protein- or small molecule-based probes. However, only proteinbased probes have afforded temporal insights within seconds. Small molecule-based electrophilic probes for H_2O_2 require many minutes for a sufficient response in biological systems. Here, we report a fluorogenic probe that selectively undergoes a [2,3]-sigmatropic rearrangement (seleno-Mislow-Evans rearrangement) with H_2O_2 , followed by an acetal hydrolysis, to produce a green fluorescent molecule in seconds. Unlike other electrophilic probes, the current probe acts as a nucleophile. The fast kinetics enabled real-time imaging of H_2O_2 produced in endothelial cells in 8 seconds (much earlier than previously shown) and H_2O_2 in a zebrafish wound healing model. This work may provide a platform for endogenous H_2O_2 detection in real time with chemical probes.

Keywords: Fluorescent probe, Oxidation, Selenium, Peroxides, Sigmatropic rearrangement

Hydrogen peroxide (H_2O_2) is a reactive oxygen species (ROS) involved in many biological processes. As such, misregulation of H_2O_2 has been implicated in many diseases.^[1] In the cell, H_2O_2 is produced along with other ROS in the mitochondria and cytoplasm by the NADPH oxidase family of enzymes, xanthine oxidase, and cytochrome P450 enzymes.^[1a, 2] In light of the dichotomous nature of H_2O_2 in maintaining cellular homeostasis, it has become increasingly important to understand the detailed biology of H_2O_2 .^[1b, 3]

Only recently has the spatiotemporal presence of H_2O_2 in wound healing been recognized.^[4] Additionally, ROS production is critical for defense against pathogens; however, early studies used nonselective probes for ROS and could not distinguish between effects caused specifically by H_2O_2 .^[3a, 5] Studies of biological H_2O_2 with high specificity and temporal resolution have relied on genetically encoded protein-based probes.^[4a, 6] These studies using protein-based probes have revealed that upon injury to tissue, H_2O_2 is produced in seconds to minutes with gradients from the site of injury, facilitating the mobilization of immune cells.^[4a] These results have not been observed using chemical probes, likely due to the comparatively slow reaction kinetics. a Previous work

Figure 1. Comparison of (a) boronate-based and (b) selenium-based probes for hydrogen peroxide.

Most chemical probes for H_2O_2 have relied on the boronate ester functionality (Figure 1a) for reaction,^[7] although other functionalities have been reported.^[8] Advances from these studies have allowed for selective detection of H_2O_2 over other reactive oxygen and nitrogen species (RNS). This chemistry presumably requires the presence of the hydroperoxide anion, HOO⁻. Under biological conditions, the abundance of this species should be very low (~0.1% of H_2O_2) because the pK_a of H_2O_2 is 11.6. When these probes were applied in biological systems, it took ca. 30 min to produce fluorescence signals.^[7c, 7d, 7g, 8e]

To develop a new probe that more rapidly reacts intracellularly, in this study we used the seleno Mislow-Evans rearrangement, which undergoes the oxidation of an allylic selenide with H_2O_2 (Figure 1b).^[9] This rearrangement is fast even at 0 °C^[10] and requires the neutral and abundant form of H_2O_2 to act as an electrophile; this reactivity has not been exploited in the development of probes for H_2O_2 . We hypothesized that the seleno Mislow-Evans rearrangement would provide a novel platform for the fluorometric detection of H_2O_2 with superior kinetics to more favorably compete with the degradation of H_2O_2 in cells. Here, we integrate the rearrangement with a spontaneous hydrolysis of the resulting acetal to translate the high reactivity of a selenium atom with H_2O_2 into a fluorogenic switch. We present the synthesis of selenide **1** and its selectivity for H_2O_2 over other ROS and RNS. We also show that selenide **1** can detect endogenously produced H_2O_2 by treatment with ionomycin in macrophages and in a zebrafish wound-healing experiment.

We envisioned that allylic selenide 1 (Figure 2A) could undergo oxidation with H_2O_2 through transition state **TS1**, followed by the Mislow-Evans rearrangement of selenoxide 2 and the subsequent hydrolysis of selenenate 3 to form the brightly fluorescent phenol 5. For the conversion of 3 to 5, two pathways are plausible. The first pathway is the nucleophilic cleavage of the Se-O bond of 3 to form hemiacetal 4, which spontaneously forms phenoxide 5 and acrolein (Pathway 1). The second is the oxidation of selenenate 3 to seleninate 6 en route to phenol 5 via hemiacetal 4 (Pathway 2). As shown below, we experimentally determined the actual pathway.

Figure 2. (A) Design of probe **1** based on the seleno-Mislow-Evans rearrangement followed by hydrolysis via two possible pathways. (B) Synthesis of probe **1**. Conditions: (a) *N*-Methylmorpholine (0.3 equiv), methyl propiolate (5.0 equiv), CH₂Cl₂, 24 h, 79 %; (b) DIBALH (7.8 equiv), CH₂Cl₂, -78 to 23 °C, 2 h; then DDQ (1.1 equiv), Et₂O, 3 h, 0 °C, 66 %; (c) ⁿBu₃P (1.2 equiv), PhSeCN (1.0 equiv), THF, 0 °C, 30 min, 41 %.

The synthesis of selenide **1** (Figure 2B) commenced with the conjugate addition of fluorescein methyl ester **7** to methyl propiolate to afford ester **8** in 79% yield. The following DIBALH reduction formed alcohol **9** in 66% yield. The moderate yield was caused by the hydrolysis of the enol ether during aqueous workup. The final Mitsunobu-type reaction^[11] afforded selenide **1** in 41% yield. The structure was confirmed by the X-ray structure analysis.

Figure 3. Mechanistic studies ¹H NMR (400 MHz, CD₃OD) spectra of (a) selenide 1, (b) phenol **5**, (c), acrolein, (d) selenide **1** and phenol **5** (1:1), (e) acrolein and phenol **5** (1:1), (f) reaction mixture of selenide **1** and H_2O_2 .

To investigate the mechanism of the reaction between selenide 1 and H_2O_2 as depicted in Figure 2A, we monitored the reaction in situ by ¹H NMR spectroscopy. Figure 3a-e show selenide 1, phenol 5, acrolein, a 1:1 mixture of 1 and 5, and a 1:1 mixture of 5 and acrolein in CD₃OD, respectively, Upon treatment of selenide 1 with substoichiometric amounts of H_2O_2 , both phenol 5 and acrolein were formed (Figure 3f), supporting our proposed design for the H_2O_2 detection strategy. The HPLC chromatograms (Figure S1, Supporting Information) revealed that the reaction of selenide 1 with H_2O_2 produced phenol 5, but did not produce PhSeO₂H. Therefore, pathway 1 (Figure 2A) is operative under these conditions leading to the formation of the putative intermediate PhSeOH as a side product.

Since organic selenides are prone to oxidation in air,^[12] we investigated the stability of **1** under ambient conditions. The ¹H NMR analysis of **1** in DMSO- d_6 showed that **1** underwent cis-trans isomerization of the enol ether with a half-life of 60 days (Figures S2 and S3, Supporting Information). Even so, the compound was quite resistant to oxidative decomposition up to 60 days as manifested by the presence of only less than 10% acrolein.

As evident from Figure S4 and Table S1 (Supporting Information), the difference in fluorescence intensity of probe 1 and phenol 5, is 27-fold. Generally, *O*-alkylation of Pittsburgh Green suppresses the fluorescence by 200–400 fold.^[13] The somewhat modest fluorescence increase in the current system is attributed to the trace contamination of the fluorescent compound 5 during the purification of the non-fluorescent probe 1. From the standard calibration curve (Figure S4), the estimated amount of 5 in 1 as an impurity was calculated to be 2.5%, leading to a 5–10 times higher background signal. Thus, if trace phenol 5 can be removed from selenide 1 (HPLC did not improve the purity of 1), the signal increase in the conversion of 5 to 1 should be 125– 250 fold. Nevertheless, the trace amount of 5 in 1 does not affect the calculation of rate constant shown below (Figure 4).

Figure 4. (a) plot of ln[**1**] vs t to obtain slope (k') and (b) plot of [**1**] vs time. For (a), Y = -0.002514X - 13.52 (R² = 0.8939) for 0.625 mM H₂O₂, Y = -0.01359X - 13.38 (R² = 0.9792) for 1.25 mM H₂O₂, and Y = -0.02432X - 13.51 (R² = 0.9978) for 2.5 mM H₂O₂.

