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Abstract 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which is 

characterised by degeneration of distinct neuronal populations, including dopaminergic 

neurons of the substantia nigra. This causes complex non-motor symptoms in early PD, and 

subsequent impairment of motor function. A metabolomics profiling approach was 

conducted to identify diagnostic biomarkers of PD from sebum, a non-invasively available 

biofluid. In this study, we used liquid chromatography-mass spectrometry (LC-MS) to 

analyse 274 samples from participants (80 drug naïve PD, 138 medicated PD and 56 well 

matched control subjects) and detected metabolites that could predict PD phenotype. 

Partial least squares-discriminant analysis (PLS-DA) models based on this sebum 

metabolome had correct classification rates of 70.4% and 69.7% to distinguish between drug 

naïve PD and medicated PD from control, respectively. Variable importance in projection 

(VIP) scores indicate compounds with significance belonged to sphingolipid, triacylglycerol 

and fatty acid/ester lipid classes. Pathway enrichment analysis showed alterations in lipid 

metabolism and mitochondrial dysfunction viz. the carnitine shuttle, sphingolipid 



metabolism and arachidonic acid metabolism. This study unveiled novel diagnostic sebum-

based biomarkers for PD, and provides insight towards our current understanding of the 

pathogenesis of PD. 

 

Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder affecting over 6 million 

globally, second only in prevalence to Alzheimer’s disease.1 The principal pathological 

hallmark of PD is the formation of aggregated α-synuclein deposits in the brainstem, which 

are the major components of Lewy bodies.2,3 The disease is also characterised by the loss of 

dopaminergic neurons in the substantia nigra pars compacta producing a decline in striatal 

dopamine levels and subsequent loss of motor function.4 There is no conclusive preclinical 

diagnostic test for PD. Clinical diagnosis is achieved primarily through observations by a 

physician, of the decline in motor functions.5,6 These clinical manifestations normally present 

as a combination of one or more of the four cardinal signs of PD, namely; bradykinesia, 

resting tremor, rigidity and postural instability.7,8 A formal diagnosis often occurs following 

the depletion of 60-80% of the brains dopaminergic neurons.9 Non-motor symptoms are 

thought to precede motor symptoms by up to 20 years, some of these include; mood 

disorders, sleep disorders and olfactory deficits.10,11 Seborrheic dermatitis is a common non-

motor symptom reported in up to 60% of PD sufferers.12,13 This condition presents as ‘oily 

skin’ that correlates to an excess of sebum, produced and secreted by the sebaceous glands 

in the dermis of the skin. Sebum is a complex lipid-rich substance that is predominantly 

composed of triglycerides, fatty acids, wax esters, squalene and cholesterol.14 It serves as a 

protective agent to the skin providing waterproofing, thermoregulation and 

photoprotection, alongside suggested antimicrobial and antioxidant activities.15,16 Studies of 

sebum are commonplace in dermatological conditions such as acne, however sebum as a 

biofluid has rarely been used in disease diagnostics. In our recent study, we have reported 

the presence and differential regulation of volatile organic compounds in the sebum of PD 

sufferers.17 

The analysis of complex mixtures of metabolites present in a lipid-rich biofluid such 

as sebum, calls for a sensitive and robust analytical platform. Mass spectrometry (MS) is a 



leading analytical technique for clinical metabolomics analyses and when hyphenated to 

chromatography, benefits from increased resolution and sensitivity.18,19 Liquid 

chromatography-mass spectrometry (LC-MS) facilitates the qualitative and quantitative 

analysis of the wide range of molecular species found within complex mixtures such as 

sebum. LC-MS has been used to study a number of biofluids in relation to PD prognosis and 

diagnosis, such as blood, saliva and cerebrospinal fluid (CSF).20–26 Alterations in the 

expression of metabolites and the downstream effects on their corresponding metabolic 

pathways have also been extensively studied for PD diagnostics within the blood and CSF 

metabolome, including: catecholamines, dopamine metabolites, amino acids and urate 

alongside fatty acid metabolism, energy metabolism and kynurenine metabolism.23,27–31 The 

use of sebum as a diagnostic tool for PD provides an exciting prospect from which a novel 

non-invasive and inexpensive test could be developed to detect the onset of the disease. In 

this study, we have used LC-MS to separate and detect lipid-like species and small molecules 

present in sebum.  We have used data-driven approaches, with suitable statistical validation, 

to discover biomarkers of Parkinson’s disease present in sebum. This will inform the 

development of future PD biomarkers alongside the understanding of metabolic pathways 

altered in PD. Additionally, we also investigate whether variations in the measured sebum 

metabolome between early drug naïve PD and later medicated PD were observed, 

suggesting changes in the metabolic pathways during disease progression. 

