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Abstract 
SMILES randomization, a form of data augmentation, has previously been shown to increase the 

performance of deep learning models compared to non-augmented baselines. Here, we propose a novel 

data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-

sequence similarity between reactants and their respective products when creating training pairs. The 

performance of Levenshtein augmentation was tested using two state of the art models - transformer and 

sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation 

demonstrated an increase  performance over non-augmented, and conventionally SMILES randomization 

augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation 

seemingly results in what we define as attentional gain – an enhancement in the pattern recognition 

capabilities of the underlying network to molecular motifs. 

Introduction 
Recent developments and the accessibility of AI methods have driven an increase in the application of 

probabilistic machine learning models to chemical problems. One such problem is computer aided 

synthesis prediction (CASP), which has been explored for the past 60 years, and one which is now 

experiencing an increased level of interest due to technological advances in deep-learning research. 

Previously, rules governing chemical reactivity were manually curated by expert chemists1 - a method 

which is ultimately infeasible considering the rate of growth of the chemical literature. This lead to a wish 

to automatically curate templates based on bond breaking, bond formation, and atom mappings between 

reactants and products. These templates constitute a set of generalizable rules that capture reaction 

transformations and this methodology became known as template based synthesis prediction. Once the 

templates has been obtained, it is possible to train neural networks to infer the most probable template 

mailto:esben.bjerrum@astrazeneca.com


2 
 

or “policy” to apply for a given set of reactants for the successful prediction of the ground-truth synthetic 

product2, or with respect to retrosynthesis, a set of inferred reactant predictions as demonstrated by 

Segler and Waller3.  

An alternative and more probabilistic method to the temple-based approach, operating on the level of 

SMILES string tokenization, is known as template-free synthesis prediction. This method initially arose 

from early work on sequence based machine learning-models from the field of neural machine translation 

(NMT)4,5, and resulted in the subsequent development of chemoinformatic strategies. The template-free 

approach works by framing synthesis prediction as a token-based language translation task where 

reactants, analogous to language-A, are mapped to their corresponding products, analogous to language-

B. During inference, predictions are generated via the probabilistic and recurrent sampling from the set 

of available SMILES tokenizations, such that when presented with source reactants, the model acts to 

infer, token by token, the most likely identity of the respective product target. Template-free methods in 

synthesis prediction encompass both sequence-to-sequence (seq2seq) recurrent neural networks (RNN)6, 

and more recent architectural developments such as self-attending transformer models7. These modelling 

paradigms have  recently been applied to the domain of chemical synthesis prediction, and retrosynthesis 

prediction8,9, demonstrating their applicability and suitability both in CASP and  in the domain of de novo 

molecular design10,11.  

However, to approximate the underlying distribution of training data and generalize well to held out data, 

such probabilistic models require large datasets respective to the domain of interest. It is often the case 

that we are presented with a situation where data is limited or particular classes from the data is scarce, 

arising from a bias towards using positive reactions that are frequently used. In such limited data scenarios 

it has been shown that SMILES randomization, originally called SMILES enumeration12,  can be used to 

artificially augment the available data, resulting in increases in model performance13–15.  Although a 

variety of SMILES randomization strategies have recently been employed for retrosynthesis using 

transformer models15, none so far have investigated the effect of data augmentation on the level of 

attention mechanisms – an important, and intrinsic feature, of pattern recognition in state of the art RNN 

and transformer architectures respectively.  

In order to exploit the attention mechanism, we propose an augmentation strategy we call Levenshtein 

augmentation, named after a well-known similarity metric from bioinformatic sequence alignment 

workflows 16 following adaptation from work in coding theory17. We apply this metric to mediate a balance 

between sequence novelty and retention of the local sub-sequence similarity between reactant and 
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product SMILES during generation of training pairs for the sequence-to-sequence models. We 

hypothesized that this would result in attentional gain and an increase in model performance under data 

limitations by enhancing local pattern recognition on the sub sequence level during the translation task. 

To investigate this hypothesis, we compare model performance when trained on canonicalized data, 

normal SMILES randomized data, and Levenshtein augmented data. Finally, we assess model performance 

on the level of full sequence accuracy and the ability of the model to capture the ground molecular truth 

in its top-N predictions, followed by visualization and inspection of the resulting gain in attention on the 

SMILES sequences. 