With the fluorometrically measured concentrations of selenide 1 shown in Table S3 (Supporting Information), $\ln[1]$ versus time (s) was plotted to obtain observed rate constants k' as the slope of the linear plot (Figure 4a). To determine the second-order rate constant of the reaction of 1 with H₂O₂, a solution of 1 in 5%

MeCN in a pH 7.5 HEPES buffer was treated with H_2O_2 in a 96-well plate, and the progressive increase in fluorescence was recorded measured every minute until the reaction was completed. The fluorescence readout was converted to the amount of phenol **5** formed using Figure S5. Based on the pseudo first-order kinetic studies (Figure 4b), the second-order rate constant *k* of the reaction was calculated (details in Supporting Information, Figure S6 and Table S3) to be $9.82 \pm 1.11 \text{ M}^{-1}\text{s}^{-1}$.

To verify that 1 could quantitatively measure H_2O_2 concentrations, we incubated 1 with increasing concentrations of H_2O_2 . Fluorescence increased linearly with H_2O_2 concentration (Figure 5a), indicating that the probe could be used to quantify H_2O_2 .

Following the concentration dependence studies, the selectivity of **1** was assessed against O_2^{\bullet} , 1O_2 , •OH, CIO⁻, ONOO⁻, 'BuOOH, NO₃⁻, NO₂⁻, and NO•. Relative to H₂O₂, little reaction was observed with other ROS and RNS (Figure 5b). The production of some of these ROS required H₂O₂ as a reagent or generated H₂O₂ as a product, for which we carefully performed control experiments (Supporting Information for details). For example, to determine whether the probe reacts with O₂⁻⁻, KO₂ was added to a solution of **1** buffered at pH 7 for 15 min and compared to the reaction with H₂O₂. Since O₂⁻⁻ is known to spontaneously dismutate to form H₂O₂, increasing amounts of catalase were added to the samples containing KO₂ to ensure that **1** did not react with any of the in-situ-generated H₂O₂. Selenide **1** reacted readily with H₂O₂, while the observed fluorescence from the samples containing KO₂ decreased with increasing catalase concentrations (Figure S7), indicating that **1** did not react with O₂⁻⁻.

 ${}^{1}O_{2}$ was formed by the reaction of Na₂MoO₄ with H₂O₂.^[14] A large fluorescence increase was observed only in the samples containing 100 µM of both Na₂MoO₄ and H₂O₂ (Figure S8). Fluorescence did not increase in samples containing only Na₂MoO₄, indicating that the probe was not reacting with the Na₂MoO₄. Together, these results suggested that the probe may have reacted with ¹O₂. However, the addition of NaN₃, a known ¹O₂ scavenger,^[15] did not decrease the fluorescence. Thus, we concluded that the fluorescence increase was caused by the H₂O₂ required to produce ¹O₂ and not by ¹O₂ itself . 10⁴ U/mL catalase was added to the solutions to verify that **1** indeed responded to excess H₂O₂ that had not reacted with the Na₂MoO₄. The addition of catalase abolished the fluorescence signal observed in the presence of high concentrations of H₂O₂ (Figure S8).

Figure 5. The fluorescence response of **1** (1 μ M) at pH 7 (a) with increasing concentrations of H₂O₂ or (b) various ROS. (a) 10 μ M **1**, 0–71.5 μ M H₂O₂, 14.5:85.5 MeCN/50 mM phosphate pH 7, (b) Data were normalized so that the reaction of **1** and H₂O₂ was set to 100. Excess ROS and RNS compared to **1** was used. (c) The fluorescence response of **1** (10 μ M) with H₂O₂ (0, 1, or 10 μ M) at various pHs. 10 μ M **1**, 1:9 MeOH/25 mM phosphate in water, 20 min. The y-axis shows (fluorescence intensity with 1 or 10 μ M H₂O₂) - (fluorescence intensity with no H₂O₂).

The reactivity of **1** with •OH was also investigated. •OH was generated from the reaction of Fe^{2+} with H_2O_2 .^[16] A solution of **1** was titrated with FeSO₄ and H_2O_2 . Fluorescence did not increase as the concentration of FeSO₄ increased (Figure S9), indicating that neither FeSO₄ nor the •OH reacted with the probe. Addition of catalase to the solution reduced fluorescence intensity, indicating that the enhanced signals were caused by the reaction of the probe with the H_2O_2 required to produce •OH.

Next, we tested whether OCl⁻, ONOO⁻ (peroxynitrite), and 'BuOOH would react with **1**. No statistically significant increase in fluorescence intensity was observed with increasing concentrations of OCl⁻. A slight increase in fluorescence intensity was observed with increasing ONOO⁻ concentration (Figure S10). This may be attributed to trace amounts of H_2O_2 in the ONOO⁻ solution.^[17] Furthermore, ONOO⁻ may be too unstable to last and react with **1** under aqueous conditions because, once protonated, has only a half-life of 1.9 s at pH 7.4.^[18] 'BuOOH did not produce fluorescence even at 10 μ M (Figure S11). The minute or negligible fluorescence signals observed in these studies led us to conclude that the tested ROS do not interfere with the **1**-based fluorometric method for H_2O_2 .

We then sought to determine whether RNS would react with 1 to produce fluorescence. The probe was exposed to either NO_2^- , NO_3^- (nitrate), or NO• at various concentrations. The fluorescence change over the first 15 min was reported for NO_2^- and NO_3^- in Figure S12 and S13, respectively. No concentration dependence was observed with either NO_2^- or NO_3^- indicating that 1 did not react with these RNS. Similar results were obtained for NO• (Figure S14). These data suggest that 1 did not react with NO_2^- , NO_3^- , nor NO•. Altogether, the fluorometric method is selective for H_2O_2 .

We studied the probe's response to H_2O_2 in the pH 4–7.3 range to determine whether this technology would work in acidic and neutral intracellular environments, such as lysosomes (pH 5),^[19] Golgi apparatus (pH 6.4–6.8),^[20] mitochondria (pH 6.9–8.0),^[20] and cytoplasm (pH 7.1–7.6).^[20] The probe should ideally also work

under oxidative stress conditions, wherein pH decreases to 6.9–7.0.^[21] We found that the fluorescence signals were higher when the pH was above 5.4 (Figure 5c). The lower signals under acidic conditions match the pH-fluorescence profile of phenol **5** (Figure S15) and are not related to efficiency of the conversion from **1** to **5**. Therefore, the fluorescence method is effective in most of the biologically relevant pH range.

We then attempted to image H_2O_2 within cells. HeLa cells were incubated with 0.5 μ M **1** for 15 min prior to imaging. After washing with HBSS and replacing the media, H_2O_2 was added. Within 30 s, a significant increase in fluorescence was observed in HeLa cells (Figure 6a). Punctate fluorescence in cytoplasm suggested that **1** might localize within mitochondria.

After detecting exogenously added H_2O_2 in cells, we focused our studies on more biologically relevant, endogenous H_2O_2 . We attempted to monitor endogenous H_2O_2 production upon stimulation with ionomycin in RAW cells.^[22] When ionomycin was added in the presence of the most widely used fluorescent probe for ROS, dihydrodichlorofluorescein acetate, fluorescence increase could hardly be observed (Figure S16). In contrast, with probe **1**, a significant response was observed within 30 s of addition of ionomycin relative to the baseline fluorescence (Figure 6b and Figure 6c) and peaked at 48 s. Therefore, not only did this experiment show the superiority with probe **1**, the kinetics of pharmacological H_2O_2 production was found to be much faster than previously thought.^[23]

To study the localization of 1, endothelial cells were simultaneously treated with 1 and MitoTracker Red for 20 min (Figure 6d). The first image taken 8 s after the addition of ionomycin already showed increased fluorescence, and time-lapse imaging showed that fluorescence continued to increase over time. The overlap of the green and red fluorescence indicated that the probe might be localizing to mitochondria. However, the Pearson correlation coefficient was 0.114 ± 0.034 , suggesting that although some overlap with mitochondria was observed, the bulk of the green fluorescence was observed outside of mitochondria. Furthermore, the diffusion of both the green and red fluorescence indicated that stimulation with ionomycin likely induced changes in mitochondrial membrane potential or permeability causing the contents to leak out.

Figure 6. Cellular images using **1**. (a) HeLa cells treated with **1** showed a significant fluorescence increase after the addition of H_2O_2 . Cells were loaded with **1** for 15 min and washed prior to imaging. H_2O_2 was added while imaging. (b) RAW macrophages loaded with 0.5 μ M **1** showed (c) a significant response within 30 s of addition of ionomycin (final concentration: 10 μ M). Fluorescence channel (green) and pseudo-color shown. (d) Endothelial cells loaded with **1** and MitoTracker Red were stimulated with ionomycin (final concentration: 10 μ M). Colocalization studies revealed mildly increased green fluorescence intensity in mitochondria.

