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Abstract 

Molecular simulations are widely applied in the study of chemical and bio-physical systems of interest. 

However, the accessible timescales of atomistic simulations are limited, and extracting equilibrium properties 

of systems containing rare events remains challenging. Two distinct strategies are usually adopted in this 

regard: either sticking to the atomistic level and performing enhanced sampling, or trading details for speed 

by leveraging coarse-grained models. Although both strategies are promising, either of them, if adopted 

individually, exhibits severe limitations. In this paper we propose a machine-learning approach to take 

advantage of both strategies. In this approach, simulations on different scales are executed simultaneously 

and benefit mutually from their cross-talks: Accurate coarse-grained (CG) models can be inferred from the 

fine-grained (FG) simulations; In turn, FG simulations can be boosted by the guidance of CG models. Our 

method grounds on unsupervised and reinforcement learning, defined by a variational and adaptive training 

objective, and allows end-to-end training of parametric models. Through multiple experiments, we show that 

our method is efficient and flexible, and performs well on challenging chemical and bio-molecular systems. 
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Significance Statement 

Enhanced sampling and coarse graining are two widely adopted approaches that expand the scope of molecular simulations 

into experiment-relevant scales. We propose here a machine-learning approach to combine coarse graining with importance 

sampling, so that simulations on different scales can benefit mutually: Accurate coarse-grained models can be inferred from 

fine-grained simulations, whereas fine-grained simulations can be boosted by the guidance of coarse-grained models. This new 

multi-scale modeling framework incorporates state-of-the-art deep unsupervised and reinforcement learning techniques, 

allowing novel deep neural-network-based molecular models to be adaptively and variationally optimized. 

 

  



2 

 

I. Introduction 

Molecular simulations, particularly all-atom and ab initio molecular dynamics (MD), have furthered our understanding of 

many chemical and bio-physical processes (1, 2). In molecular simulations, interactions between particles (e.g., atoms, residues 

or molecules) are described by an (potential) energy function 𝑈(𝐑) of the configuration 𝐑. To investigate such systems, one is 

often not interested in the exact energy, but the free-energy, or the equilibrium distribution, of some reduced descriptors, e.g., 

collective variables (CV) (3) or CG variables (4), 𝐬(𝐑), as a function of 𝐑: 

 𝑝(𝐬) =
∫ 𝑒−𝛽𝑈(𝐑)𝛿(𝐬 − 𝐬(𝐑))𝑑𝐑

∫ 𝑒−𝛽𝑈(𝐑)𝑑𝐑
=
𝑒−𝛽𝐹(𝐬)

𝑍
 (1) 

 𝐹(𝐬) = −
1

𝛽
[log 𝑝(𝐬) + log 𝑍] (2) 

where 𝑍 = ∫ 𝑒−𝛽𝑈(𝐑)𝑑𝐑 is the partition function, 𝛽 is the inverse temperature and 𝛿 denotes the Dirac delta function. Equation 

(2) holds up to an arbitrary additive constant. Usually 𝐬 is selected to be slowly changing variables governing the process of 

interest, and the rest of degrees of freedom (DOF) can be treated in the mean-field fashion (5, 6). Under this setting, 𝐹(𝐬) 

becomes a CG description of the original thermodynamic system, and simulations performed under 𝐹(𝐬) are generally much 

faster than those run on the FG potential (i.e., 𝑈(𝐑)) because Dim(𝐬) ≪ Dim(𝐑) (where Dim(∙) denotes the dimensionality) 

despite the loss of finer details. Therefore, Eqs. (1-2) are also known as the principle of thermodynamic consistency for coarse 

graining (5). However, practical implementation of Eqs. (1-2) is hindered by two major issues: (1) How can one approximate 

a reliable analytical form for the CG potential 𝐹(𝐬)  given access to samples drawn from 𝑈(𝐑)? (2) How can one draw 

equilibrium samples from 𝑈(𝐑), which are further used to infer 𝐹(𝐬)? The former is known as the coarse graining problem, 

while the latter as the importance sampling problem, and both are of particular importance in physics, chemistry and biology. 

