Potential zeolites related to faujasite (FAU): structures and energetics.

Olaf Delgado-Friedrichs^a, Martin D. Foster^b, Michael O'Keeffe^c and Michael M. J. Treacy^{d,*}

^aDepartment of Applied Mathematics, Australian National University, Canberra, ACT 2601, Australia.

^bU.S. Bank, 400 N. Executive Drive, Brookfield, Wisconsin 53005, USA
^cSchool of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
^dDepartment of Physics, Arizona State University, Tempe, Arizona 85287, USA

Abstract

We describe five new zeolitic framework types, **fav**, **faw**, **fax**, **fay** and **sod-t** that are structurally related to faujasite. They are derived from isomorphic expansions of the tetrahedral nets associated with selected Frank-Kasper phases. Each tetrahedral vertex of the net is replaced by a sodalite cage (S) and each edge by a hexagonal prism (P), in effect replacing each vertex with an SP₄ tetrahedron. Faujasite itself, framework type **FAU**, is an SP₄ expansion of the diamond net.

In the Frank-Kasper phases the periodic incorporation of icosahedra, which can be subdivided into twenty almost-regular tetrahedral volumes, tends to minimize distortion of the associated tetrahedral SP₄ framework, ensuring low framework energies. The computed framework energy of silicate **fav** compares most favorably with that for **FAU** and **EMT**, presenting an appealing zeolite synthesis target.

1. Introduction, terminology and definitions

Zeolites with the faujasite framework are among the most valuable of inorganic materials in the economic sense. In this paper we explore related framework structures that are potential targets for synthesis and which might be equally valuable materials. We start with some definitions and terminology necessary for understanding the provenance of these new structures.

A *simple* polyhedron is one in which exactly two faces meet at each edge and three meet at each vertex. A *simple* tiling is a tiling of space by simple polyhedra in which exactly two polyhedra meet at each face, three at each edge and four at each vertex. Foams are simple tilings; so are the frameworks of many important zeolites.

In a 3-dimensional tiling there is a dual tiling generated as follows. Place a new vertex in each old tile, connect these through faces to the new vertices in adjacent tiles. Now recognizing that the dual of a dual is the original tiling, the old vertices are in the new (dual) tiles and the old edges pass through the new faces. For our purpose we note that the dual of a simple tiling is a tiling by tetrahedra and vice versa.

The set of edges and vertices of a tiling (the *1-skeleton*) form a net. Nets of interest in structural chemistry are assigned a three-letter (bold, lower-case) RCSR code **xyz**.¹ If it is the approved net of a known zeolite it is assigned an IUPAC (bold, upper-case) code **XYZ** by the Structure Commission of the International Zeolite Association.² In the case of faujasite the zeolite framework type code is **FAU**. In RCSR the same net is identified as **fau**.

We are concerned here with the linking of groups with tetrahedral shape in which the linkage is either *staggered* with an inversion center between the two groups, or *eclipsed* with a (local) mirror between the two parts. Specifically, linking vertices with four edges and linking truncated octahedra with hexagonal-prism edges, with minimal torsional stress, as shown in Figure 1.

In the approach to tiling by the Dress group ^{3, 4} tiles are split into tetrahedral *chambers* in which the vertices are at a vertex of the tile, in the center of an adjacent edge, in the center of an adjacent face and in the center of the tile. The set of chambers of the tiling form a tiling by tetrahedra. The dual of this tiling is a simple tiling with a net we call the "-t net". These are useful for studying the periodic surfaces associated with a net.⁵ For the present purpose we note that if the original tiling is simple, in the zeolitic form of the -t structure the SiO₄ tetrahedra (with Si at the vertices and O on the edges) are replaced by truncated octahedra (sodalite cages, S) and the edges (O atoms) replaced by hexagonal prisms (P) to form SP₄ units (Fig. 1). This is exactly what we want to find structures related to **FAU**. Note that the number of different (unrelated by symmetry) chambers, *D*, in the tiling is the *flag transitivity* and is reported as *D size* in RCSR (*D* from Delaney-Dress-Delgado symbol). It follows that a **-t** net is vertex *D*-transitive.

The next question is which nets to select to make viable FAU-related structures. Linking tetrahedral vertices in all-staggered conformation leads inexorably to the diamond net (dia). Staggered linking of truncated octahedra with trigonal prisms similarly produces the FAU framework (Figure 2).