 H_2O_2 has been recognized as a critical signaling molecule for the recruitment of immune cells for wound regeneration.^[4] To date, only genetically encoded protein-based fluorescent probes have been able to illuminate the spatiotemporal dynamics of H_2O_2 for wound healing models in zebrafish.^[4a] We hypothesized that our method might be rapid enough to match the protein-based imaging *in vivo*. As a platform to test this hypothesis, we applied **1** to image a zebrafish tail wound-healing model. Fish were loaded with probe **1** for 2 h before anesthetizing and mounting them in agarose. The tail fin was subsequently snipped, and the images were taken every 60 s. We observed an increase in fluorescence intensity, with the fluorescence at a maximum approximately 10–20 min after tail snipping. As shown in Figure 7 and the movie in the Supporting Information, the probe was capable of providing the spatiotemporal information that matches the previous report.^[4a]

Figure 7. Imaging of H_2O_2 in zebrafish wound-healing model. (a) Snap shots of the fluorescence imaging of wound-induced H_2O_2 . Zebrafish were loaded with **1**, then had the tails snipped. H_2O_2 was produced at the incision site over the course of 30 min. The original movies are available in the Supporting Information. (b) The fluorescence intensity over time. The Y-axis = fluorescence intensity in the red square – fluorescence intensity in the green square.

In conclusion, the reaction of the nonfluorescent selenide **1** with H_2O_2 forms the fluorescent phenol **5** via the oxidation/[2,3]-sigmatropic rearrangement/hydrolysis sequence. Selenide **1** reacts with H_2O_2 seven times faster than boronate-based probes. The second-order rate constant for the reaction of **1** with H_2O_2 was of the same order of magnitude as the reaction of thiols with H_2O_2 , indicating that the detection of intracellular H_2O_2 is not severely hampered by endogenous thiols. This is consistent with the notion that the oxidation of selenium is faster than that of sulfur compounds.^[24] Our careful control experiments ensured that we were monitoring the intended ROS. Selenide **1** was found to be selective for H_2O_2 .

Selenide **1** instantaneously responded to both exogenously applied and endogenously produced H_2O_2 , indicating its applicability in gaining spatiotemporal insights into cellular pathways involving H_2O_2 . Ionomycin is a widely used reagent to intracellularly induce H_2O_2 in approximately 2 min.^[23] We discovered that H_2O_2 was produced earlier (8–48 s) with ionomycin. Generally, chemical probes for H_2O_2 detect endogenously produced H_2O_2 later times (ca. 30 min). ^[7c, 7d, 7g, 8e] In the zebrafish tail wounding model, we observed the rapid generation of H_2O_2 near the wound site in real time using selenide **1**, recapitulating the results using a protein-based probe.^[4a]

We acknowledge that two challenges exist with 1. First, the fluorophore 5 diffuses throughout the cell, complicating studies that require extended time periods. Second, the pK_a of 5 is ~7 and thus the fluorescence signals are weakened under acidic conditions. Nonetheless, the use of seleno Mislow-Evans rearrangement may provide a new platform for fluorometric detection of intracellular H_2O_2 .

Acknowledgements

This work was funded by US National Science Foundation Grants CHE-0911092 and CHE-1506942. We thank Dr. Steve Geib (University of Pittsburgh) for the X-ray analysis of **1** and Mr. Jevin M. Jupena (University of Pittsburgh) for the re-synthesis of probe **1**.

- (a) C. C. Winterbourn, Nat. Chem. Biol. 2008, 4, 278–286; (b) H. Sies, D. P. Jones, Nat. Rev. Mol. Cell Biol. 2020, 10.1038/s41580-020-0230-3.
- [2] J. R. Stone, S. Yang, Antioxid. Redox Signaling 2006, 8, 243–270.
- (a) J. B. Bliska, D. S. Black, *Infect. Immun.* 1995, 63, 681–685; (b) K. M. Holmström, T. Finkel, *Nat. Rev. Mol. Cell Biol.* 2014, 15, 411–421; (c) F. Antunes, P. M. Brito, *Redox Biol.* 2017, 13, 1–7; (d) É. Dóka, T. Ida, M. Dagnell, Y. Abiko, N. C. Luong, N. Balog, T. Takata, B. Espinosa, A. Nishimura, Q. Cheng, Y. Funato, H. Miki, J. M. Fukuto, J. R. Prigge, E. E. Schmidt, E. S. J. Arnér, Y. Kumagai, T. Akaike, P. Nagy, *Sci. Adv.* 2020, *6*, eaax8358; (e) S. F. Erttmann, N. O. Gekara, *Nat. Commun.* 2019, 10, 3493; (f) J.-F. Pei, X.-K. Li, W.-Q. Li, Q. Gao, Y. Zhang, X.-M. Wang, J.-Q. Fu, S.-S. Cui, J.-H. Qu, X. Zhao, D.-L. Hao, D. Ju, N. Liu, K. S. Carroll, J. Yang, E. E. Zhang, J.-M. Cao, H.-Z. Chen, D.-P. Liu, *Nat. Cell Biol.* 2019, 21, 1553–1564; (g) W. Qian, N. Kumar, V. Roginskaya, E. Fouquerel, P. L. Opresko, S. Shiva, S. C. Watkins, D. Kolodieznyi, M. P. Bruchez, B. Van Houten, *Proc. Natl. Acad. Sci. U. S. A.* 2019, 116, 18435–18444.
- [4] (a) P. Niethammer, C. Grabher, A. T. Look, T. J. Mitchison, *Nature* 2009, 459, 996–999; (b) J. Pillay, V. M. Kamp, E. van Hoffen, T. Visser, T. Tak, J. W. Lammers, L. H. Ulfman, L. P. Leenen, P. Pickkers, L. Koenderman, *J. Clin. Invest.* 2012, 122, 327–336; (c) B. Enyedi, P. Niethammer, *Methods Enzymol.* 2013, 528, 237–255; (d) P. Martin, R. Nunan, *Brit. J. Dermatol.* 2015, 173, 370–378; (e) C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden, J. Cooke, D. Leaper, N. T. Georgopoulos, *Int. Wound J.* 2017, 14, 89–96; (f) M. Jelcic, B. Enyedi, J. B. Xavier, P. Niethammer, *Biophys. J.* 2017, 112, 2011–2018; (g) B. Kunkemoeller, T. R. Kyriakides, *Antioxid. Redox Signaling* 2017, 27, 823–838; (h) A. Hervera, F. De Virgiliis, I. Palmisano, L. Zhou, E. Tantardini, G. Kong, T. Hutson, M. C. Danzi, R. B.-T. Perry, C. X. C. Santos, A. N. Kapustin, R. A. Fleck, J. A. Del Río, T. Carroll, V. Lemmon, J. L. Bixby, A. M. Shah, M. Fainzilber, S. Di Giovanni, *Nat. Cell Biol.* 2018, 20, 307–319; (i) P. Niethammer, *Semin. Cell Dev. Biol.* 2018, 80, 13–16; (j) M. M. G. Romero, G. McCathie, P. Jankun, H. H. Roehl, *Nat. Commun.* 2018, 9, 4010; (k) J. Chen, T. Yu, X. He, Y. Fu, L. Dai, B. Wang, Y. Wu, J. He, Y. Li, F. Zhang, J. Zhao, C. Liu, *Biochem. Biophys. Res. Commun.* 2019, 516, 680–685.
- [5] (a) O. Myhre, J. M. Andersen, H. Aarnes, F. Fonnum, *Biochem. Pharmacol.* 2003, 65, 1575–1582; (b) M. M. Tarpey, I. Fridovich, *Circ. Res.* 2001, 89, 224–236; (c) A. Levine, R. Tenhaken, R. Dixon, C. Lamb, *Cell* 1994, 79, 583–593.
- [6] K. N. Markvicheva, D. S. Bilan, N. M. Mishina, A. Y. Gorokhovatsky, L. M. Vinokurov, S. Lukyanov, V. V. Belousov, *Bioorg. Med. Chem.* 2011, 19, 1079–1084.
- (a) M. C. Y. Chang, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc. 2004, 126, 15392–15393; (b) B. C. Dickinson, Y. Tang, Z. Y. Chang, C. J. Chang, Chem. Biol. 2011, 18, 943–948; (c) U. Rodella, M. Scorzeto, E. Duregotti, S. Negro, B. C. Dickinson, C. J. Chang, N. Yuki, M. Rigoni, C. Montecucco, Neurobiol. Dis. 2016, 96, 95–104; (d) Y. Lu, X. Shi, W. Fan, C. A. Black, Z. Lu, C. Fan, Spectrochim. Acta, Part A 2018, 190, 353–359; (e) H. Wang, Z. X. He, Y. Y. Yang, J. Zhang, W. Zhang, W. Zhang, P. Li, B. Tang, Chem. Sci. 2019, 10, 10876-10880; (f) J. Pallu, C. Rabin, G. Creste, M. Branca, F. Mavre, B. Limoges, Chem.-Eur. J. 2019, 25, 7534–7546; (g) P. Hou, S. Chen, G. Liang, H. Li, H. Zhang, Spectrochim. Acta, Part A 2020, 236, 118338.
- [8] (a) M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu, T. Nagano, J. Am. Chem. Soc. 2011, 133, 10629–10637; (b) A. P. Singh, K. M. Lee, D. P. Murale, T. Jun, H. Liew, Y. H. Suh, D. G. Churchill, Chem. Commun. 2012, 48, 7298–7300; (c) S. T. Manjare, Y. Kim, D. G. Churchill, Acc. Chem. Res. 2014, 47, 2985–2998; (d) Z. Lou, P. Li, K. Han, Acc. Chem. Res. 2015, 48, 1358–1368; (e) S. Ye, J. J. Hu, D. Yang, Angew. Chem., Int. Ed. 2018, 57, 10173–10177; (f) B. Li, J.-B. Chen, Y. Xiong, X. Yang, C. Zhao, J. Sun, Sens. Actuators, B 2018, 268, 475–484; (g) D.-J. Zheng, Y.-S. Yang, H.-L. Zhu, Trends Anal. Chem. 2019, 118, 625–651.
- (a) P. Bickart, F. W. Carson, J. Jacobus, E. G. Miller, K. Mislow, J. Am. Chem. Soc. 1968, 90, 4869–4876; (b) D. A. Evans, G. C. Andrews, Acc. Chem. Res. 1974, 7, 147–155; (c) H. J. Reich, J. Org. Chem. 1975, 40, 2570–2572.
- [10] B. J. Albert, A. Sivaramakrishnan, T. Naka, N. L. Czaicki, K. Koide, J. Am. Chem. Soc. 2007, 129, 2648–2659.
- [11] P. A. Grieco, S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41, 1485–1486.
- [12] A. Krief, F. Lonez, *Tetrahedron Lett.* **2002**, *43*, 6255–6257.
- [13] S. Ando, K. Koide, J. Am. Chem. Soc. 2011, 133, 2556–2566.
- [14] G. Chen, F. Song, J. Wang, Z. Yang, S. Sun, J. Fan, X. Qiang, X. Wang, B. Dou, X. Peng, Chem. Commun. 2012, 48, 2949– 2951.
- [15] (a) K. Yamada, T. Ono, H. Nishioka, J. Radiat. Res. 1996, 37, 29–37; (b) M. Osada, Y. Ogura, H. Yasui, H. Sakurai, Biochem. Biophys. Res. Commun. 1999, 263, 392–397.
- [16] E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16652–16659.
- [17] G. Merényi, J. Lind, G. Czapski, S. Goldstein, Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8216–8218.
- [18] J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, B. A. Freeman, Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 1620–1624.
- [19] S.-S. Li, M. Zhang, J.-H. Wang, F. Yang, B. Kang, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2019, 91, 8398–8405.
- [20] J. Llopis, J. M. McCaffery, A. Miyawaki, M. G. Farquhar, R. Y. Tsien, Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6803–6808.
- [21] W. Shi, X. Li, H. Ma, Angew. Chem., Int. Ed. 2012, 51, 6432–6435.
- [22] E. J. Swindle, J. A. Hunt, J. W. Coleman, J. Immunol. 2002, 169, 5866–5873.
- [23] C. Dahlgren, A. Johansson, K. Orselius, *Biochimica et Biophysica Acta* **1989**, *1010*, 41–48.