Conventionally, if 𝐬 is low-dimensional (say, Dim(𝐬) ≤ 3), non-parametric methods like kernel density estimation (KDE) 

(7) can be adopted to infer 𝐹(𝐬), but they become quickly infeasible as Dim(𝐬) increases. Artificial neural networks (ANNs) 

and deep learning may offer extra flexibility and expressivity to this end (8, 9). For instance, several recent studies proposed 

supervised learning approaches to fit 𝐹(𝐬)  by ANNs (10-12). However, fitting 𝐹(𝐬)  as a regression problem has several 

drawbacks: (1) it necessitates gridding the space of 𝐬, which would be computationally prohibitive for large Dim(𝐬); (2) it is 

rather data-inefficient because calculating 𝐹(𝐬) at one point needs a large amount of samples from 𝑈(𝐑) at the neighborhood 

of 𝐬 (i.e., 𝛿(𝐬 − 𝐬(𝐑))); (3) Since regression learning lays equal importance over any point in the probability measure space 

regardless of the mass density distribution, it is not suitable for fitting an imbalanced distribution where the accuracy of areas 

with higher mass density should be more emphasized. 

An alternative view of inferring 𝑝(𝐬) is provided by statistical modeling and machine learning community, where density 

estimation of high-dimensional data has been a long-standing goal (9, 13). Particularly, a recent burst of work sparks new ideas 

to exploit deep learning to this end, giving rise to an active research field of generative learning and unsupervised models 

including variational auto-encoders (14), auto-regressive (15) and normalizing-flow models (16). Nevertheless, these methods 

are all footed on certain simple prior distributions, hence the complexity of the distributions resulted from these methods is 

bound by the manifold structure of the prior distribution. Therefore, they are known to suffer from issues like mode-dropping 

(i.e., violating the ergodicity assumption in statistical physics) and often assigning probability mass to areas unwarranted by 
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the data (17). On the other hand, generative learning with energy-based models (EBMs) can be dated back to even longer before 

(18-20), which in principle can fit arbitrarily complex distributions due to the flexibility and plasticity of the energy landscapes 

(21, 22). Based on EBMs we propose a variational approach to the CG problem, i.e., to infer an analytic form for the complex 

free-energy surface (FES) without supervision. Furthermore, our new approach allows simulations on different scales, which 

are launched simultaneously, cross talk and benefit from each other. We will demonstrate that the inferred CG potential can in 

turn help enhance the sampling of the FG model in a reinforced and adaptive manner.  

 

II. Methods 

1. Coarse graining with thermodynamic consistency 

We propose a variational approach, called variational inference of free-energy (VIFE), to approximate the (possibly high-

dimensional) FES, 𝐹(𝐬) , by parametric models. Specifically, we denote the approximate free-energy function and the 

associated probability distribution as 𝐹𝜃(𝐬) and 𝑝𝜃(𝐬) respectively (where 𝜃 are optimizable parameters), and define a strict 

divergence 𝐷(𝑝||𝑝𝜃)  between 𝑝  and 𝑝𝜃 . A strict divergence, including but not limited to Kullback-Leibler divergence 

𝐷KL(𝑝||𝑝𝜃) (23) and Wasserstein divergence 𝐷W(𝑝||𝑝𝜃) (24), satisfies the condition that 𝐷(𝑝||𝑝𝜃) ≥ 0 where the equality 

holds if and only if 𝑝 = 𝑝𝜃 , hence can be used as a variational objective (25-27). Particularly, the gradient of 𝐷KL(𝑝||𝑝𝜃) w.r.t. 