Methods 

Data and preprocessing 
The data is a subset of the US patent and trade office data (USPTO)18 as curated by Liu et al, 20178 and 

consists of 50,000 unique canonicalized reactions which together represents a total of 10 different 

reaction types. The reaction-type profile is unbalanced and biased towards heteroatom alkylation and 

arylation reactions, which together represent 30% of all reaction types, followed by acylation and related 

processes (24%), and protections and deprotections (18%). The remaining 28% of reactions represent a 

variety of reaction-types such as C–C bond formations, heterocycle formations, reductions, oxidations, 

functional group interconversion, and functional group additions. 

Data is formatted according to Liu et al 8. Each reaction is stripped of conditions and reagents, only 

reactions with atom mappings between source and target resulting in a singel atom mapped product are 

considered. Reactions are further filtered for a maximum of two reactants per observation,  in the event 

that a reaction results in multiple products, each product is subset as a new observation along with all 

reactants. The resulting dataset is split into train, test, and validation in the ratio (8:1:1) , followed by the 

application of augmentations a) normal randomization and b) Levenshtein augmentation on the train set. 

This resulted in the final experimental datasets we term, canonical, normal, and Levenshtein. All tests 

during inference were performed on canonicalized SMILES of the products obtained using reactants in 

their canonical SMILES forms.  

Levenshtein Augmentation: 
 

Two data augmentation strategies were used, the first method - normal randomization involves a strategy 

in which the atom ordering of reactants and products are randomly permuted 10-fold before being 

converted to non-canonical SMILES using RDKit19. The second method, Levenshtein augmentation, 



4 
 

consists of 10-fold augmentation that utilizes recursive similarity selection in which local substructure 

between the SMILES randomized source reactants and the target product are maintained. The process is 

illustrated in Figure 1. 

 

 

Levenshtein similarity computes a score based on the minimum number of insertions, deletions and 

additions required to change one SMILES string into another, an approach which is insensitive to 

differences in sequence length during scoring operations. Higher scores signify a larger Levenshtein 

distance and hence a greater degree of dissimilarity. We converted the score into a similarity ratio, with 

a value of 1 indicating an identical match between source and query sequences, and 0 signifying complete 

uniqueness. 

Artificial Neural Networks 

Transformer model 
The transformer model architecture was taken from the Molecular Transformer as previously outlined 20. 

The model consists of 8 attention heads in total, 4 encoding and 4 decoding layers with each layer split 

into discrete sub-layers, as described previously7, and summarized as follows. The inputs are firstly 

transformed onto an N-sized embedding layer followed by a subsequent positional encoding, before 

passing through the encoding block of the transformer.  

 

Fig 1: Schematic showing the Levenshtein method.  Firstly, reactant Br1 is selected at random from its SMILES randomized 

pool, followed by Pr2, which is selected based on its Levenshtein similarity to Br1.  Finally, Ar2 is likewise selected based on 

similarity to Pr2. This process is repeated N-times until the desired number of augmentations are achieved.  
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The encoder embeddings are duplicated and processed in parallel over 4 attentional heads, with key, 

value and query dimensions denoted as dk, dv, dq,   each with dimension ddim  set to 256 units. These layers 

were then passed into a multi-head attention block where scaled dot-product attention (eq.1) was applied 

to each head, followed by concatenation and linear transformation of attention outputs.  

 
𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾𝑇

√𝑑𝑘

)𝑉 
(eq.1) 

Finally, the concatenation layer is passed through a feed-forward network followed by layer normalization 

(dropout rate p=0.1) and summed with the outputs of a residual connection.  

The decoder embeddings are likewise split over 4 attentional heads before being concatenated at the 

multi-head attention sub-layer using scaled-dot product as described above. The resulting outputs are 

then further concatenated with the encoder block outputs and passed through a second multi-head 

attention sub-layer followed by concatenation and linear transformation. This concatenation layer is 

passed to a final feed-forward network with batch normalization (dropout rate p=0.1) and a SoftMax 

activation function to produce the final set of decoder outputs.   

The model was trained using a batch size of 4096 over a course of 500,000 steps or until convergence. The 

kernel initialization method was Glorot-normal with back-propagation performed using an adaptive 

moment estimation (Adam) optimizer, β1 and β2   parameters were chosen at 0.9 and 0.998 respectively. 

The learning rate was set dynamical according to Noam learning rate scheduler (eq.2) initialized to 2.0 

and decaying accordingly after a warm-up duration of 8000 steps. Label smoothing was not applied during 

training.  The Molecular Transformers reporting of the top-N accuracies was used as provided when 

testing on the preprocessed test-set. 