[24] Advanced Organic Chemistry: Reaction Mechanisms By Reinhard Bruckner, 1st edition, Page 573 Chapter 14

Table of Content figure

Table of Contents

General Techniques	S2
Synthesis of 1	S2
Mechanistic studies	S4
HPLC chromatogram of selenide 1 and phenol 5	S4
Stability studies	S6
Determination of the difference in fluorescence intensity between selenide 1 and phenol 5	S7
Pseudo first order kinetics and evaluation of second order rate constant	S8
Raw data for studying pseudo first order kinetics	S9
Reaction of 1 with H ₂ O ₂	S10
Determining selectivity of 1: Reaction with O ₂ .	S10
Determining selectivity of 1: Reaction with ¹ O ₂	S11
Determining selectivity of 1: Reaction with •OH	S12
Determining selectivity of 1: Reaction with ClO ⁻ and ONOO ⁻	S13
Determining selectivity of 1: Reaction with ^t BuOOH	S13
Determining selectivity of 1: Reaction with NO ₂ ⁻	S14
Determining selectivity of 1: Reaction with NO3 ⁻	S14
Determining selectivity of 1: Reaction with NO•	S15
pH dependence of the reaction of 1 with H ₂ O ₂	S16
pH dependence of phenol 5	S16
Cellular Imaging	S18
Zebrafish tail-wounding model	S18
References	S18
Author Contributions	S18
Spectrum 1. ¹ H NMR spectrum of 8 (300 MHz, CDCl ₃ , 293K)	S19
Spectrum 2. ¹³ C NMR spectrum of 8 (100 MHz, CDCl ₃ , 293K)	S20
Spectrum 3. ¹ H NMR spectrum of 9 (300 MHz, CDCl ₃ , 293K).	S21
Spectrum 4. ¹³ C NMR spectrum of 9 (100 MHz, CDCl ₃ , 293K)	S22
Spectrum 5. ¹ H NMR spectrum of 1 (300 MHz, CDCl ₃ , 293K)	S23
Spectrum 6. ¹³ C NMR spectrum of 1 (100 MHz, CDCl ₃ , 293K)	S24

General Techniques

All reactions were carried out with freshly distilled solvents under anhydrous conditions, unless otherwise noted. All of the flasks used for carrying out reactions were dried in an oven at 80 °C prior to use. Unless specifically stated, the temperature of a water bath during the evaporation of organic solvents using a rotary evaporator was about 35 ± 5 °C. All of the syringes in this study were dried in an oven at 80 °C and stored in a desiccator over Drierite®. Tetrahydrofuran (THF) was distilled over sodium metal and benzophenone. Methylene chloride (CH₂Cl₂) was distilled over calcium hydride. Acetonitrile was distilled from CaH₂ and stored over 3Å molecular sieves. Yields refer to chromatographically and spectroscopically (¹H NMR) homogenous materials, unless otherwise stated. All reactions were monitored by thinlayer chromatography (TLC) carried out on 0.25-mm Merck silica gel plates (60F-254) using UV light (254 nm) for visualization or a solution of anisaldehyde in ethanol or a solution of 2.4% phosphomolybdic acid, 1.4% phosphoric acid, and 5% sulfuric acid in water as a developing agents and heat for visualization. Silica gel (230-400 mesh) was used for flash column chromatography. A rotary evaporator was connected to a water aspirator that produced a vacuum pressure of approximately 60 mmHg when it was connected to the evaporator. NMR spectra were recorded on a Bruker Advance spectrometer at 300 MHz or 400 MHz. The chemical shifts are given in parts per million (ppm) on a delta (δ) scale. The solvent peak was used as a reference value: for ¹H NMR: CHCl₃ = 7.27 ppm, $CH_3OH = 3.31$ ppm, CH_3CN = 2.08 ppm; for 13 C NMR: CDCl₃ = 77.00 ppm, CD₃OD = 49.00 ppm, and CD₃CN = 1.79 ppm for CD₃ or 118.26 ppm for CN. The following abbreviations are used to indicate the multiplicities: s = singlet; d = doublet; t = triplet; q = doubletquartet; m = multiplet; br = broad. High-resolution mass spectra (HRMS) were recorded on a VG 7070 spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer. Samples for acquiring IR spectra were prepared as a thin film on a NaCl plate by dissolving the compound in CH_2Cl_2 and then evaporating the CH_2Cl_2 .

All fluorescence measurements (excitation 490 nm, emission 510–570 nm) were carried out using a Promega Biosystems Modulus II Microplate Reader or a HoribaMax Fluorometer unless otherwise stated. Data analysis was performed using GraphPad Prism 8.