𝜃 takes the following form in Eq. (3) (see SI or Ref. (26) for the derivation), 

 ∇𝜃𝐷KL(𝑝||𝑝𝜃) = 〈∇𝜃𝐹𝜃(𝐬)〉𝑝(𝐬) − 〈∇𝜃𝐹𝜃(𝐬)〉𝑝𝜃(𝐬) (3) 

where 〈𝑓(𝑥)〉𝑝(𝑥) denotes the expectation value of 𝑓, a function of 𝑥, over a distribution 𝑝(𝑥). The gradient for 𝐷W(𝑝||𝑝𝜃) has 

been separately derived in Targeted Adversarial Learning Optimized Sampling (TALOS) (28) and it shares dramatic similarity 

with Eq. (3). In this paper we perform experiments exclusively according to Eq. (3) and leave 𝐷W for future research. 

The rest of the problem is to evaluate the two expectation values in Eq. (3). If we have access to, say, equilibrium MD 

samples drawn from 𝑈(𝐑), the distribution of which is denoted as 𝑝FG(𝐬), we can use 𝑝FG to approximate 𝑝 and optimize 𝐹𝜃 

w.r.t. a surrogate objective 𝐷KL(𝑝FG||𝑝𝜃), minimizing which is equivalent to maximum likelihood estimation. The remaining 

task is to calculate 〈∇𝜃𝐹𝜃(𝐬)〉𝑝𝜃(𝐬). Since the analytical forms of 𝐹𝜃(𝐬) and ∇𝐬𝐹𝜃(𝐬) are both available, we can perform CG 

simulations on 𝐹𝜃(𝐬) to estimate 〈∇𝜃𝐹𝜃(𝐬)〉𝑝𝜃(𝐬) . Due to the simplicity of 𝐹𝜃(𝐬) (i.e., the number of DOFs in 𝐬 is usually 

limited), the CG simulations are usually computationally economic and converge relatively fast, hence brute-force simulations 

via Monte Carlo (MC) sampling or Langevin dynamics generally suffice. We note here that VIFE can be viewed as  a more 

flexible and general extension of the inversed Monte Carlo method (29). VIFE also inherits the merit of the compositionality 

from EBMs: In VIFE, it is straightforward to introduce some restraints or physics-based prior knowledge in the form of additive 

energies. 

 

2. Reinforced VIFE (RE-VIFE) 

In a more common setting where 𝑝FG is not available beforehand, we have to perform sampling over 𝑈(𝐑) from scratch. 

Since Dim(𝐑) is usually very large, i.e., Dim(𝐑) ≫ Dim(𝐬), estimating ensemble averages over 𝑝(𝐬) is often infeasible for 

brute-force FG (e.g., all-atom or ab initio) simulations. A plethora of enhanced sampling methods have been developed trying 

to solve this issue, and there exist several excellent reviews on this topic (3, 30-32). Here we will show that VIFE, combined 
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with reinforced imitation learning, provides a new solution to this problem. We name our new approach RE-VIFE, which 

exhibits several compelling merits: (1) RE-VIFE is able to handle high-dimensional CG variables while most of enhanced 

sampling methods become ineffective as Dim(𝐬) grows; (2) RE-VIFE casts a well-defined optimization problem which allows 

cross-fertilization with deep learning; (3) RE-VIFE formulates an adaptive training objective which can be optimized 

variationally, hence ensuring the efficiency and convergence of the method. 

Mathematically, if we have an optimal 𝐹𝜃(𝐬) which is  equal to the ground-true 𝐹(𝐬), and perform sampling under 𝑈 − 𝐹𝜃, 

we will arrive at a uniform distribution over 𝐬. Therefore, one is motivated to employ 𝐹𝜃(𝐬) as a bias potential in order to 

achieve a flattened distribution over 𝐬 which may originally involve high free-energy barriers (33). However, the situation is 

complicated by the errors  in 𝐹𝜃: Since 𝐹𝜃 is optimized w.r.t. available FG samples (usually corresponding to metastable states 

in MD simulations), its value can be very inaccurate in those under-sampled regions (e.g., transition regions). Therefore, 

directly inserting 𝐹𝜃 as the bias potential could be non- or even counter-productive. We note here that similar problems where 

one has to deal with moving distributions and partial sampling are commonly encountered and addressed in Reinforcement 