  

Results and Discussion 

Analysis of Patient Metadata 

The study population comprised of 274 participants which included 138 medicated PD, 80 

drug naïve PD and 56 control subjects. An overview of important patient demographics is 

summarised in Table 1. The results of significance tests between cohort group metadata are 

reported in Table S1. Two-tailed Mann-Whitney U-test showed age is significantly different 

(p < 0.05) between control and PD cohorts (both drug naïve and medicated), however, BMI 

was not statistically significantly between these groups. There were more male participants 

in both PD cohorts (M/F > 1.5) compared to a higher proportion of female participants within 

the control group (M/F < 1). This was perhaps expected as the higher incidence and 



prevalence rates of PD in the male population is recognised and studies show a 1.4-1.5 fold 

increase in the number of male PD cases, although the reason for this is not yet 

understood.1,32 A similar comparison of the number of participants who smoke (yes/no) or 

consume alcohol (yes/no) showed no significant differences between drug naïve PD and 

control cohorts, with p-values of 0.837 and 0.192, respectively. However, the number of 

participants who consume alcohol was found to be 2.5 times higher in the control group 

compared to medicated PD. There were no smokers in the medicated PD cohort and 7 % 

within the control group which was deemed significant by a Fisher’s exact test (p-value 

0.006). The discovery of significant differences of these metadata parameters between PD 

and control cohorts has led us to test their impact on classification accuracy, which are 

described within the following results sections. 

 

Table 1. Demographics of participants included in classification modelling and statistical 

analysis 

Parameters 
Independent 

Control 
Drug Naïve PD Medicated PD 

N 56 80 138 

Age (years)b 54.3 ± 14.4 69.8 ± 9.4 70.3 ± 8.2 

 

BMI (kg/m2)a,b 

 

26.1 ± 4.4 

 

25.8 ± 4.9 

 

26.3 ± 5.4 

Gender  

(Male:Female)c 
0.87 1.76 1.65 

Alcohol Intake 

 (Yes:No)d 
4.60 1.76 1.81 

Smoker  

(Yes:No)d 
0.08 0.07 0.00 

a Body Mass Index (BMI) 
b BMI and Age values are expressed as mean ± standard deviation 
cExpressed as a ratio (Male:Female)  
dExpressed as a ratio (Yes:No) 
 
 
 



Data Driven Prediction of PD 

In order to assess variation between the measured metabolome by phenotype, partial least 

squares-discriminant analysis (PLS-DA) was used. Two PLS-DA models were constructed, 

each using a two-class input: (1) drug naïve PD vs. control and (2) medicated PD vs. control. 

It is well known that unbalanced numbers within classification groups may bias prediction 

accuracy towards the majority class and to overcome this here, Synthetic Minority Over 

Sampling Technique (SMOTE) was applied.33 PLS-DA models were built and validated using 

bootstrap resampling with replacement (n=250). Figure 1 reports the classification sensitivity 

and specificity rates of each PLS-DA model alongside the observed and null distributions 

(from permutation testing).   

 

Figure 1: PLS-DA classification models for (a-b) drug naïve PD vs. control and (c-d) 

medicated PD vs. control. (a) and (c) report the classification rates for each model 



including, true positive (TP, sensitivity), true negative (TN, specificity), false positive (FP) 

and false negative (FN). (b) and (d) display the null distribution (grey bars) and observed 

distribution (blue bars) for each PLS-DA bootstrap model.  The correct classification rate 

(CCR) were calculated from the test sets only. 

 

To evaluate if gender influenced classification accuracy, two PLS-DA models were built for 

each gender separately, for drug naïve PD vs. control and medicated PD vs. control. If the 

compounds accounting for variance between disease and control were gender specific, we 

could expect consistent and significantly higher sensitivity and specificity values for one 

gender, which we did not find to be true (see Table S3). Combined gender models (Figure 1) 

were used for subsequent analysis owing to the heightened power attributed to statistical 

models with larger input groups. PLS-DA was also used to determine if geographical 

location or variances between clinician sampling could impact classification using an 

independent control cohort. Samples (n=40) were chosen from four recruitment clinics, 

located in the north (n=2) and south (n=2) of the UK. Confounding factors were controlled 

so that age and BMI were not statistically significant between groups (one-way ANOVA p-

value > 0.05) and the male-to-female ratio was identical. The average CCR for this model 

was 21% which therefore indicates that our data is not biased by recruitment site or the 

clinician who collected samples.  