Synthesis of 1

Methyl (E)-2-(6-((3-methoxy-3-oxoprop-1-en-1-yl)oxy)-3-oxo-3H-xanthen-9-yl)benzoate (8)

A suspension of 7^1 (7.760 g, 22.52 mmol) in dry CH₂Cl₂ (390 mL) was treated with *N*-methylmorpholine (683 mg, 6.76 mmol) and methyl propiolate (9.467 mg, 112.6 mmol) under a nitrogen atmosphere at 23 °C. After stirring the reaction mixture for 24 h at the same temperature, silica gel (24 g) was added, and the mixture was

concentrated *in vacuo*. The resulting crude residue was purified by flash column chromatography (10 \rightarrow 90% EtOAc in hexanes) on silica gel (560 mL) to obtain vinyl ether **8** (7.65 g, 79%) as an orange solid. *Data for* **8**: m.p.: 192.0–193.0 °C; R_f: 0.25 (70% EtOAc in hexanes); IR (film): v_{max} = 3060, 2923, 1722 (C=O), 1642 (C=O), 1639 (C=O), 1595, 1522, 1444, 1378, 1267, 1247, 1191, 1158, 1133, 1106, 1081, 854, 707 cm⁻¹; ¹H NMR

(300 MHz, CDCl₃, 293 K): δ 8.25 (dd, J = 7.5, 1.5 Hz, 1H), 7.85 (d, J = 12.0 Hz, 1H), 7.79 (ddd, J = 7.5, 7.5, 1.2 Hz, 1H), 7.72 (ddd, J = 7.5, 7.5, 1.2 Hz, 1H), 7.33 (dd, J = 7.5, 1.2 Hz, 1H), 7.18 (d, J = 2.4 Hz, 1H), 6.98 (d, J = 9.0 Hz, 1H), 6.89 (dd, J = 9.6, 1.8 Hz, 1H), 6.87 (d, J = 9.6 Hz, 1H), 6.56 (dd, J = 9.6, 1.8 Hz, 1H), 6.46 (d, J = 1.8 Hz, 1H), 5.79 (d, J = 12.0 Hz, 1H), 3.76 (s, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 293 K): δ 185.9, 166.8, 165.5, 158.9, 158.5, 156.1, 153.4, 148.7, 134.3, 132.9, 131.3, 130.7, 130.6, 130.3, 130.2, 129.9, 129.3, 119.2, 118.0, 114.1, 106.3, 105.1, 104.7, 52.5, 51.6; HRMS (ESI-TOF) *m/z*: [M + H]+ calcd. for C₂₅H₁₉O₇ 431.1110, found 431.1125.

(S,E)-6'-((3-Hydroxyprop-1-en-1-yl)oxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3'-ol (9)

A 1 M solution of diisobutylaluminum hydride in hexanes (1.80 mL, 1.80 mmol) was added dropwise to a flask containing ester 8 (100 mg, 0.23 mmol) in dry CH_2Cl_2 (1.5 mL) under a nitrogen atmosphere

at -78 °C. After stirring the reaction mixture for 15 min at the same temperature, the flask was warmed to 23 °C. The mixture was stirred at the same temperature for an additional 2 h, and then the reaction was quenched with 1 M aqueous sodium potassium tartrate (2 mL) at 0 °C. After stirring the mixture for 3 h at 23 °C, Et₂O (5 mL) and DDQ (57 mg, 0.25

mmol) were added at 0 °C and the resulting mixture was stirred at the same temperature for 1 h. The combined organic and aqueous layers were filtered through a pad of Celite, and the pad was rinsed with EtOAc. The filtrate was dried under Na₂SO₄, filtered through a cotton plug, and concentrated *in vacuo*. The resulting crude residue was purified by flash column chromatography (10 \rightarrow 60% EtOAc in hexanes) on silica gel (20 mL) to obtain alcohol **9** (57 mg, 66%) as a pale yellow solid and byproduct **5** (14 mg, 20%) as an orange solid. *Data for* **9**: m.p.: 169.0–170.0 °C; R_f: 0.52 (70% EtOAc in hexanes); IR (film): v_{max} = 3378 (O–H), 2923, 2853, 1673, 1601, 1480, 1434, 1409, 1266, 1173, 1114, 1004, 926, 854, 722 cm⁻¹; ¹H NMR (300 MHz, 1% CD₃OD in CDCl₃, 293 K): δ 7.36–7.37 (m, 2H), 7.23–7.28 (m, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.88 (br s, 1H), 6.84 (d, *J* = 2.4 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.68–6.70 (m, 1H), 6.70 (dt, *J* = 12.0, 1.8 Hz, 1H), 6.60 (d, *J* = 2.4 Hz, 1H), 6.52 (dd, *J* = 8.7, 2.4 Hz, 1H), 5.57 (dt, *J* = 12.0, 7.2 Hz, 1H), 5.29 (s, 2H), 4.15 (dd, *J* = 7.2, 1.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 293 K): δ 157.4, 157.1, 151.4, 151.3, 144.8, 144.3, 138.7, 130.1, 130.0, 128.5, 128.2, 123.9, 120.7, 119.0, 116.0, 112.9, 112.1, 111.6, 103.9, 102.7, 83.9, 71.8, 59.6; HRMS (ESI-TOF) *m/z*: [M + H]+ calcd. for C₂₃H₁₉O₅ 375.1227, found 375.1209.

(S,E)-6'-((3-(Phenylselanyl)prop-1-en-1-yl)oxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3'-ol (1)

A 10-mL round-bottomed flask equipped with a Teflon-coated magnetic stir bar containing 9 (85 mg, 0.23 mmol) was purged with argon. The flask was treated with THF (1.2 mL), ⁿBu₃P (67 μ L, 0.27 mmol), and PhSeCN (29 μ L, 0.23

mmol) sequentially at 0 °C. The mixture was stirred at the same temperature for 30 min and was then quenched with sat. NH₄Cl. The quenched mixture was extracted with EtOAc (3×15 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The resulting crude residue was purified by flash column chromatography (SiO₂, eluent: 5% \rightarrow 25% EtOAc in hexanes; 30 mL each) to obtain **1** (48 mg, 41%) as pale-yellow solid.

Data for **1**: m.p.: 125.5–126.5 °C; R_f: 0.56 (40% EtOAc in hexanes); IR (film): $v_{max} = 3286$ (broad, O-H), 2923, 2853, 2360, 1664, 1609, 1496, 1458, 1427, 1331, 1266, 1247, 1210, 1177, 1111, 997, 928, 846, 804, 757, 737, 691 cm⁻¹; ¹H NMR (300 MHz, 1% CD₃OD in CDCl₃, 293 K): δ 7.56 (dd, *J* =6.0, 1.2 Hz, 2H), 7.36–7.34 (m, 2H), 7.32–7.31 (m, 3H), 7.27–7.26 (m, 1H), 6.88 (d, *J* = 7.5 Hz, 1H), 6.83 (dd, *J* = 8.1, 8.1 Hz, 2H), 6.66 (d, *J* = 2.4 Hz, 1H), 6.54 (m, 3H), 6.30 (d, *J* = 12.0 Hz, 1H), 5.57 (dt, *J* = 12.0, 8.4 Hz, 1H), 5.27 (s, 2H), 3.45 (dd, *J* = 8.1, 0.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 293 K): δ 157.5, 156.5, 151.4, 151.3, 144.6, 143.1, 139.0, 134.4, 133.2, 130.1, 130.0, 129.4, 129.2, 128.9, 128.5, 128.2, 127.7, 123.9, 120.7, 119.1, 117.0, 112.5, 111.9, 110.5, 103.6, 102.7, 83.6, 72.0, 25.6; HRMS (ESI-TOF) *m/z*: [M - H]+ calcd. for C₂₉H₂₁O₄Se 513.0610, found 513.0610.

Mechanistic studies

Probe 1 (1.8 mg) in CD₃OD (0.75 mL) was treated with 943 mM H_2O_2 (1.9 μ L). The crude reaction mixture was monitored in situ by ¹H NMR spectroscopy and analyzed against known standards (5 and acrolein). Figure 3 shows that both 5 and acrolein were formed during the reaction.

HPLC chromatogram of selenide 1 and phenol 5

Column: Agilent 1200 system; Flow rate: 0.6 mL/min; Max. Pressure (bar): 600

Elution conditions: H₂O/MeCN 95:5 to 20:80, 0–15 min; 20:80 to 0:100, 15–20 min; 0:100, 20–25 min; 0:100 to 95:5, 25–30 min

Retention time for 1: 20.1 min Retention time for 5: 27.6 min

Figure S1. HPLC chromatograms of (a) authentic sample of selenide 1 (b) phenol 5 (c) selenide 1 + phenol 5 (d) crude reaction mixture of selenide 1 + 1 equiv H₂O₂, and (e) authentic sample of PhSeO₂H acquired at λ = 254 nm and 230 nm, respectively.