Learning (RL) (34). Inspired by RL, we introduce a two-timescale learning scheme, where a bias potential 𝑉𝜙(𝐬) with 𝜙 

denoting optimizable parameters (equivalent to a policy function in RL) is separately trained in addition to 𝐹𝜃(𝐬) which can 

now be viewed as a value function in the spirit of actor-critic RL (35). As in variationally enhanced sampling (VES) (27) or 

TALOS (28), we can define a target distribution 𝑝T(𝐬) where the free-energy barrier is lowered (in other words, less-visited 

regions are more encouraged) according to 𝐹𝜃(𝐬) (see SI for more information about 𝑝T), then optimize 𝑉𝜙(𝐬) by minimizing 

a strict divergence, for instance,  𝐷KL(𝑝T||𝑝𝜙), 

 ∇𝜙𝐷KL(𝑝T||𝑝𝜙) = 〈∇𝜙𝑉𝜙(𝐬)〉𝑝T − 〈∇𝜙𝑉𝜙(𝐬)〉𝑝𝜙 (4) 

where 𝑝𝜙 denotes the distribution induced by 𝑈 + 𝑉𝜙. The separate parametrization allows us to use an imbalanced learning 

schedule for the free-energy function 𝐹𝜃 and the bias potential 𝑉𝜙. Particularly, we can train 𝐹𝜃(𝐬) based on the latest 𝑝FG(𝐬) 

(reweighted from 𝑝𝜙) with a higher rate, and update 𝑉𝜙(𝐬) in a more conservative manner. In terms of imitation learning, 𝐹𝜃(𝐬) 

plays the role of a leader that coins a moving target based on the current density estimation, while 𝑉𝜙(𝐬) learns to tune the 

policy in order to catch up (Fig. 1). A dramatic advantage of such leader-chaser scheme lies in the fact that 𝐹𝜃 along with 𝑝T is 

constructed based on the samples drawn from simulations under 𝑉𝜙, so 𝑝T and 𝑝𝜙 always share substantial overlap; otherwise 

𝐷KL would fall victim to the notorious vanishing gradient issue (24). Remarkably, such sort of separate parametrization and 

two-timescale updated rule were also adopted in generative adversarial networks (GANs) (36, 37), double Q-learning (38) as 

well as other reinforcement and imitation learning settings (39, 40). 

In RE-VIFE, albeit 𝐹𝜃(𝐬) may be imperfect globally (especially at the beginning of training), it still gives  relatively accurate 

density estimation of the recently visited regions, according to which 𝑉𝜙(𝐬) can be improved locally via Eq. (4) and gradually 

enhance the sampling efficiency. On the other hand, as the FG sampling is enhanced by 𝑉𝜙(𝐬) , we can get a better 

approximation of 𝑝(𝐬), thus gradually push 𝐹𝜃(𝐬) to the optimum according to Eq. (3). Specifically, it can be shown that if we 

choose 

 𝑝T = 𝑝
𝜃

1
𝛾
∝ exp (−

𝛽

𝛾
𝐹𝜃) (5) 
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where 𝛾 > 1 is the well-tempering factor (41), then 

 argmin
𝑉𝜙

𝐷KL(𝑝T||𝑝𝜙) = (
1

𝛾
− 1)𝐹(𝐬) (6) 

Equation (6) concludes that the optimal 𝑉𝜙  is equivalent to the well-tempered free energy. From this perspective, 

metadynamics (33) can be viewed as a special case of RE-VIFE if we adopt KDE in replacement of 𝐹𝜃(𝐬) and use accumulative 

Gassians as 𝑉𝜙(𝐬). In this sense, RE-VIFE is a generalization of metadynamics to large Dim(𝐬) and parametric bias potential 

energy functions. The assembled training algorithm of RE-VIFE is summarized in Algorithm S1 in Supplemental Information. 