A "cousin" of FAU, namely EMT, is known as a zeolite (Figure 3). This has the lonsdaleite (lon) underlying net, which can be augmented with SP_4 units, preserving the local tetrahedral

symmetry of the truncated octahedron and four joined hexagon prisms. Only one quarter of the junctions are in the eclipsed conformation but there is no intrinsic stress penalty introduced by this eclipsed versus staggered packing.

Linking in an all-staggered conformation is not possible with strictly regular conformation, but it can be shown readily^{6, 7} that, with a small deformation, five such groups can be linked to form a low-stress pentagon (the angle in a regular pentagon is 108° whereas the tetrahedral angle is 109.47°). Ideally, to continue further the assembly would form a simple tiling by tiles with pentagonal faces. However, a tiling by pentagonal dodecahedra fits on the 3-sphere and to make a simple tiling in flat 3D space, 6-rings are inevitable. In terms of the dual structure it is noted that tilings by tetrahedra in which five tetrahedra meet at every edge is impossible, and there must be some edges where six tetrahedra meet. Such structures are the basis for the celebrated Frank-Kasper intermetallic compounds.^{8, 9} It has been shown rigorously that there are just two simple possibilities that are tile 3-transitive.¹⁰ These correspond to the MgCu₂ and Cr₃Si Frank-Kasper phases. Relevant to our discussion is the fact that the dual simple structures are those of the zeolite frameworks **MTN** and **MEP** respectively. The fraction of 6-rings is smallest in **MTN** (1/10 compared to 1/9 for **MEP**). The augmented **-t** nets corresponding to these two (Figure 4) have symbols **fav** ("**mtn-t**", vertex transitivity 17) and **faw** ("**mep-t**", vertex transitivity 23).

A related common intermetallic structure based on packing tetrahedra is the extended (14coordinated) body-centered cubic **bcu-x**. In this structure either four or six tetrahedra meet at an edge. The dual structure is the familiar sodalite (**SOD**) framework constructed of polyhedra with 4- and 6-rings. The absence of 5-rings suggests that, after expansion, the SP₄ tetrahedral groups will be more strained. For comparison, we include this **-t** net SP₄ expansion, **sod-t** (vertex transitivity 3), as a **FAU** analog (Figure 5).

2. Framework energy calculations

Upon close inspection (Figure 4, and Tables 2–4), the **fav** (symmetry $Fd\bar{3}m$), **faw** (symmetry $Pm\bar{3}n$), and **sod-t** (symmetry $Im\bar{3}m$), structures exhibit small, but discernible, deformations to the sodalite and double 6-ring cages, suggesting that the silicate framework energies may be higher than the relatively unstrained **FAU** and **EMT** frameworks. To explore this energetic penalty, the frameworks were relaxed at constant pressure conditions by the General Utility Lattice Program (GULP)^{11, 12} using the Sanders-Leslie-Catlow potential¹³ for SiO₂, and the results are presented in

Table 1. To five significant figures the **fav** framework has framework energy -128.45 eV/SiO_2 , slightly higher than that for **FAU** and **EMT** (-128.50 eV/SiO_2). The **faw** framework has higher energy, -128.38 eV/SiO_2 , and the **sod-t** energy of -128.33 eV/SiO_2 is higher yet. For comparison, the quartz framework is -128.64 eV/SiO_2 . These energies fall within the normal range for many known zeolites when modeled as silicates.¹⁴ Compared to **FAU** and **EMT**, GULP reported that **fav** and **faw** exhibited stronger core-shell polarization of some oxygen atoms. Further, in full symmetry, phonon modes with negative eigenvalues, ω^2 , occurred, suggesting that the structures are metastable and may be more stable under a lower symmetry, or possibly with mixed composition, such as an alumino- or germano-silicate. Negative eigenvalues arise for a number of normal zeolite structures, one example being **MTN** itself, and do not necessarily disqualify a framework from the realms of plausibility. We did not explore these avenues further.

We note in passing that the framework of zeolite tschörtnerite, **TSC**, is also built from SP₄ units, but it is not an SP₄ augmentation of a **-t** net, as investigated here: the double 6-ring prisms (P) in **TSC** do not correspond to edges of a **-t** net. SP₄-augmented **-t** nets will have, on average, two hexagonal prisms to each sodalite, for a "composition" of SP₂, but the "composition" of **TSC** is SP₄. Nevertheless, it is worth noting that the framework energy of **TSC** is -128.50 eV/SiO_2 , comparable to **FAU** and **EMT**, indicating that the SP₄ units are minimally stressed in **TSC**.