Stability studies

To study the stability of 1, the ¹H NMR spectra of 1 in DMSO- d_6 were obtained at specified intervals (days 1, 7, 14, 21, 30 and 60). The solution was left at room temperature and in air throughout the entire period.

Figure S3. Half-life of probe 1.

Determination of the difference in fluorescence intensity between selenide 1 and phenol 5

Solutions containing ultrapure water (681 μ L), 1.2 M phosphate pH 7 buffer (31 μ L), DMSO (28.1 μ L), and 80 μ M 1 or phenol **5** in DMSO (9.4 μ L) were made. Aliquots of these solutions (200 μ L) were transferred to the wells of a black 96-well plate and the fluorescence was measured.

Figure S4. Difference in fluorescence intensity between selenide 1 and phenol 5.

Compound	Fluorescence Intensity					
1	7,053	11,524	8,556			
5	244,687	247,204	246,848			

 Table S1. Raw fluorescence values for Figure S4. n = 3.

Pseudo first order kinetics and evaluation of second order rate constant

Figure S5. Calibration curve for phenol **5** shown on a log scale: 200 μ L, 5% MeCN in 50 mM pH 7.5 HEPES buffer. *n* = 2. Error bars are invisible because they are smaller than the dots.

Best-fit values	
Slope	393445 ± 2396
Y-intercept when X=0.0	6741 ± 2887
X-intercept when Y=0.0	-0.01713
1/slope	2.54E-06
95% Confidence Intervals	
Slope	387921 to 398969
Y-intercept when X=0.0	84.06 to 13397
X-intercept when Y=0.0	-0.03434 to -0.0002119
Goodness of Fit	
R square	0.9997
Sy.x	7307
Is slope significantly non-zero?	
F	26975
DFn, DFd	1.000, 8.000
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	5
Maximum number of Y replicates	2
Total number of values	10
Number of missing values	0

Equation Y = 393445*X + 6741

F ₀ = 24616 ui	nits								
F-F ₀ (515 nm); [H ₂ O ₂] = 0.625 mM				F-F ₀ (515	nm); [H ₂ O ₂] = 1	.25 mM	F-F ₀ (515 nm); [H ₂ O ₂] = 2.5 mM		
Time (s)	Expt. 1	Expt. 2	Expt. 3	Expt. 1	Expt. 2	Expt. 3	Expt.1	Expt. 2	Expt. 3
30	145,691	101,161	83,026	255,659	258,915	225,047	425,024	405,551	398,309
90	220,196	277,036	236,883	364,712	517,271	484,926	539,467	612,814	630,136
150	301,900	391,059	348,470	463,364	607,290	590,662	601,940	657,981	671,943
210	355,049	458,596	422,910	514,663	641,798	639,332	627,168	666,435	680,181
270	390,358	499,861	473,964	549,297	656,229	660,178	636,230	665,190	679,336
330	421,561	522,358	509,584	572,635	661,539	664,254	638,753	666,173	674,138
390	450,025	534,705	536,252	589,797	665,178	666,753	641,141	663,899	664,993
450	477,638	541,922	555,207	601,493	663,842	669,367	640,270	661,893	664,413
510	501,767	546,290	569,868	606,377	663,608	673,539	639,383	659,509	664,003
570	524,121	550,122	581,518	612,207	662,594	675,671	637,346	658,746	663,104
630	543,908	551,490	591,076	614,405	663,947	677,477	637,422	656,826	661,222
690	559,985	551,741	599,176	616,203	663,123	679,640	636,174	654,911	659,002
750	570,897	553,475	603,780	616,371	663,595	679,888	634,294	654,494	657,410
810	580,693	553,568	609,902	614,783	663,765	683,016	631,953	653,606	654,988
870	587,536	552,326	614,108	614,819	662,173	685,799	631,346	651,140	655,338

 Table S2. Raw data for Figure 4a.

Raw data for studying pseudo first order kinetics

Rate= k'[1]; where $k'=k[H_2O_2]$

Final concentration: $[H_2O_2] = 0.625 \text{ mM}$, 1.25 mM and 2.5 mM; $[1] = 1.7 \mu$ M; 5% MeCN in pH 7.5 HEPES buffer 50 mM. All reactions were performed in triplicate in a 96-well plate.

Calculating [1] from the standard curve of 5. Fluorescence Intensity = $393445 \cdot [5] + 6741$; $R^2 = 0.9997$.

	[1] μM [H ₂ O ₂] = 0.625 mM			[1] μM [H ₂ O ₂] = 1.25 mM			[1] μM [H ₂ O ₂] = 2.5 mM		
Time (s)	Exp. 1	Exp. 2	Exp. 3	Exp. 1	Exp. 2	Exp. 3	Exp. 1	Exp. 2	Exp. 3
30	1.3453	1.4596	1.5061	1.0631	1.0547	1.1417	0.6285	0.6785	0.6971
90	1.1541	1.0082	1.1113	0.7833	0.3918	0.4748	0.3348	0.1466	0.1022
150	0.9444	0.7157	0.8249	0.5301	0.1608	0.2035	0.1745	0.0307	-0.005
210	0.8081	0.5424	0.6339	0.3985	0.0722	0.0786	0.1098	0.0090	-0.026
270	0.7175	0.4365	0.5029	0.3096	0.0352	0.0251	0.0865	0.0122	-0.024
330	0.6374	0.3787	0.4115	0.2497	0.0216	0.0146	0.0801	0.0097	-0.010
390	0.5643	0.3470	0.3431	0.2057	0.0122	0.0082	0.0739	0.0155	0.0127
450	0.4935	0.3285	0.2944	0.1757	0.0157	0.0015	0.0762	0.0207	0.0142
510	0.4316	0.3173	0.2568	0.1631	0.0163	-0.009	0.0784	0.0268	0.0153
570	0.3742	0.3075	0.2269	0.1482	0.0189	-0.014	0.0837	0.0288	0.0176
630	0.3234	0.3040	0.2024	0.1425	0.0154	-0.019	0.0835	0.0337	0.0224
690	0.2822	0.3033	0.1816	0.1379	0.0175	-0.024	0.0867	0.0386	0.0281
750	0.2542	0.2989	0.1698	0.1375	0.0163	-0.025	0.0915	0.0397	0.0322
810	0.2290	0.2986	0.1541	0.1416	0.0159	-0.033	0.0975	0.0419	0.0384
870	0.2115	0.3018	0.1433	0.1415	0.0200	-0.040	0.0991	0.0483	0.0375

Table S3. Raw data for Figure 4b.

[H ₂ O ₂] (mM)	Slope k' (s ⁻¹)
2.5	0.02432
1.25	0.01359
0.625	0.00251

Table S4. Slope (k') obtained from the plot of In [1] vs time.

From Figure 4b, three values of k' were obtained for three different concentrations of H_2O_2 . Under pseudo first order conditions, k' = k[H_2O_2]. So, a plot of observed rate constant k' vs [H_2O_2] yielded the second order rate constant k as the slope of the linear plot. After all calculations, it was found that second order rate constant k = 9.82 ± 1.11 M⁻¹s⁻¹.

Figure S6. Plot of k' vs time to obtain second order rate constant k.

Reaction of 1 with H₂O₂

A solution of $0-159 \mu$ M H₂O₂ in 5:95 MeCN/50 mM phosphate pH 7 buffer (180 μ L) was added to the wells of a black 96-well plate. A solution of 100 μ M **1** in MeCN (20 μ L) was then added to the wells. The solutions were allowed to incubate at 25 °C for 20 min before the fluorescence was measured.

Determining selectivity of 1: Reaction with O2.

A solution of 100 μ M **1** in ethanol (20 μ L) was added to 5:95 methanol/50 mM phosphate pH 7 buffer (140 μ L). Then, either 0, 10, or 10⁴ U/mL catalase (20 μ L) was added to the mixtures. These solutions were transferred to centrifuge tubes containing solid potassium superoxide (~3 mg/sample). A control containing 100 μ M **1** in ethanol (20 μ L), 5:95 methanol/50 mM phosphate pH 7 buffer (160 μ L), and 700 mM H₂O₂ (20 μ L) was also generated. The solutions were allowed to incubate at 25 °C for 15 min prior to measuring fluorescence.

Figure S7. Determining selectivity of 1: Reaction with O2.

Sample	Fluor	escence Intensity	
KO ₂	106,099	92,938	99,300
KO ₂ + 10 U/mL catalase	104,768	72,151	98,514
KO ₂ + 10 ⁴ U/mL catalase	63,553	41,950	67,009
H ₂ O ₂	937,451	1,008,330	803,382

Table S5. Raw fluorescence values for determining selectivity of 1: Reaction with O_2 . n = 3.