 

3. Parametrization in (RE-)VIFE 

In (RE-)VIFE, we train parametric models to approximate 𝐹𝜃 and 𝑉𝜙, with 𝜃 and 𝜙 denoting optimizable parameters. Since 

(RE-)VIFE is a variational approach, many functional forms are optional as long as they have sufficient variational flexibility. 

As in VES and TALOS, we can use certain orthonormal basis functions to expand 𝐹𝜃 and/or 𝑉𝜙 in low-dimensional spaces (27, 

28). With some caveats, we can also exploit ANNs to approximate 𝐹𝜃 and 𝑉𝜙. Compared to other functional approximation 

methods, ANNs are more flexible and expressive: On the one hand, ANNs allow us to cheaply approximate high-dimensional 

functions which would be intractable otherwise; On the other hand, the gradients or forces produced by ANNs are not 

necessarily smooth enough, which may cause instabilities for numerical integration in simulations. To attack the issue of 

irregular gradients while maximally harnessing the expressivity, the architecture of ANNs should be carefully designed, and 

special regularization techniques may be needed to smooth the gradients (see SI for more details). 

 

III. Results 

1. Illustration on a toy model 

We benchmarked VIFE on a 2-dimensional 3-well toy model (42). The contour map of the potential energy surface (PES), 

𝑈(𝑥, 𝑦), is shown in Fig. 2A. Langevin dynamics simulation was first performed on 𝑈(𝑥, 𝑦) and yielded 50,000 samples, which 

were used as 𝑝FG. We then choose the coarse-graining variable 𝐬 = (𝑥, 𝑦)  (we desire to reproduce 𝑈(𝑥, 𝑦) instead of coarse-

graining), and train a parametric model to infer  𝐹𝜃(𝑥, 𝑦) based on the available samples. An ANN with specially designed 

architecture was adopted as 𝐹𝜃 and the model was optimized via Eq. (3) (see SI for more details about model setup and training 

details). We trained VIFE for 100 epochs, and plotted the estimated 𝐷KL between 𝑝𝜃  and 𝑝FG along the training progress (Fig. 

2B). It can be seen that 𝐷KL between the two distributions quickly diminished, and the optimization of 𝐹𝜃 converged within 50 

epochs, demonstrating the efficiency and efficacy of VIFE. Note that Eq. (3) can be viewed as the gradient of the following 

surrogate loss function, 

 𝐿(𝜃) = 〈𝐹𝜃(𝐬)〉𝑝(𝐬) − 〈𝐹𝜃(𝐬)〉𝑝𝜃(𝐬) (7) 

hence we also showed the evolution of 𝐿(𝜃) during training. Intriguingly, we observed in Fig. 2B that there is an ups-and-

downs pattern in the curve of 𝐿(𝜃) , with the oscillating amplitude vanishes throughout training. This is an expected 

phenomenon because Eq. (7) is reminiscent of the training objective of Wasserstein-GAN (24), which solves a saddle-point (or 

mini-max) problem thus entails an oscillating loss curve. Besides 𝐷KL, for EBMs, another important indicator of the quality of 
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models is whether or not 𝐹𝜃 of FG and CG samples are identically (or similarly) distributed. Therefore, we examined the two 

distributions accordingly (Fig. S1), and found that they almost overlap perfectly, proving the resulting 𝐹𝜃 is of high quality. 