We note that **fav**, which is built on the **MTN** framework with the most 5-rings (9 out 10), has a more favorable energy than **faw**, which is built on the **MEP** framework with lightly fewer 5rings (8 out of 9). **sod-t**, based on the **SOD** framework with no 5-rings has even higher energy, as expected. Comparison of framework energies of **FAU** and **EMT** confirms there is no intrinsic penalty for the eclipsed configuration of the SP₄ units.

3. Descriptions of the structures

The tiles of the "parent" structures define cages (e.g. the adamantane cage in the **dia** structure, shown in Fig. 6). In the **FAU**-related family, we have described the vertices of the parent net as being replaced by a truncated octahedron, and the edges by hexagonal prisms (forming the SP_4 unit). Alternatively, we can describe the transformation as replacing the vertices of the *tiles* by a hexagonal prism of vertices. Thus, the adamantane cage of **dia** transforms into the faujasite cage of **FAU** (Fig. 2). The generation of the cages in **sod-t**, **fav**, and **faw** is shown in Fig. 6. Note that

mtn and mtp have two tiles each, one of which is the pentagonal dodecahedron. The corresponding cage in fav and faw is the 120-vertex Archimedean polyhedron ild with icosahedral symmetry.

The tile in **SOD** (the parent of **sod-t**) is a truncated octahedron (**tro** in RCSR); in **sod-t** it becomes the polyhedron (**tro-e-a**) with 144 vertices (Fig 6). **MTN** and **MEP** (parents of **fav** and **faw**) each contain two kinds of tile. In **MTN** they are two dodecahedra $[5^{12}]$ and one hexakaidecahedron $[5^{12}.6^4]$. In **MEP** the tiles are one dodecahedron $[5^{12}]$ and three tetrakaidecahedra $[5^{12}.6^2]$. Noteworthy is that the cage derived from the dodecahedron has icosahedral symmetry and is the largest Archimedean polyhedron – the truncated icosidodecahedron (**tid**).

The GULP-refined coordinates for **fav**, **faw** and **sod-t** are given in tables 2, 3 and 4 respectively.

4. Discussion and Conclusions

It is tempting to infer that every regular-tetrahedral (zeolitic) net can be subjected to such an isomorphic transformation by augmenting vertices of the **-t** net with SP₄ units. However, most zeolitic nets augmented this way will strain the SP₄ units, raising the framework energy above the bounds of feasibility. In a silicate SiO₄ tetrahedron, for example, the Si–O–Si angles tend to be in the range 140° to <180°. However, the S–P–S angle is constrained to be near 180°. Thus, the existence of a viable silicate net does not ensure a viable SP₄ augmentation. As we show here, two exceptions are the **MTN** and **MEP** frameworks, which are based on the simplest Frank-Kasper phases. The key is that these frameworks are rich in regular 5-rings, with angles of 108° between edges, which closely matches the tetrahedral angle of 109.47° favored by the ideal **-t** net, while allowing S–P–S angles to be close to 180°. Consistent with the fact that **MTN** has a slightly higher 5-ring to 6-ring ratio than does **MEP**, 9/1 and 8/1 respectively, the **fav** (**mtn-t**) structure has a lower framework energy (less distortion) than the **faw** (**mep-t**) structure. **SOD** itself, having no 5-rings, has more framework distortion and a concomitant higher framework energy.

The low energies of **fav** and **faw** lead us to ask if other **-t** nets derived from Frank-Kasper phase duals would be suitable candidates. The next-simple structure is that of the Zr_4Al_3 type, the dual of which is the clathrate variously known as type II or type IV (RCSR symbol **isq**). The tiling has *D*-size = 40 implying that the **-t** net is vertex 40-transitive. However, the plausibly-low framework energy for **sod-t** suggests that isolated (not edge-sharing) 4-rings might not impose too large an energy, so a search was made in RCSR for clathrates with *D*-size <30. This led to two more candidate structures. The first, **alb-x-d** (*D*-size = 16), is the dual of the AlB₂ net, which is another intermetallic structure based on tetrahedron packing.¹⁵ The simple tiling is a packing of enneahedra [$4^{3}.5^{6}$] and icosahedra [$5^{12}.6^{8}$] ("hexagonal barrels"). The corresponding **-t** net has been assigned the symbol **fax**. The GULP energy of this, as an SiO₂ framework, is $-128.26 \text{ eV/SiO}_{2}$, which, although higher than **FAU**, is still plausible. Aspects of the structure are depicted in Fig. 7 and the coordinates are given in Table 5. Note the large cage, which suggests that synthesis might be effected with the aid of a large structure-directing template.