 𝑁𝑜𝑎𝑚 𝑙𝑟𝑎𝑡𝑒 = 𝑑𝑚𝑜𝑑𝑒𝑙
−0.5  . 𝑚𝑖𝑛 (𝑠𝑡𝑒𝑝𝑛𝑢𝑚

−0.5 , 𝑠𝑡𝑒𝑝_𝑛𝑢𝑚  .  𝑤𝑎𝑟𝑚𝑢𝑝𝑠𝑡𝑒𝑝𝑠
−1.5) (eq.2) 

  

 

 

 

LSTM based Sequence-to-Sequence Model 
The Seq2Seq model consists of an encoder RNN and a decoder RNN, with long short-term memory cells 

(LSTM). The encoding block consists of an embedding layer of 256 dimensions and 5 stacked 

bidirectional LSTM layers with hidden size of 512 and dropout of 0.3. The encoder block returns a tensor 

of encoded outputs (eoutput) and a tuple of LSTM hidden-state and cell-state tensors of layers in the last 
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step across both directions([ehidden, ecell]).The  hidden and cell states for both directions are then summed 

and passed to the decoder. Similarly, the encoded outputs eoutput are summed for both directions and 

used to compute the attention with the output from the current step of decoder. 

The decoder block consists 256 dimensions of 5 stacked unidirectional LSTM layers with hidden size of 

512 and dropout of 0.3, an attention layer, a concatenation layer and a linear layer. An attention layer 

then computes the scaled dot product attention between the current eoutput and the decoding h-state 

tensor dhidden and derives a context vector which captures relevant information from every source token 

to help predict the current target token. The context vector and the decoder LSTM output (doutput) are 

then passed through a concatenation layer that contains a linear layer followed by a hyperbolic tangent 

activation function. The linear layer is applied to reshape the output from concatenation layer to the 

vocabulary size. Finally, a SoftMax activation function is applied to obtain the probabilities of each 

token. 

The model was trained using a batch size of 128 over 28 epochs or until convergence. The weights 

initialization method was Glorot normal and back-propagation was performed using an adaptive moment 

estimation (Adam) optimizer with default beta and momentum terms as defined by PyTorch. The learning 

rate was initialized to 1e-4  and changed adaptively according to the updates of the Adam optimizer.  

Results 

Pairwise Sequence Similarity after Augmentation 
The distribution of similarity scores between reactants and their respective products for normal 

randomization, and Levenshtein augmentation were measured using the similarity ratio as described 

above, the results are illustrated below in Figure 2. Normally randomized SMILES, as suggested by its 

name, resulted in a normal distribution with mean centered on a similarity score of 0.5 (Figure 2.A). 

Conversely, Levenshtein augmented SMILES (Figure 2.B) resulted in a higher degree of similarity, giving a 

uniform distribution spread over the upper range of similarity scores. The similarity scores of the two-

augmentation methods compared to canonicalized SMILES demonstrate a quantifiable shift with Jenson-

Shannon divergence index of 0.457 and 0.124 for the normal and Levenstein method respectively. 
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Figure 2: A) Comparison of reactant-product similarity score distributions between normally randomized and canonicalized 

SMILES. B) Comparison of reactant-product similarity score distributions between Levenshtein augmented and canonicalized 

SMILES. C) Shows similarity score distributions between augmented reactants and canonicalized reactants. D) Shows similarity 

score distributions between augmented reactants and canonical products.  

 

RNN Model Performance 
The RNN and Transformer model were trained on the respective augmented datasets: canonical, normal, 

and Levenshtein, and tested on the canonicalized test set. The results of the LSTM-based model were 

assessed on full sequence accuracy. Table 1 demonstrates that the application of augmentation leads to 

an improvement to the top-1 accuracy when assessed on the canonicalized test data for all augmentation 

methods. Levenshtein augmentation demonstrated the most significant increase in performance with an 

overall accuracy of 66.7%, which represents an increase of 7.9 percentage points in accuracy from the 

canonical baseline of 58.9%. Conversely the application of normal randomization resulted in an overall 

top-1 accuracy of 60.3%, an increase from baseline of 1.4 percentage points. Taken together these results 

demonstrate the significant improvements in performance of the Levenshtein augmentation method for 

the LSTM-based model. 
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Table 2: Transformer and RNN model performances across all data sets augmentations for USPTO 50K. All models were tested 

using the canonical test dataset, and the performance was assessed on the level of full sequence accuracy after conversion to 

canonical SMILES. Bold shows best per column. 