 

Selection of Significant Features Which Classify PD 

To define the features responsible for the measured variance in PLS-DA prediction 

models, variable importance in projection (VIP) scores were calculated. Receiver operating 

characteristic (ROC) analysis was performed on variables with VIP score > 1 (Figure 2). The 

number of variables that met this threshold were 15 in Drug naïve PD analysis 26 in 

medicated PD analyses. The area under the curve (AUC) and 95% confidence intervals (CI) 

for each individual variable obtained from univariate ROC curve analysis are reported in the 

Supplementary Information Figure S2. A limitation in ROC analysis of individual features is 

the failure to consider relationships between the features that account for the observed 

variance. The outcome of a multivariate analysis is reduced to a univariate one, in which each 



individual feature is treated as the sole biomarker accounting for 100% of the variation 

between the classes. Therefore, in combination with assessing individual metabolite ROC 

curves, a multivariate ROC analysis approach was also implemented based on the PLS-DA 

method (Figure 2a and 2b).  

 

Figure 2: ROC curve analyses based on a multivariate PLS-DA algorithm with a two latent 

variable input, AUC and 95% confidence intervals (CI) were calculated by Monte Carlo cross 

validation (MCCV) using balanced subsampling with multiple repeats.  (a) ROC curve analysis 

of metabolite features (n=15) in drug naïve PD vs. control PLS-DA with VIP >1, (b) ROC curve 

analysis of metabolite features (n=26) in medicated PD vs. control PLS-DA with VIP > 1, (c) a 

bar chart displaying the comparison of AUCs for drug naïve PD (purple) and medicated PD 

(blue) using common VIPs between models (n=10), error bars show the 95% CI range. 



We note that PLS-DA could not accurately differentiate medicated PD and drug naïve 

PD. Sensitivity and specificity values of 59.7% and 50.3% were returned for PLS-DA models 

in which medicated PD was the ‘positive’ predicting class (data shown in Figure S1). Figure 

2a and 2b report ROC curves for drug naïve PD and medicated PD models, respectively, 

which each use all VIP compounds > 1 for each respective model. VIP score examination of 

drug naïve PD vs. control and medicated PD vs. control models confirms that 10 variables 

(VIP > 1) are common between the two PD groups. To investigate biomarkers associated with 

the diagnosis of PD rather than disease stage stratification and to avoid possible effect of 

medication, the common metabolites (VIP > 1) between drug naïve and medicated PD 

analyses were evaluated further. Figure 2c presents a multivariate ROC analysis for each 

common variable and this analysis reports increased sensitivity and specificity rates as a 

function of the number of variables included in each model as demonstrated by higher AUC 

values. In addition, the 95% confidence interval range decreases as the number of variables 

in each model increases.  

Pearson correlation coefficients were calculated for each significant variable (VIP > 1) 

to investigate association of alcohol and significant variables.  None of the significant 

compounds are associated to an increase in alcohol consumption (Figure S3). To exclude the 

possible contribution of age to disease classification, each participant’s age was included as 

a variable in additional PLS-DA classification models. The difference in CCR between models 

with and without the inclusion of age were negligible (< 0.5 %), and VIP scores for the age 

variable were 1.17x10-11 and 2.11x10-11, respectively. In perspective, the variables were ranked 

at 6492 and 6498 out of a possible 6505 ranks, which strongly indicates that age is not a 

contributing factor for the separation presented. 

 

Annotation of Metabolites Associated with PD Diagnosis  

Metabolomics Standards Initiative (MSI) guidelines were adhered to,34 for the annotation of 

common significant metabolites (n=10) (Table 2). Ceramides, triacylglycerol, 

glycosphingolipid, fatty ester and fatty acid class of metabolites were detected.  Notably, 

metabolites belonging to ceramide, glycosphingolipid and fatty acid/ester classes were 

downregulated whereas triacylglycerol and fatty acid/ester metabolites were upregulated in 



PD. Box plots comparing control, drug naïve PD and medicated PD cohorts for these 

compounds are displayed in Figure 3. Compound annotations for all metabolites with VIP 

score > 1 in drug naïve PD and medicated PD analyses are found in Tables S5 and S6, 

respectively.  

 

Table 2. Putative identification of 10 compounds common between drug naïve PD and 

medicated PD analyses with VIP > 1. 