The other simple tiling from the RCSR search, **isq**, is an isohedral tiling first described many years ago.^{16, 17} This has *D*-size 18 and yields a **-t** net assigned symbol **fay**. The framework energy is -128.22 eV/SiO_2 , which is the highest framework energy of the structures studied here. The structure is shown in Fig. 8, and the coordinates are given in Table 6.

The energetic plausibility of the **fav** framework, and possibly the **faw** and **sod-t** frameworks, which are closely related to the **FAU** framework, presents an interesting synthetic challenge to the zeolite community. This challenge is not dissimilar to the possibilities raised by Breck¹⁸ when he conjectured on the possibility of the hypothetical 'Structure 6', or 'hexagonal faujasite', which was later successfully synthesized as the framework type **EMT**.¹⁹

We note also, relevant in this context, the design and successful synthesis of large cubic zeolites based on the building units of the **RHO** structure.^{20, 21}

References

1. O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M., The Reticular Chemistry Structure Resource (RCSR) Database of, and symbols for Crystal Nets. *Acc. Chem. Res.* **2008**, 41, 1782–1789.

2. Baerlocher, C.; McCusker, L. B.; Olson, D. H., *Atlas of Zeolite Framework Types*. 6 ed.; Elsevier Science: 2007.

3. Delgado-Friedrichs, O.; Dress, A. W. M.; Huson, D. H.; Klinowski, J., *Nature* **1999**, 400, 644–647.

4. Dress, A. W. M.; Huson, D. H., On tilings of the plane. *Geometriae Dedicata* **1987**, 24, 269–296.

5. de Campo, L.; Delgado-Friedrichs, O.; Hyde, S. T.; O'Keeffe, M., Minimal nets and minimal minimal surfaces. *Acta Crystallogr.* **2013**, A69, 483–489.

6. Howarth, A. J.; Li, P.; Farha, O. K.; O'Keeffe, M., Bottom-Up Design and Generation of Complex Structures. A New Twist in Reticular Chemistry. *Cryst. Growth Des.* **2018**, 18, 449–455.

7. O'Keeffe, M., Tetrahedral frameworks TX_2 with T-X-T angle = 180°. Rationalization of the structures of MOF-0500, and of MIL-100 and MIL-101. *Mater. Res. Bull.* **2006**, 41, 911–915.

8. Frank, F. C.; Kasper, J. S., Complex Alloy Structures Regarded as Sphere Packings. 1 Definitions and Basic Principles. *Acta Crystallogr.* **1958**, 11, 184–190.

9. Frank, F. C.; Kasper, J. S., Complex Alloy Structures Regarded as Sphere Packings. 2. Analysis and Classification of Representative Structures. **1959**, 12, 483–499.

10. Delgado-Friedrichs, O.; O'Keeffe, M., Simple tilings by polyhedra with 5- and 6-sided faces. *Acta Crystallogr.* **2010**, A66, 237–239.

11. Gale, J. D., GULP - a computer program for the symmetry adapted simulation of solids. *JCS Faraday Trans.* **1997**, 93, 629.

12. Gale, J. D.; Rohl, A. L., The General Utility Lattice Program. Mol. Simul. 2003, 29, 291–341.

13. Sanders, M. J.; Leslie, M.; Catlow, C. R. A., Interatomic potentials for SiO₂. *Journal of the Chemical Society-Chemical Communications* **1984**, (19), 1271–1273.

14. Dawson, C. J.; Pope, M. A. B.; O'Keeffe, M.; Treacy, M. M. J., Low-Density, Low-Energy, Zeolites Assembled from Double-Layer Silica Sheets. *Chem. Mater.* **2013**, 25, 3816–3821.

15. Bonneau, C.; O'Keeffe, M., Intermetallic Crystal Structures as Foams. Beyond Frank–Kasper. *Inorg. Chem.* **2015**, 54, 808–814.

16. Williams, R. E., Space-filling polyhedron: its relation to aggregates of soap bubbles, plant cells, and metal crystallites. *Science* **1968**, 161, 276–277.