 Transformer Test Performance  LSTM model Test Performance 

Train set Top-1 Top-3 Top-5 Top-10  Top-1 

Canonical  41.10 % 47.30 % 48.70 % 49.90 %  58.88% 

Normal  40.40 % 46.3 0% 48.40 % 50.60 %  60.30% 

Levenshtein  41.50 % 48.10 % 50.00 % 51.40 %  66.73% 

 

Transformer Model Performance 
Next, the performance of the different randomization methods are examined for the transformer model 

(Table 2) by assessing the ability of the model to recover the ground truth from the n-best predictions 

following a beam search operation. Normal randomization resulted in a decrease in accuracy when 

assessed across the top-1:5 accuracies, with a slight increase in performance from a baseline of 0.7 

percentage points when assessed against the top-10 accuracy. Conversely, Levenshtein augmentation 

demonstrated an increase in accuracy across all the top-X accuracies compared to baseline (0. 4, 0.8, 1.3 

and 1.5 percentage points respectively). 

 

 

 

 

 

 

 

 

Source Target Prediction 

A) 

B

) 

Figure 4:Two examples of reactions from the test-set and respective predictions taken from the 

transformer model. A) SN2 reaction B) Amide-formation.  
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Attention Scores 
To further probe these results, the average attention weights were extracted from the final multi-head 

attention block of the transformer to generate a set of alignment heatmaps between source reactants 

and inferred products (Figure 5) for the SN2 reaction and amide formation given in Figure 4. The results 

indicate that Levenshtein augmentation demonstrated on average, a greater degree of on-diagonal 

attention compared to both the normal randomized, and canonicalized data. Furthermore, Levenshtein 

augmentation led to the exclusion of many of the low-level attention scores, which are present to a 

greater extent in both the normal randomized and canonicalized attention representations.  

 

   

Figure 5: Transformer heatmap visualization of attention weightings across three different data sets, canonical, normal 

randomization, and Levenshtein augmented  of the reactions A and B from Figure 4  (above). Levenshtein augmentation results in 

a higher degree of attention respective to raw canonicalized data, while also demonstrating less attention to off diagonal motif 

respective to normal randomization.  
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Discussion 

Augmentation 
The increase in performance observed under Levenshtein augmentation may be explained by a process 

conceptually similar to feature disentanglement21. By maximizing the Levenshtein similarity between 

source and target within the input space, we encourage the model to isolate and attend to relevant parts 

of the latent representation across enumerated forms. Although these randomized SMILES modify the 

input space, the representations remain faithful to the underlying data structure - the molecular graph. 

In this respect, Levenshtein augmentation fulfils the purpose of normal-randomization, which is to 

abstract beyond SMILES syntax and learn the functional chemical dependencies between reaction 

components and increase observation availability. Furthermore, Levenstein augmentation makes it easier 

for the model to extract and attend to sub-sequence motifs as the translation task often regress to a direct 

sequence copy task of the SMILES sequence. Conversely, normal randomization does not retain sub-

sequence alignment on the SMILES representation, arguably decreasing the ability of the model to attend 

to relevant motifs between alternative representations under data limitations. This lack of relational 

dependency when using normal randomization under data limitation, makes it more difficult for the 

network to learn the translation, this helps explain the observed reduction in performance reported in 

Table 2.  

Intra Model Performance 
Augmentation across both Levenshtein and Normal randomization led to a greater degree of model 

performance for the LSTM-based model comparative to the transformer model where gains where 

modest. It is possible that the multi-head attention averaging in the transformer resulted in attenuation 

of pair-matching on the local level when applying the Levenshtein method. Conversely, the direct 

attention alignment of the LSTM-based model is better able to preserve local pair-matching information. 

A possible criticism of the here employed Levenshtein augmentation method is that the alignments 

employed carry a risk of leaking information about the product to the input for the algorithms. The first 

choice of a reactant is random, while the second choice of reactant is conditioned on the form of the 

product SMILES (c.f. Figure 1). This choice of second reactant can’t be known a priori during the sampling 

or prediction phase and may be suboptimal when unbiased product generation is wanted. A better 

Levenshtein augmentation algorithm for unbiased prediction may be to select both reactants by random, 

and then select the most similar alignment product using the Levenshtein scores. We did however test 

the trained models on the canonical dataset with canonical SMILES which is not biased in this way. The 
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test dataset reactant pairs SMILES form may thus not match up with a given product similar to the matches 

in the training set, which would more likely lead to diminished performance. However, the distributions 

of similarities for both the canonical and Levenshtein SMILES pairs have similar distributions (c.f. Figure 

2), and the model may still be within its applicability domain even given reactants as canonical SMILES. 

Thus, this does not change the conclusion that Levenshtein augmentation  performs  better than both 

canonical and normal randomization approaches. 