Putative Compound 

Class Identification 

MSI Level of 

Identification 
m/z 

Expression Drug 

Naïve PD (Fold 

Change) 

Expression 

Medicated PD 

(Fold Change) 

Ceramide 3 666.6370 ↓ (0.60) ↓ (0.47) 

Ceramide 3 638.6067 ↓ (0.61) ↓ (0.47) 

Ceramide 3 610.5763 ↓ (0.63) ↓ (0.48) 

Triacylglycerol 3 825.6939 ↓ (0.77) ↓ (0.64) 

Glycosphingolipid 3 764.5681 ↑ (1.15) ↑ (1.10) 

Fatty acid/Fatty ester 3 414.4308 ↑ (1.23) ↓ (0.84) 

Fatty acid/Fatty ester 3 358.3677 ↓ (0.81) ↓ (0.78) 

Fatty acid  3 194.1396 ↑ (1.74) ↑ (1.78) 

N/Aa 4 550.6277 ↑ (1.33) ↑ (1.10) 

N/Aa 4 368.4242 ↓ (0.15) ↓ (0.14) 

Fold change calculated with mean intensity values prior to log scaling. Denominator = Control 

a Level 4 annotation (i.e. unknown assignment) 

 

 

 



 

Figure 3: Box whisker plots for each of the eight putatively annotated compounds for control (Ctrl, yellow), drug naïve PD (DN, purple) and 

medicated PD (Meds, blue) cohorts. The y-axis of each plot corresponds to the natural log of intensity values. Below each box plot is the 

structure of each chemical class and above the plot is the measured m/z value which correlates to Table 2



Sebum Metabolome Measurements: Context to Current Understanding of PD  

Pathway enrichment analysis was performed to explore changes in metabolic pathways with 

respect to disease onset and progression. A prerequisite for traditional pathway analysis 

methods is the annotation of all analytically detected features via spectral and compound 

database matching. This is a major bottleneck in untargeted metabolomics workflows and 

due to the large number of features detected in this study, Mummichog analysis was 

employed.35 The analysis was performed independently for the two PD cohorts using a 

Student’s t-test (p-value < 0.05) between control subjects vs. (1) drug naïve PD and (2) 

medicated PD. There were 1378 and 504 features for drug naïve PD and medicated PD, 

respectively, which were significant between disease and control groups. Further details of 

significantly enriched pathways associated with PD can be found in Supplementary 

Information Table S5 and S6 for drug naïve PD and medicated PD, respectively.  

 

Figure 4. Bar charts showing the results of Mummichog pathway analysis of pathways with 

p < 0.05 for (a) drug naïve PD vs. control and (b) medicated PD vs. control, (c) a bubble chart 



displaying the common significant pathways between drug naïve PD and medicated PD 

compared against controls; the bubble size refers to the enrichment factor of the pathway 

and the colour represents the natural log of the pathway p-value. 

 

Mummichog analysis reveals the carnitine shuttle to be the most important pathway 

linked to drug naïve PD patients (p=0.002) (Figure 4a), which was found to increase in 

significance (p=5.09x10-5) and enrichment within the medicated PD cohort, this can be 

visualised in Figure 4c. The carnitine shuttle is highly involved in energy metabolism through 

the facilitation of long chain fatty acid (LCFA) β-oxidation via assisted transportation into the 

mitochondria by acyl-carnitine substrates.36 Decreased long-chain acyl-carnitines, 

associated with insufficient β-oxidation, have previously been reported as potential 

diagnostic markers for PD,30 and the dysregulation of carnitine shuttle and vitamin E 

pathways have also been observed in frail elderly cohorts (between 56 and 84 years old) 

compared to resilient age-matched individuals.37 The mapped m/z features correspond to a 

series of differing length fatty acid chains of acyl-carnitine conjugates. As the carnitine 

shuttle is a mediation pathway for fatty acid oxidation, it follows on that the perturbation of 

fatty acid biosynthesis and fatty acid metabolism pathways could be linked, which is further 

supported by the putative assignment of associated compound classes to VIP compounds. 