17. O'Keeffe, M., Sphere Packings and Space Filling by Congruent Simple Polyhedra. *Acta Crystallogr.* **1998**, A54, 320–329.

18. Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use. Robert E. Krieger Publishing Company: Malabar, Florida, 1974.

19. Dougnier, F.; Patarin, J.; Guth, J. L.; Anglerot, D., Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. *Zeolites* **1992**, 12, 160–166.

20. Guo, P.; Shin, J.; Greenaway, A. G.; Min, J. G.; Su, J.; Choi, H. J.; Liu, L.; Cox, P. A.; Hong, S. B.; Wright, P. A.; Zou, X., A zeolite family with expanding structural complexity and embedded isoreticular structures. *Nature* **2015**, 524, 74–78.

21. Shin, J.; Xu, H.; Seo, S.; Guo, P.; Min, J. G.; Cho, J.; Wright, P. A.; Zou, X.; Hong, S. B., Targeted Synthesis of Two Super-Complex Zeolites with Embedded Isoreticular Structures. *Angew. Chem. Int. Ed.* **2016**, 55, 4928-4932.

Table 1: Framework energies, U, per SiO₂ for SP₄-based zeolites computed using the Sanders-Leslie-Catlow silica empirical potential in GULP. The energy for quartz, **qtz**, is added for comparison. The energies are all within the range of the known zeolites when modeled as silicates. The diameter of the largest included sphere, D_i , and of the largest freesphere, D_f , indicate the cavity size and relative porosity of the structures.

Code	U (eV)	D_i (Å)	D_f (Å)	
qtz	-128.640	1.86	1.45	
TSC –128.502		16.05	4.01	
FAU	FAU -128.498		7.17	
EMT	EMT -128.495		7.17	
fav	-128.451	23.49	7.73	
faw –128.379		19.88	6.56	
sod-t	sod-t -128.333		7.61	
fax	fax -128.260		7.03	
fay -128.218		13.88	7.00	

Table 2. Atomic coordinates for the **fav** (**mtn-t**) framework, optimized as a silicate by GULP in cubic space group $Fd\bar{3}m$, with a = 64.696 Å.

Atom	x	y	Ζ	Atom	x	y	Ζ
Si1	0.09180	0.12450	0.55828	014	0.02511	0.02511	0.27747
Si2	0.23781	0.30396	0.33798	015	0.98915	0.03250	0.26085
Si3	0.28147	0.31496	0.34867	O16	0.00755	0.06028	0.28475
Si4	0.22700	0.25977	0.32482	O17	0.00724	0.15417	0.41645
Si5	0.00306	0.03598	0.28090	O18	0.02127	0.19082	0.42544
Si6	0.02085	0.16699	0.43252	O19	0.04405	0.15862	0.43183
Si7	0.03420	0.12513	0.36624	O20	0.04160	0.13869	0.34683
Si8	0.07720	0.10991	0.37552	O21	0.01453	0.11108	0.36141
Si9	0.04803	0.13989	0.32290	O22	0.05232	0.10968	0.37379
Si10	0.09161	0.12428	0.33221	O23	0.02707	0.14102	0.38394
Si11	0.06426	0.15129	0.44395	O24	0.08653	0.08653	0.37601
Sil2	0.09157	0.12384	0.41906	O25	0.08686	0.12246	0.35647
Si13	0.16974	0.25656	0.28993	O26	0.08305	0.12231	0.39597
Sil4	0.00827	0.12204	0.30532	O27	0.04669	0.16383	0.31603
Si15	0.00607	0.15177	0.39188	O28	0.07067	0.12962	0.31956
Si16	0.00561	0.21110	0.33529	O29	0.03236	0.12656	0.30906
Si17	0.03341	0.18336	0.30795	O30	0.08101	0.16899	0.44104
01	0.10415	0.10415	0.55132	O31	0.07295	0.12976	0.43464
O2	0.10723	0.14277	0.56482	O32	0.10218	0.10218	0.42611
O3	0.07810	0.11925	0.57810	O33	0.10844	0.14156	0.41925
O4	0.07776	0.13136	0.53895	O34	0.16401	0.27092	0.27092
05	0.21796	0.30868	0.35223	O35	0.14987	0.24221	0.29360
O6	0.25748	0.30980	0.35187	O36	0.99771	0.14027	0.29215
O7	0.23939	0.28033	0.33080	O37	0.99577	0.12044	0.32672
08	0.23662	0.31714	0.31714	O38	0.01643	0.23357	0.33168
09	0.29382	0.29382	0.34625	O39	0.02077	0.19307	0.32712
O10	0.28530	0.32793	0.32793	O40	0.98336	0.20964	0.32344
O11	0.22408	0.25909	0.30015	O41	0.04956	0.20044	0.29892
O12	0.20474	0.26000	0.33594	O42	0.10671	0.14329	0.32871
O13	0.23993	0.23993	0.33265	O43	0.10296	0.10296	0.32450