Determining selectivity of 1: Reaction with ¹O₂

Probe 1 was titrated with NaMoO₄ and H₂O₂ to determine whether ¹O₂ reacted with the probe. A solution of 100 µM 1 in ethanol (20 µL) was added to 5:95 methanol/50 mM phosphate pH 7 buffer (140 µL). Water, 1 mM sodium azide, or 10⁴ U/mL catalase (20 µL) was added to the mixture. NaMoO₄•2H₂O (11.1 mg) was added to ultrapure water (2.00 mL). This solution was diluted to 20 µM, 200 µM, and 2.00 mM. H₂O₂ was diluted to 200 µM and 2.00 mM. Equal volumes of NaMoO₄ solution and H_2O_2 were added together, and an aliquot (20 µL) was immediately transferred to the solution containing 1. The fluorescence intensity was measured immediately and again after incubation at 25 °C for 40 min.

Figure S8. Determining selectivity of 1: Reaction with ¹O₂.

Additive	[NaMoO4] (µM)		0 μM H ₂ O ₂			10 µM H ₂ O	2		100 µM H ₂ C	02
	0	59,711	30,413	38,407	34,413	26,177	54,164	86,970	68,803	48,948
	1	36,829	38,478	40,456	27,103	23,437	25,142	74,322	79,262	64,673
	10	1,067	29,637	27,490	33,243	34,233	26,543	132,450	119,014	113,217
	100	24,734	26,617	17,702	38,768	55,874	53,722	476,166	482,448	468,686
NaN ₃	0	47,427	27,816	33,822	22,037	25,574	26,509	47,879	71,128	86,779
NaN ₃	1	17,056	15,590	28,737	47,687	30,921	55,460	58,618	52,801	75,276
NaN ₃	10	48,985	26,189	39,286	41,011	44,837	41,481	99,199	137,922	128,720
NaN₃	100	41,150	60,360	31,422	36,764	62,417	61,596	459,433	473,881	427,359
catalase	0	47,781	25,839	97,988	24,872	37,852	55,740	24,774	36,194	57,786
catalase	1	32,277	18,911	88,941	25,228	47,957	62,449	34,302	31,904	54,776
catalase	10	30,189	24,960	82,044	31,421	39,031	88,171	39,161	54,221	66,499
catalase	100	27,512	34,883	69,835	25,678	32,090	94,073	103,725	102,097	137,047

Table S6. Raw fluorescence values for determining selectivity of **1**: Reaction with ${}^{1}O_{2}$. Data shown are the fluorescence at 40 min minus the fluorescence at 0 min. n = 3.

Determining selectivity of 1: Reaction with •OH

•OH was generated through the reaction of FeSO₄•7H₂O with H₂O₂. A solution of 100 μ M **1** in ethanol (20 μ L) was added to 5:95 methanol/50 mM phosphate pH 7 buffer (140 μ L). Water or 10⁴ U/mL catalase (20 μ L) was added to the mixture. FeSO₄•7H₂O (27.4 mg) was added to ultrapure water (2.00 mL). This solution was diluted to 20 μ M, 200 μ M, and 2.00 mM. H₂O₂ was diluted to 200 μ M and 2.00 mM. Equal volumes of FeSO₄•7H₂O solution and H₂O₂ were added together, and an aliquot (20 μ L) was immediately transferred to the solution containing **1**. The fluorescence intensity was measured immediately and again after incubation at 25 °C for 40 min.

Figure S9. Determining selectivity of 1: Reaction with •OH.

Additive	[FeSO₄] (µM)	0 µM H ₂ O ₂			10 µM H ₂ O ₂			100 µM H ₂ O ₂		
	0	50,173	48,124	44,143	43,929	46,186	43,989	94,742	95,713	85,271
	1	44,775	42,847	41,775	49,425	47,262	44,251	103,905	91,684	86,594
	10	43,299	42,365	40,214	42,933	40,908	38,283	90,712	94,948	91,049
	100	32,709	41,651	31,615	56,260	46,281	43,358	99,391	95,778	99,384
catalase	0	31,506	41,640	38,159	16,840	33,959	8,517	37,819	28,926	9,145
catalase	1	28,688	24,659	45,310	31,319	13,633	33,399	34,591	26,790	38,285
catalase	10	24,822	33,920	47,376	19,991	16,693	33,776	42,724	50,635	32,300
catalase	100	35,828	18,194	20,321	20,486	26,765	15,423	46,921	52,666	46,232

Table S7. Raw fluorescence values for determining selectivity of **1**: Reaction with •OH. Data shown are the fluorescence at 40 min minus the fluorescence at 0 min. *n* = 3.

Determining selectivity of 1: Reaction with CIO⁻ and ONOO⁻

A solution of 0, 1, 10, or 22 μ M ONOO⁻ in 0.3 M NaOH (20 μ L) or 1, 10, 100, or 1000 μ M NaOCl in water (20 μ L) was added to the wells of a black 96-well plate. A solution of 10 μ M 1 in DMSO (560 μ L) and 5:95 MeCN/1.2 M phosphate pH 7 buffer (4.48 mL) was made; this solution (180 μ L) was transferred to each of the wells. The samples were allowed to incubate at 25 °C for 15 min before the fluorescence was measured.

Figure S10. Determining selectivity of 1: Reaction with CIO⁻ and ONOO⁻.

	Fluorescence Intensity						
no ROS	30,591	24,478	26,025				
100 nM NaOCI	33,503	25,413	28,088				
1.0 µM NaOCI	28,551	25,590	33,211				
10 µM NaOCl	41,611	35,271	35,308				
100 µM NaOCl	46,362	40,070	41,695				
100 nM ONOO ⁻	23,606	21,961	20,229				
1.0 μM ONOO ⁻	46,271	39,358	35,209				
2.2 μM ONOO	63,954	56,351	61,987				

Table S8. Raw fluorescence values for determining selectivity of 1: Reaction with CIO⁻ and ONOO⁻. n = 3.

Determining selectivity of 1: Reaction with ^tBuOOH

A solution of 5:95 MeCN/50 mM phosphate pH 7 buffer (160 μ L) was added to the wells of a black 96-well plate. 10 μ M 1 in DMSO (20 μ L) was added to each well. 0 mM H₂O₂ in water (20 μ L) or 0, 10, or 100 μ M 'BuOOH in DMSO (20 μ L) were then added to the wells. The samples were allowed to incubate at 25 °C for 15 min before the fluorescence was measured.

Figure S11. Determining selectivity of 1: Reaction with ^tBuOOH

	Fluorescence Intensity						
no ROS	34,525	36,401	39,836				
H_2O_2	277,013	296,506	250,145				
1 µM [#] BuOOH	32,951	29634	34,860				
10 µM ^t BuOOH	31,650	28,922	33,363				

Table S9. Raw fluorescence values for Determining selectivity of 1: Reaction with ^tBuOOH. n = 3.

Determining selectivity of 1: Reaction with NO2⁻

NaNO₂ (97.0 mg) was dissolved in ultrapure water (2.00 mL). This solution was diluted to 10 μ M, 100 μ M, 1.00 mM, and 10.0 mM. H₂O₂ was diluted to 10 μ M, 100 μ M, 1.00 mM, and 10.0 mM. A solution of 100 μ M **1** in ethanol (20 μ L) was added to 5:95 methanol/50 mM phosphate pH 7 buffer (160 μ L). The NaNO₂ or H₂O₂ solutions (20 μ L) were added to the solution containing **1** and the fluorescence intensity was measured immediately and again after incubation at 25 °C for 15 min.

Figure S12. Determining selectivity of 1: Reaction with NO_2 . n = 3.

[NO ₂ -] or [H ₂ O ₂] (µM)		NO ₂ -			H_2O_2	
0	24,359	26,870	26,226			
0.1	31,075	36,429	27,504	58,172	52,104	52,249
1	26,768	31,470	33,004	266,770	242,313	222,834

Table S10. Raw fluorescence values for determining selectivity of 1: Reaction with NO_2 . Data shown are the fluorescence at 15 min minus the fluorescence at 0 min. n = 3.

Determining selectivity of 1: Reaction with NO3⁻

NaNO₃ (30.9 mg) was dissolved in ultrapure water (2.00 mL). This solution was diluted to 10 μ M, 100 μ M, 1.00 mM, and 10.0 mM. H₂O₂ was diluted to 10 μ M, 100 μ M, 1.00 mM, and 10.0 mM. A solution of 100 μ M **1** in ethanol (20 μ L) was added to 5:95 methanol/50 mM pH 7 potassium phosphate buffer (160 μ L). The NaNO₃ or H₂O₂ solutions (20 μ L) were added to the solution containing **1** and the fluorescence intensity was measured immediately and again after incubation at 25 °C for 15 min.