Additional compounds putatively annotated from PLS-DA models (VIP > 1) belong to 

the sphingolipid class of compounds (Table 2). The sphingolipid metabolism pathway was 

enriched in both drug naïve and medicated PD. Sphingolipids are a major lipid class that are 

abundant in lipid-rich structures of the body (such as skin) and have central roles in cell 

signalling and regulation. Interestingly, disruption to the sphingolipid metabolism has been 

reported as a downstream effect of increased α-synuclein38,39 and α-synuclein is disrupted in 

PD skin.40 Alteration in the expression of  lipids within the sphingolipid pathway 

consequently relate to lysosomal and mitochondrial degradation which are often implicated 

in the pathogenesis of neurodegenerative diseases such as PD and Gaucher’s disease.39,41,42 

In particular, recent studies have found the dysregulation of ceramide levels, which are 

common structural units of all sphingolipids, in numerous diseases including PD, Alzheimer’s 

disease and depression, although the general consensus from studies of sphingolipids in PD 

is an increase in ceramide levels.43–45 Due to their bioactive role within cell membranes 



sphingolipids are strongly linked to sterol metabolism pathways and have an established role 

in the modulation of steroidogenesis. There is a direct link between ceramides and the 

biosynthesis of cholesterol which is then the feed in substrate for steroid hormone 

biosynthesis, the most significantly altered pathway shown for medicated PD patients.46,47 

 

Conclusions and Final Remarks 

In conclusion, an untargeted LC-MS analysis of sebum obtained non-invasively from a simple 

skin swab from PD sufferers reveals a difference in the composition of sebum compared to 

control subjects. The overlap of ten metabolites from separate statistical analyses for drug 

naïve PD and medicated PD, strengthens the evidence that these compounds are associated 

with PD and not associated with dopaminergic medication. This is further supported by the 

identification of common pathways between the two PD classes that are significantly 

enriched. Insufficient clinical data is available for these patients to hypothesise on the ability 

of a sebum analysis to help stratify disease progression, although it should be included in 

further studies. Future work will also focus on targeting the putatively identified lipid classes, 

with the inclusion of ion mobility to enhance separation and increase the confidence in 

metabolite identification. 

 

Materials and Methods 

Sample Participants: The participants included in this study were part of a nationwide 

recruitment process taking place at 25 different NHS clinics, in addition  to subjects (n=4) 

that participated in a clinical trial in the Netherlands.48 A total of 274 participants were 

recruited from four subject groups: control (n=56), drug naïve PD (n=80), medicated PD 

(n=138). The participants included in this study were selected at random from these sites. 

Ethical approval for this project (IRAS project ID 191917) was obtained by the NHS Health 

Research Authority (REC reference: 15/SW/0354). 

Chemicals and Materials: The chemicals and materials utilised in this study were: gauze 

swabs (Arco, UK), sample bags (GE Healthcare WhatmanTM
, UK), 15 mL and 50 mL centrifuge 

tubes (Greiner Bio-One, UK), microcentrifuge tubes 2 mL (Eppendorf, UK), Ministart® 0.2 



µm syringe filter (Sartorius, UK), Optima® LC-MS grade solvents 2-propanol, acetonitrile, 

methanol and formic acid (Fisher Scientific), HPLC grade HiPerSolv CHROMANORM® 

ethanol absolute (99.8%), CHROMASOLVTM LC-MS grade water (Honeywell) and Leucine 

Enkephalin (Waters, Wilmslow, UK). 

Sample Collection: Using a standard sampling procedure, each participant was swabbed by 

a clinician on the upper back with cotton-based medical gauze (7.5 cm x 7.5 cm) to collect 

sebum present on the skin. The sampled gauze swabs were sealed in background-inert 

plastic bags and transported to the central facility at the University of Manchester, where 

they were stored at - 80 ⁰C until end of recruitment.  

Sample Extraction: Gauze swabs were removed from - 80 °C storage and allowed to 

equilibrate to room temperature. A solvent extraction method was used to prepare the 

samples for LC-MS analysis. Each gauze swab was transferred to an inert glass bottle. 

Methanol (9 mL) was added to each glass bottle and followed by vortex-mixing (10 s) and 

sonication (30 min) at ambient temperature, to extract sebum metabolites from gauze. The 

extracted metabolite-rich methanol was decanted from the gauze swab bottle and this 

solution was passed through a filter (0.2 µm). A recovery rate of approximately 7 mL per 

sample was achieved, which was aliquoted into three 2 mL fractions and one 1 mL fraction. 

Each 2 mL fraction was vacuum concentrated (Eppendorf) at ambient temperature for 12 h 

to remove methanol which resulted in three identical sebum extracts per patient sample. 

These dried pellets were stored at - 80 °C until required for analysis. A portion of the 

remaining 1 mL liquid fraction of each sample (100 L) was used to create a biological pooled 

quality control (QC) sample. The mixture was vacuum centrifuged (Eppendorf) for 12 h at 

ambient temperature and the dried extract stored at - 80 °C until analysis. 