	1 /			1				
Atom	<u>x</u>	<u>y</u>	Z		Atom	<u>x</u>	<u>y</u>	Z
Sil	0.03387	0.41426	0.25055		016	0.10203	0.23231	0.22270
Si2	0.03387	0.35996	0.21005		017	0.05998	0.22134	0.21298
Si3	0.06521	0.30029	0.20322		018	0.08664	0.18763	0.19291
Si4	0.20050	0.20388	0.28557		019	0.09151	0.21594	0.09744
Si5	0.06534	0.23531	0.08808		O20	0.08043	0.26564	0.08802
Si6	0.08609	0.20243	0.22337		O21	0.04961	0.24817	0.06098
Si7	0.10717	0.14771	0.25728		O22	0.04961	0.22238	0.11516
Si8	0.17608	0.26014	0.25680		O23	0.13687	0.14655	0.27353
Si9	0.09259	0.32778	0.14769		O24	0.10699	0.13269	0.22692
Si10	0.08795	0.09552	0.29596		O25	0.09756	0.12162	0.27662
Sil1	0.03388	0.20945	0.14223		O26	0.14703	0.26117	0.23942
Si12	0.10680	0.11767	0.19656		O27	0.09406	0.31187	0.11782
Si13	0.03387	0.24024	0.20258		O28	0.11899	0.30878	0.15713
Sil4	0.14539	0.28978	0.16667		O29	0.07572	0.35704	0.15027
Si15	0.11797	0.26219	0.22203		O30	0.06091	0.07972	0.30886
Sil6	0.08718	0.17283	0.16244		O31	0.06053	0.19114	0.15234
Si17	0.03387	0.26103	0.03387		O32	0.03388	0.22485	0.17241
Si18	0.03387	0.46613	0.13506		O33	0.00000	0.20945	0.14223
Si19	0.03387	0.41142	0.09511		O34	0.09699	0.14525	0.17950
Si20	0.03387	0.38246	0.03387		O35	0.13462	0.10243	0.18470
Si21	0.03387	0.06392	0.32175		O36	0.00000	0.24024	0.20258
Si22	0.05884	0.38630	0.15285		O37	0.13168	0.27599	0.19430
Si23	0.05800	0.44080	0.19308		O38	0.03387	0.39694	0.06449
01	0.03387	0.38711	0.23030		O39	0.03387	0.38246	0.00000
O2	0.04654	0.42813	0.27874		O40	0.00000	0.38246	0.03387
03	0.00000	0.41426	0.25055		O41	0.04890	0.35211	0.03387
04	0.04594	0.42753	0.22182		O42	0.00000	0.06392	0.32175
05	0.00000	0.35996	0.21005		O43	0.03387	0.04890	0.29139
06	0.04954	0.33013	0.20664		O44	0.05842	0.41355	0.17297
07	0.04636	0.37313	0.18145		O45	0.04636	0.39886	0.12398
08	0.09159	0.28124	0.21263		O46	0.04594	0.45347	0.16407
09	0.04954	0.27027	0.20290		O47	0.03387	0.26103	0.00000
O10	0.07890	0.31404	0.17546		O48	0.00000	0.26103	0.03387
O11	0.18354	0.17464	0.28768		O49	0.03387	0.43878	0.11509
O12	0.22185	0.22187	0.30475		O50	0.00000	0.46613	0.13506
O13	0.22865	0.18998	0.27286		O51	0.03387	0.50000	0.13506
O14	0.18829	0.23201	0.27119		O52	0.00000	0.41142	0.09511
015	0.09663	0.17507	0.24033					

Table 3. Atomic coordinates for the **faw** (**mep-t**) framework, optimized as a silicate by GULP in cubic space group $Pm\overline{3}n$, with a = 44.941 Å.

Table 4. Atomic coordinates for the **sod-t** framework, optimized as a silicate by GULP in cubic space group $Im\overline{3}m$, with a = 28.822 Å.