Figure S13. Determining selectivity of 1: Reaction with NO₃-. n = 3.

[NO ₃ ⁻] or [H ₂ O ₂] (µM)	NO3 ⁻			H ₂ O ₂		
0	24,359	26,870	26,226			
0.1	34,507	35,439	40,487	58,172	52,104	52,249
1	43,966	35,385	47,433	266,770	242,313	222,834

Table S11. Raw fluorescence values for determining selectivity of **1**: Reaction with NO₃⁻. Data shown are the fluorescence at 15 min minus the fluorescence at 0 min. n = 3.

Determining selectivity of 1: Reaction with NO•

A NO• solution was generated by the addition of H_2SO_4 to NaNO₂. A round-bottom flask containing a saturated solution of NaNO₂ was connected to a series of three bubblers and one Erlenmeyer flask; the first two bubblers contained 30% NaOH, and the third contained ultrapure water. The flask contained ultrapure water (10 mL). The solutions were degassed with argon for 30 min. Then a 2 M solution of H₂SO₄ (1 mL) was added to the saturated NaNO₂ to produce a 1.8 mM solution of NO• (assuming saturation at 25 °C) in the flask. A solution of 10 μ M 1 in DMSO (20 μ L) was added to 5:95 acetonitrile/50 mM pH 7 potassium phosphate buffer (160 μ L). The NO• solution (20 μ L) was then added to the mixture containing 1. The fluorescence was measured immediately and again after 15 min at 25 °C.

Concentration (µM)

Figure S14. Determining selectivity of 1: Reaction with NO•. *n* = 3.

[NO•] or [H ₂ O ₂] (µM)	NO•			H ₂ O ₂		
0	4,567	5,018	6,300			
0.1	5,344	5,827	5,393	9,370	9,525	9,517
1	6,268	5,961	5,430	26,155	26,618	27,176
10	6,104	6,207	5,735	111,008	106,765	111,053

Table S12. Raw fluorescence values for Determining selectivity of **1**: Reaction with NO•. Data shown are the fluorescence at 15 min minus the fluorescence at 0 min. *n* = 3.

pH dependence of the reaction of 1 with H₂O₂

A solution of 50 mM phosphate pH 7.3 buffer was treated with 1.0 N HCl to adjust the pH to 7.0, 6.5, 5.9, 5.4, 4.5, or 4.1. The concentration of the resulting buffers was adjusted with water to 25 mM phosphate buffer. Solutions of 25 mM phosphate pH 7.3, 7.0, 6.5, 5.9, 5.4, 4.5, or 4.1 buffer (160 μ L) and 100 μ M probe **1** in MeOH were treated with 100 μ M, 10 μ M or 0 μ M H₂O₂ in water. The solutions were allowed to incubate at 23 °C for 20 min prior to measuring the fluorescence.

pН	10 µM H ₂ O ₂		1 µM H ₂ O ₂			0 µM H ₂ O ₂			
7.30	372,555	388,584	401,912	228,368	208,913	186,665	189,898	183,424	169,054
7.00	389,464	369,467	390,006	247,464	221,499	229,530	199,101	207,136	187,676
6.50	332,896	341,948	335,544	203,661	188,050	184,986	155,151	183,747	149,421
5.90	167,836	187,633	154,515	113,703	111,368	107,545	87,499	89,708	90,424
5.40	103,516	107,311	103,354	61,365	63,294	60,943	56,192	56,334	52,671
4.50	55,577	54,961	56,315	40,599	31,790	33,283	29,770	29,064	29,069
4.10	51,632	54,097	52,472	35,884	30,492	30,471	28,470	29,037	28,661

Table S13. Raw fluorescence intensities for the reaction of 1 with H₂O₂ at pH 4.1–7.3.

pH dependence of phenol 5

Phenol 5 was dissolved in water to a concentration of 100 nM. This solution (100 mL) was titrated with HCl and NaOH. The pH was measured after each addition before measuring the fluorescence using a Horiba FluoroMax3 fluorescence spectrometer. Fluorescence was measured using 1 nm slit widths with an excitation wavelength of 496 nm and an emission wavelength of 510 nm.

Figure S15. The pH dependence of phenol 5.

920
930
1,070
1,450
1,440
1,670
2,790
5,280
7,130
10,250
18,790
18,720
22,820
27,620
31,730
34,510
35,740
39.880
41,950
42,930
44,240
43.280
43.110
43.140
43.550
43.850
43.340
45 080
44 640
43 930
42 610
44 070
43 670
41,900
42 170
42,00
42 170
42 570
42 / 10
40.450
40,400
41,370
40,320
29 700

Table S14. Raw fluorescence values for the pH dependence of hydroxymethyl Tokyo Green.

Cellular Imaging

Cells were seeded on 35-mm glass bottom dishes (MatTek Corporation, Ashland, MA) and incubated with 0.5 µM 1 in 0.1% DMSO in DMEM (10% FBS with penicillin/streptomycin) for 15 min prior to imaging. In some cases, cells were incubated with 1 µM MitoTracker® Red FM (ThermoFisher Scientific) for 20 min at 37 °C. The treated cells were washed with HBSS, and the media was replaced with HBSS (2.00 mL). The dish was inserted in a closed, thermo-controlled (37 °C) stage top incubator (Tokai Hit Co., Shizuoka-ken, Japan) atop the motorized stage of an inverted Nikon TiE fluorescent microscope (Nikon Inc., Melville, NY) equipped with a 60X oil immersion optic (Nikon, CFI PlanFluor, NA 1.49) and NIS Elements Software. The sample was excited using the 470 nm line of a Lumencor diode-pumped light engine (SpectraX, Lumencor Inc., Beaverton OR). Fluorescence was detected using an ET-GFP filter set (Chroma Technology Corp) and ORCA-Flash 4.0 sCMOS camera (HAMAMATSU Corporation, Bridgewater, NJ). MitoTracker Red was excited using the 555 nm line and detected using a TRITC filter set. Data were collected every 30 s over a 10-min period.

Figure S16. Pseudo-color image of RAW cells loaded with 5 µM dihydrodichorofluorescein diacetate. (a) Without stimulation by ionomycin. (b) With stimulation by ionomycin. The scale bars are 20 µm.

Zebrafish tail-wounding model

Three-day post-fertilization zebrafish embryos were removed from their chorion and allowed to swim in 1 mM 1 for 2 h (0.1% v/v DMSO), leading to effective dye loading. Following this, the fish were anesthetized and mounted in agar. The tail fins were clipped with a razor blade. Fluorescence images were obtained every 60 s for 60 min using an inverted Nikon TiE fluorescent microscope (Nikon Inc., Melville, NY) equipped with a 20X 0.75 NA lens and NIS Elements Software. The sample was excited using the 470 nm line of a Lumencor diode-pumped light engine (SpectraX, Lumencor Inc., Beaverton OR), and the fluorescence signals were detected using an ET-GFP filter set (Chroma Technology Corp) and ORCA-Flash 4.0 sCMOS camera (HAMAMATSU Corporation, Bridgewater, NJ).

References

- 1. L. Ying; B. P. Bruce; Bioconj. Chem., 2011, 22, 987–992.
- 2. S. Ando, K. Koide; J. Am. Chem. Soc. 2011, 133, 2556-2566.
- 3. A. Krief, F. Lonez; Tetrahedron Lett. 2002, 35, 6255–6257.

Author Contributions

K.K. conceived the project and designed the probe. U.B. and I.P. synthesized the probe (Figure 2). I. P. performed the mechanistic studies (Figure 3) and pH dependence study (Figure 5c). U. B. performed kinetic studies (Figure 4). D.P. performed the experiments described in Figure 5a and Figure 5b. D.P., C.M.C., and S.C.W. performed the experiments described in Figures 6 and 7. D.P., I.P., and K.K. wrote the manuscript.

Spectrum 1. ¹H NMR spectrum of 8 (300 MHz, CDCl₃, 293K).

Spectrum 2. ¹³C NMR spectrum of 8 (100 MHz, CDCl₃, 293K).

Spectrum 3. ¹H NMR spectrum of 9 (300 MHz, CDCl₃, 293K).

Spectrum 4. ¹³C NMR spectrum of 9 (100 MHz, CDCl₃, 293K).

Spectrum 5. ¹H NMR spectrum of 1 (300 MHz, CDCl₃, 293K).

Spectrum 6. ¹³C NMR spectrum of 1 (100 MHz, CDCl₃, 293K).