We then drew the contour plot of 𝐹𝜃 in Fig. 2C. Compared to the original PES (Fig. 2A), 𝐹𝜃 preserves all the three local 

minima correctly, showing no signs of mode-dropping. This is a particular advantage of EBMs over other generative methods, 

since ergodicity is vital to investigation of thermodynamic systems. Besides, the overall contour and landscape of 𝐹𝜃  also 

resemble 𝑈(𝑥, 𝑦) , especially on regions with higher densities. In contrast, deviations seem to be more significant in the 

transition regions. This arises from the fact that we only collected 50,000 FG samples (most of which locate around the local 

minima), and the transition regions are not adequately covered by available samples (as shown in Fig. 2D). If more FG samples 

over the transition regions can be obtained, 𝐹𝜃 would be further improved, and such consideration is a strong motivation behind 

RE-VIFE. 

Now that we obtained the analytical form of 𝐹𝜃  based merely on samples from 𝑈(𝑥, 𝑦)  (rather than knowing the 

mathematical form of 𝑈(𝑥, 𝑦)), we can locate free-energy minima and cluster samples. We exploited Nelder-Mead algorithm 

(43) to minimize the simulation samples over 𝐹𝜃, and observed that all the samples finally fall into three distinct local minima, 

shown by different colored symbols in Fig. 2C. We also colored the simulation samples according to their final minimizers, as 

shown in Fig. 2D, and found that the noisily distributed samples were indeed assigned to different metastable states quite 

reasonably. This result implies important potential application of VIFE in identifying free-energy minima (or metastable states) 

and clustering noisy high-dimensional samples, which is demanded by many mechanism analysis and kinetic modeling 

methods. 

 

2. Coarse grain Chignolin under physics restraints 

Particle-based CG models are widely adopted in bio-molecular modeling (44). Conventionally, such models are premised on 

some empirical forms of force fields and fitted w.r.t. experimental and/or high-level calculation data. Since the force fields are 

generally designed to reflect certain physics restraints, the number of parameters are relatively limited and bottlenecks the 

expressivity and flexibility of the resulting models. In contrast, it is also possible to construct a CG potential entirely through 

an ANN in order to improve the expressivity, however, the model would require excessive amount of samples for training and 

might not generalize well due to the large parameter space. VIFE can help combine the best of the two worlds if the CG 

potential takes a hybrid form, 

 𝐹𝜃(𝐬) = 𝐹Θ(𝐬) + 𝐹FF(𝐬) (8) 

where 𝐹Θ(𝐬) is a trainable parametric model; while 𝐹FF(𝐬) is a force-field-like term accounting for some a priori knowledge 

or physics restraints. Equation (8) can be interpreted from two perspectives: On the one hand, 𝐹Θ(𝐬) can be regarded as a 

correction term for the traditional force fields. On the other hand, 𝐹FF(𝐬) serves as a reasonable prior distribution which 

effectively restricts the hypothesis space of 𝐹𝜃 thus expedites the training. 

We tested this idea on a mini-protein Chignolin using long all-atom MD simulation trajectories contributed by Lindorff-

Larsen et al. (45). The positions of backbone carbon and nitrogen atoms are selected as the CG variables s. 𝐹FF(𝐬) contains 

physical restraints over bonds and angles, whereas 𝐹Θ(𝐬) is an ANN accounting for many-body interactions, and the hybrid 𝐹𝜃 

is trained according to Eq. (3) (see more details about model setups and training details in SI). As shown in Fig. 3A, after 

training 𝐹𝜃 over c.a. 500,000 FG samples for 5 epochs (one training epoch takes about one hour in wall-clock time on a single 



7 

 