Atom	x	у	Ζ
Si1	0.05185	0.12720	0.44905
Si2	0.05498	0.25724	0.33097
Si3	0.10658	0.18106	0.37978
01	0.06258	0.16207	0.40749
O2	0.08189	0.08189	0.44297
O3	0.06037	0.15022	0.50000
O4	0.00000	0.11001	0.44358
05	0.08002	0.29062	0.36736
06	0.00000	0.25136	0.34252
07	0.06040	0.27914	0.27914
08	0.08463	0.20941	0.33619
09	0.14120	0.14120	0.35987

Atom	x	у	Ζ	Atom	x	у	Ζ
Si1	0.37543	0.05463	0.27343	O15	0.35519	0.00000	0.26397
Si2	0.53138	0.15650	0.10571	O16	0.54024	0.08049	0.40282
Si3	0.35200	0.12958	0.45645	O17	0.55979	0.23122	0.00000
Si4	0.41614	0.05540	0.45693	O18	0.45423	0.06935	0.17658
Si5	0.57225	0.23863	0.04603	O19	0.27480	0.06531	0.35340
Si6	0.48025	0.05606	0.14182	O20	0.46769	0.07625	0.43676
Si7	0.27403	0.08923	0.39607	O21	0.62421	0.24842	0.21454
Si8	0.31595	0.05440	0.33816	O22	0.56459	0.12918	0.27548
Si9	0.49400	0.20034	0.16867	O23	0.42274	0.07945	0.50000
Si10	0.48368	0.05554	0.40040	O24	0.39907	0.14927	0.42801
Si11	0.44940	0.10462	0.20799	O25	0.50147	0.14176	0.31360
Si12	0.57561	0.24286	0.23142	O26	0.62743	0.25485	0.05373
Si13	0.19360	0.05163	0.45650	O27	0.45281	0.15192	0.18878
Si14	0.39854	0.11076	0.39684	O28	0.31155	0.08990	0.42825
Si15	0.45722	0.10178	0.33695	O29	0.28326	0.14163	0.38687
Si16	0.52824	0.14861	0.27258	O30	0.53887	0.18535	0.06454
01	0.22538	0.05705	0.41866	O31	0.58258	0.16517	0.12054
O2	0.33938	0.16969	0.46475	O32	0.49305	0.11942	0.23728
O3	0.47547	0.23774	0.15865	O33	0.53935	0.22728	0.19587
O4	0.44689	0.12957	0.37217	O34	0.14836	0.00000	0.45491
O5	0.51141	0.18360	0.13137	O35	0.17301	0.08651	0.45211
O6	0.49497	0.09809	0.10761	O36	0.35627	0.11014	0.50000
O7	0.52946	0.05892	0.15610	O37	0.39103	0.00000	0.46192
08	0.44380	0.00000	0.12835	O38	0.56380	0.28190	0.06172
09	0.41353	0.07060	0.30829	O39	0.58492	0.29246	0.24939
O10	0.39961	0.08109	0.23218	O40	0.38531	0.06715	0.42700
O11	0.45975	0.00000	0.40520	O41	0.33321	0.06345	0.29145
O12	0.55494	0.20467	0.26626	O42	0.35929	0.09273	0.36333
O13	0.46933	0.06497	0.35734	O43	0.21980	0.06006	0.50000
O14	0.30020	0.00000	0.34789				

Table 5. Atomic coordinates for the **fax** framework, optimized by GULP as a silicate in hexagonal space group P6/mmm, with a = 32.585Å and c = 33.764 Å.

Table 6. Atomic coordinates for the **fay** framework, optimized as a silicate by GULP in tetragonal space group $Fd\bar{3}m$, with a = 23.575 Å and c = 40.327 Å.