Inter model Performance 
The disparity in absolute performance observed between the transformer- and LSTM-models may result 

from the transformer being ill suited for small datasets, here we use USPTO-50K which is a subset of, and 

considerably smaller than the MIT-USPTO data benchmarked against in previous studies. Furthermore, 

the transformer was used out-of-box according to the hyperparameter and architectural configurations 

of those determined by the Molecular Transformer20 which were trained on a much larger dataset. 

Conversely, the LSTM-based model was adapted from previous internal work and it’s hyperparameters 

tuned to the USPTO-50K dataset. However, the intention herein was not to benchmark inter-model 

performance, but intra-model performance with respect to the data augmentation techniques. 

Comparison to literature 
SMILES randomization has been proven to increase the performance of both retrosynthesis prediction, 

synthesis predictions and de-novo molecular generation10,11,14. In the case of retrosynthesis, Tetko et al15, 

employed several means of randomization with a transformer model on the MIT-USPTO dataset. 

Randomization to products with an permutation factor of 1 (N=1) resulted in an increase in top-1 model 

performance by 2.8 percentage points compared to the baseline canonical model. Shuffling  the order of 

reactants in the training set with permutation factor N=20 resulted in an increase from baseline of 11.2 

percentage points. for top-1 accuracy, and an increase of approximately 12.5 percentage points for top-

10 accuracy comparative to the canonical baseline.  

In the forward synthesis case, a comparison to baseline is lacking, however an accuracy of 91.9% for top-

1 was reported when using an augmentation factor N=100 and beam width of 10 - reflecting a similar 

performance reported by the molecular transformer by Schwaller et al20. Similarly, the molecular 

transformer benefited from randomization of SMILES using an augmentation factor N=1, which resulted 

in an increase of 0.8% from the canonical baseline model.   

The difference in the performance between the Tetko and Schwaller models, and the model performance 

presented in this study could be because we apply training to a subset of the MIT-UPSTO dataset (USPTO 
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-50K) while the former models train on the full MIT-USPTO dataset. This difference in dataset size results 

in significantly fewer unique SMILES reactions available during training of our models. In the case of Tetko, 

the MIT-USPTO dataset is further augmented by an permutation factor N=100, while in this work we limit 

the permutation factor to N=10.  

Outlook 
An interesting outlook is to explore the differences between each augmentation strategy, canonical forms, 

and the corresponding relationship within latent space representations. This experiment focuses on the 

pairwise similarity within the input space, however the assumption that this relationship is preserved 

within the network latent space cannot be guaranteed. To investigate whether this is the case, it could be 

possible to quantify the latent space cosine similarity between canonical reaction SMILES and augmented 

counterparts, both on the full reaction level and on reaction sub-component level. The notion of input-

latent space consolidation under data augmentation has previously been explored from work on chemical 

heteroencoders13 and more generally as a means of contrastive self-supervised learning methods in 

computer vision24.  Furthermore recent work25 has demonstrated that attention weights in synthesis 

prediction may provide an unsupervised method for atom mapping between reactants and products. An 

interesting outlook would be to assess if unsupervised atom map extraction as described above, can be 

improved by utilization of Levenstein augmentation.  

Conclusions 
We conclude that Levenshtein augmentation, an augmentation technique which acts to balance SMILES 

sequence novelty with retention of local sub-sequence alignment, results in an increase in model 

performance over normal randomization, which acts via SMILES randomization alone. Improvement is 

more apparent for the seq2seq LSTM-based model over the transformer where improvements are more 

modest. We assess augmentation methods for model biasing across several cases, both in terms of 

similarity scores on the SMILES component level and on the full reaction level where we conclude 

performance is not based on train-test mappings between reactants and products. A comparison to the 

SMILES string components is then made to confirm that neither method is unintentionally resulting in 

canonical SMILES during the generation of augmented sets, which may otherwise result in bias caused by 

covariance shift during training and testing.  

The results of this experiment suggest that augmentation has greater potential when applied to RNN 

architectures over transformers, a difference which may be explained by multi-head attention averaging 

with respect to the transformer mechanism. This averaging may result in a global SMILES application of 
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attention, comparative to the LSTM-based model which does not split attention over multiple heads and 

therefore applies attention instead on a local sub-sequence level. Therefore, the LSTM-based model is 

better able to take advance of the retention of locality alignment which is ultimately, the basis for the 

Levenshtein augmentation method.   

Finally, we show that there is a qualitative difference on the level of attention alignment scores using 

Levenshtein augmentation compared to normal SMILES randomization based augmentation, offering a 

mechanistic insight into the observed increase in performance under data augmentation. Together these 

results build confidence in the Levenshtein augmentation method for data augmentation in SMILES based 

deep learning reaction informatics.  
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