NVIDIA GeForce GTX 1650 GPU card), the distributions of 𝐹𝜃 for the FG and CG samples overlap fairly well, indicating that 

the resulting CG model is likely to reproduce the conformational distributions of FG samples. In order to examine whether 𝐹𝜃 

captures the important protein conformations, we characterized the generated CG samples from 𝐹𝜃  with two widely-used 

metrics: the root-mean-squared deviation (rmsd) w.r.t. the folded structure and the radius of gyration (Rg). We compared the 

distribution of the generated samples against the real ones in terms of these two metrics (Fig. 3B), and found that the CG 

potential faithfully reproduced the overall conformational features. Specifically, a sharp local minimum corresponds to the 

compact native conformation (small rmsd and small Rg) is well defined by 𝐹𝜃, meanwhile the distribution of the extended 

unfolded structures is preserved as well. Furthermore, we showcase several typical CG structures, superimposed with their 

best-aligned FG counterparts. It can be shown that sampling from 𝐹𝜃  can yield diverse and realistic CG backbone 

conformations comparable to FG ones, including the folded structure (C1 in Fig. 3C), intermediates (C2 and C3 in Fig. 3C) 

and unfolded structures (C4 and C5 in Fig. 3C), demonstrating that the CG model obtained by VIFE is free of mode-dropping 

and is able to capture the conformational features of protein backbones. 

 

3. Reinforced sampling of alanine dipeptide in explicit water 

Next, we proposed to construct a CG model for a prototypical bio-molecular system, alanine dipeptide (Ala2) in explicit 

water without available FG samples. Specifically, the backbone torsional angles were chosen to be the CG variables (Fig. 4A), 

that is, 𝐬 = (𝜙, 𝜑) , and our goal is to infer a reasonable FES, 𝐹𝜃(𝐬) . However, different from the previous toy model, 

isomerization of (𝜙, 𝜑) involves relatively high barrier, thus brute-force FG simulations of Ala2 converge too slowly to obtain 

an accurate estimate of 〈∇𝜃𝐹𝜃(𝐬)〉𝑝FG . Therefore, we adopted RE-VIFE to enhance the sampling over 𝐬. Technically, we 

simultaneously launched two simulations: one FG (all-atom) MD simulation under a bias potential 𝑉𝜙(𝐬), and a CG MC 

simulation over 𝐹𝜃(𝐬). Both 𝐹𝜃 and 𝑉𝜙 are initialized to be zero everywhere. After a period of FG sampling (40 ps in length) 

biased by 𝑉𝜙, we reweight the yielded FG samples to represent 𝑝FG, and optimize 𝐹𝜃 according to Eq. (3). Based on the newly-

trained 𝐹𝜃, a well-tempered target distribution 𝑝T (see SI for more details) is established, w.r.t. which the bias potential 𝑉𝜙 is 

optimized. 𝑉𝜙 is then fed into the FG simulations of Ala2 and yields an updated collection of samples representing 𝑝FG. This 

procedure constitutes one iteration of RE-VIFE, and the entire process continues till the convergence criteria are met. 

We tracked how 𝐹𝜃 of FG simulation samples and CG ones distribute (Fig. 4B), provided that the similarity (or overlap) 

between these two distributions is a good indicator of convergence. We trained the FG and CG models by RE-VIFE for 8 ns 

(or equivalently, 200 iterations), and found that the two distributions overlap well and that both spread for a relatively wide 

range (implying no mode-dropping). 

Noteworthy, in such a short simulation length, it is impossible for brute-force MD to produce equilibrium samples covering 

all important metastable states. To illustrate how RE-VIFE helps enhance the sampling of FG models, we presented the 1-ns 

trajectories for torsions 𝜙  and 𝜑 produced by vanilla MD in contrast to those produced by simulations biased by 𝑉𝜙 in Fig. 

4C. It can be seen that isomerization of torsion 𝜙 is fairly frequent in biased MD but hardly found in vanilla MD. Similarly, 

rotation of torsion 𝜑 is also boosted significantly by 𝑉𝜙. 