Atom	x	У	Ζ	Atom	x	У	Ζ
Si1	0.41016	0.50367	0.41559	013	0.97307	0.27660	0.12405
Si2	0.34964	0.43862	0.46418	O14	0.01224	0.34857	0.22377
Si3	0.05090	0.13673	0.14536	015	0.11787	0.34470	0.21227
Si4	0.01038	0.24985	0.15321	O16	0.04767	0.40156	0.16996
Si5	0.05717	0.34812	0.19394	O17	0.10741	0.37235	0.27874
Si6	0.14468	0.37277	0.24508	O18	0.20276	0.34187	0.25404
Si7	0.24681	0.33394	0.28370	019	0.15651	0.43626	0.23349
Si8	0.41139	0.50227	0.28885	O20	0.21931	0.32548	0.32040
Si9	0.29768	0.45131	0.28412	O21	0.27627	0.27627	0.27305
Si10	0.98991	0.30915	0.25371	O22	0.29308	0.38360	0.28488
Sil1	0.07770	0.33029	0.30521	O23	0.45356	0.45356	0.30196
Si12	0.18109	0.27764	0.33859	O24	0.44988	0.55012	0.26911
Si13	0.19426	0.29140	0.46095	O25	0.35918	0.47175	0.26988
Sil4	0.12864	0.33737	0.40090	O26	0.25316	0.47699	0.25893
Si15	0.03272	0.40087	0.36706	O27	0.03044	0.29702	0.28462
Si16	0.02912	0.42284	0.13356	O28	0.12069	0.28094	0.31862
Si17	0.17133	0.46494	0.40107	O29	0.04605	0.36922	0.33248
Si18	0.21982	0.41846	0.46413	O30	0.21621	0.21621	0.33908
01	0.35798	0.49084	0.43940	O31	0.16259	0.29712	0.37518
O2	0.45676	0.45676	0.42175	O32	0.23875	0.23875	0.45223
O3	0.43491	0.56509	0.42508	O33	0.17537	0.28445	0.50000
O4	0.39073	0.50239	0.37764	O34	0.22309	0.35192	0.45434
05	0.38041	0.38041	0.45197	O35	0.13934	0.30152	0.43561
O6	0.37445	0.45545	0.50000	O36	0.15262	0.40032	0.39569
07	0.28401	0.43294	0.46676	O37	0.06163	0.35562	0.39379
08	0.03540	0.11930	0.18212	O38	0.96662	0.41883	0.37612
O9	0.11304	0.11304	0.13637	O39	0.05550	0.46476	0.36364
O10	0.05349	0.20358	0.13848	O40	0.01727	0.37313	0.10587
011	0.96925	0.21653	0.17830	O41	0.18974	0.46344	0.43956
012	0.05120	0.29310	0.17158	O42	0.18944	0.42569	0.50000

Figure 1. (Left) Illustration of the staggered and eclipsed configurations in tetrahedral nets, and (right) in expanded form as two joined SP₄ tetrahedral units (S \equiv sodalite cage, P \equiv hexagonal prism). The tetrahedral nets of the staggered and eclipsed configurations of the SP₄ forms experience no torsional strain about the S–P–S axes. The P–S–P angle is the tetrahedral angle, 109.47°, and the S–P–S angle is 180°.

Figure 2. The FAU cage formed by linked SiO_4 tetrahedra (left) and by the augmented cristobalite -t net represented as SP_4 tetrahedral units (right). The maximum included sphere is represented by the yellow ball.

Figure 3. The **EMT** cage formed by linked SiO_4 tetrahedra (left) and by the augmented lonsdaleite **-t** net, represented as SP₄ tetrahedral units (right). The maximum included sphere is represented by the yellow ball.

Figure 4. The cages in **fav** and **faw** delineated by linked SiO_4 tetrahedra (top) and depicted as linked SP_4 tetrahedral units (bottom). The maximum included sphere is represented by the yellow ball.

Figure 5. The cage in **sod-t** formed outlined by linked SiO_4 tetrahedra (left) and shown as linked SP_4 tetrahedral units (right). The maximum included sphere is represented by the yellow ball.

Figure 6. Illustration of the polyhedral units defining cages in various nets. Symbols in parentheses are RCSR symbols for individual polyhedra.

Figure 7. Top row: The polyhedral units (symbols in parentheses) defining cages in **alb-x-d** and for the augmented **fax** framework. Bottom row: The cage in **fax** shown as linked SiO_4 tetrahedra (left) and shown as linked SP_4 tetrahedral units (right). The maximum included sphere is represented by the yellow ball. Distortion of the SP_4 units is visible.

Figure 8. Top row: The polyhedral units (symbols in parentheses) defining cages in csj and for the augmented **fay** framework. Bottom row: The ellipsoidal cage in **fay** shown as linked SiO₄ tetrahedra (left) and as linked SP₄ tetrahedral units (right). The maximum included sphere is represented by the yellow ball: the sphere diameter is limited by the ellipsoidal cage. Strong distortion of some of the SP₄ units is visible.