Sample Reconstitution: Prior to LC-MS analyses dried sebum extracts were equilibrated to 

ambient temperature before reconstitution. Extracts were resuspended in 200 µL of 

MeOH:EtOH (v/v, 50:50). Samples were vortex-mixed (20 s), sonicated (5 min) and 

centrifuged (Eppendorf) at 12,000 g for 10 min. The recovered supernatant (160 µL) was then 

submitted for LC-MS analysis. 

LC-MS Analysis: LC-MS analysis was performed on an Ultimate 3000 UHPLC (Thermo 

Scientific) coupled to a Synapt G2-Si QToF mass spectrometer (Waters). An ACQUITY UPLC 



BEH C18 column (1.7 µm, 2.1 mm x 100 mm) heated at 55 °C was utilised for chromatographic 

separation.  The mobile phases were as follows; mobile phase A was acetonitrile:water (v/v 

60:40) with 0.1% formic acid, mobile phase B was isopropanol:acetonitrile (v/v, 90:10)  with 

0.1% formic acid. An injection volume of 5 µL was used. The flow rate was set at 0.6 mL/min 

and the gradient elution began at 40% B and increased to 50% B over 30 s, then to 69% B at 

1.8 min, with a final ramp to 88% B at 6 min. The gradient was reduced back to 40% B and 

held for 1 min to equilibrate column. Full MS spectra were obtained for the mass range m/z 

50-2000, whilst infusing Leucine-Enkephalin (m/z 556.2766) as an online mass calibrant to 

retain mass accuracy. MS settings were as follows: Synapt G2-Si MS was operated in Q-ToF 

mode. Capillary voltage was set to 3.0 kV, sampling cone voltage was set to 40 V, source 

temperature was kept at 120 °C, desolvation temperature was set to 550 °C and desolvation 

gas flow was 900 L/h. 

Sample Sequence and Quality Control: Pooled QC samples were used to check analytical 

reproducibility both during analysis and during the data processing stages.49 QC samples 

were injected at the beginning of each analytical batch (n=3), every 5th injection, and at the 

end of each analytical batch (n=2). Samples from 274 participants were stratified and 

randomised into 15 equal analytical batches. Each batch was reconstituted on the day of 

analysis to maintain sample integrity. 

Data Pre-Processing and Deconvolution: LC-MS raw data were deconvolved using 

Progenesis QI (Waters, Wilmslow, UK). Peak picking, alignment and area normalisation were 

carried out with reference to a pooled QC. Features extracted from raw data were annotated 

using accurate mass match with METLIN, Human Metabolome Database (HMDB) and 

LipidMaps. The resulting peak table had 8765 metabolite features. Features that were absent 

in more than 10% of pooled QC injections throughout analysis were removed. From the 

remaining features those with more than 20% relative standard deviation (RSD) in peak 

intensity across pooled QC injections were also removed. The remaining peak set of 6205 

metabolite features were robust features detected reproducibly throughout analysis within 

QC samples. The data were mean centred and auto-scaled and missing values were replaced 

with cubic spline interpolation in MATLAB 2019a (MathWorks) prior to statistical analysis. 

Statistical Analysis: PLS-DA was performed for classification and prediction of data; 

resampling with replacement (bootstrapping) was used for model validation where the 



correct classification rates (CCRs) from the Y-variable were computed for the (n=250) test 

data sets only. An in-house script was used in MATLAB (2019a) to performed PLS-DA. 

Univariate ROC analysis was performed in Origin (Version 2017, OriginLab Corporation, 

Northampton, MA, USA) and multivariate ROC curve based exploratory analysis was 

executed using MetaboAnalyst Biomarker Analysis (Version 4.0) in which the data matrix 

was auto-scaled and PLS-DA was used for the classification method and feature ranking 

method with a two latent variable input. 

Pathway Analysis: Mummichog analysis was performed using MetaboAnalyst (Version 4.0). 

During mummichog analysis a list of all m/z features (Lref) and a refined list of significant m/z 

features (Lsig) were generated using Student’s t-test as the discriminatory test (p-value < 

0.05). Significant m/z features were mapped onto a combination of metabolic models: Kyoto 

Encyclopedia of Genes and Genomes (KEGG), Biochemical Genetic and Genomic 

knowledgebase (BiGG) and the Edinburgh Model. Feature hits on known metabolite 

networks were tested against a null distribution produced from permutations of random m/z 

features from Lref to yield significance values of metabolites enriched within any given 

network.35 
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