One may wonder how 𝑉𝜙 looks like and why it is able to boost the FG sampling so efficiently. By drawing the contour map 

of the bias potential (Fig. 4D), we observed that the optimized 𝑉𝜙 appears complementary to the ground-true FES of 𝐬 = (𝜙, 𝜑) 
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(a reference FES of 𝐬 was presented in Fig. S2). We also superimposed some randomly selected FG samples produced under 

𝑉𝜙 over the contour map (Fig. 4D), demonstrating an excellent coverage over both the free-energy minima and the transition 

regions. Therefore, samples from 𝑉𝜙 are better representatives of 𝑝FG and can be reliably used to optimize the CG models. The 

final CG model (𝐹𝜃) optimized via RE-VIFE, which can be regarded as a variationally approximated FES for Ala2 in explicit 

water, is shown in Fig. 4E. We found that 𝐹𝜃 not only captures all known metastable states of Ala2 w.r.t. (𝜙, 𝜑) (i.e., no mode-

dropping), but also quantitatively agrees well with the reference FES (Fig S2). This example demonstrates that simulations on 

multiple scales can be bridged by RE-VIFE and that CG models can be reliably inferred even without access to FG samples a 

priori.  

 

4. Reinforced sampling of chemical reactions in explicit solvent 

Chemical reactions in condensed phase are notoriously known to be difficult to simulate, and enhanced sampling approaches 

are often needed to this end. We thus employed RE-VIFE to boost the simulation of a Claisen rearrangement reaction (Fig. 

5A), which involves relatively high energy barrier, in the media of ionic liquid (see more details about simulation setup in SI). 

According to previous studies (46), a linear combination of the breaking/forming bonds (i.e., 𝑑1 and 𝑑2 in Fig. 5A) is selected 

as the CV 𝑠, and the target distribution over 𝑠 takes a Lorentzian form (47) which is developed to help enhance the sampling 

of the transition state regions (see more details about the CV, target distribution and training details in SI). The reactant is 

treated quantum mechanically (QM) while the solvent treated molecular mechanically (MM). One iteration of RE-VIFE 

consists of 60-ps QM/MM simulation. As shown in Fig.  5B, after 100 iterations of RE-VIFE, the chemical transitions can take 

place back-and-forth within several nano-seconds by virtue of RE-VIFE (i.e., the enhanced reaction rate is about 0.1 ns-1). 

Noteworthy, as can be inferred from 𝐹𝜃 (Fig. 5C) which approximates the equilibrium potential of mean force over 𝑠 (the 

putative reaction coordinate), the reaction rate is indeed very slow (less than 0.1 s-1 according to transition state theory). 

Therefore, within less than 10 ns simulation and training time, RE-VIFE achieves an acceleration of the reaction rate by nearly 

9 orders of magnitude. 

To understand how RE-VIFE achieves such astounding performance, we examined the target distribution 𝑝T  and the 

optimized bias potential 𝑉𝜙(𝑠) . It can be seen from Fig. 5C that, based on the well-trained 𝐹𝜃 , the target distribution 

automatically emphasizes on the TS region while understates the reactant and product regions. In order to arrive at the target 

distribution, the bias potential 𝑉𝜙 is optimized in the way that the energy barrier is lowered and the metastable wells are lifted 

(Fig. 5C). By doing so, RE-VIFE enables one to sample various molecular configurations efficiently (Fig. 5E), based on which 

we can investigate interesting thermodynamic properties of the reaction. For instance, the products of this reaction consists of 

a pair of enantiomers (Figs. 5A and 5E), the sampling of which is challenging for many sampling methods like umbrella 

sampling (6). We constructed the 2-dimensional FES (Fig. 5D) spanned by the chirality order parameter 𝑞C (the definition of 

𝑞C can be found in SI) (48) and 𝑠 via KDE over samples generated by RE-VIFE. We found that both enantiomers are adequately 

sampled. More importantly, the final FES appears fairly symmetric w.r.t. 𝑞C , indicating that the distributions of the two 

enantiomers are almost identical, agreeing with the fact that the enantiomeric excess of this reaction should be zero. This result 

also demonstrates that the sampling of such a complex chemical reaction has converged. 

 

IV. Concluding Remarks 
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Despite that all-atom and ab initio MD simulations have assisted scientists gain insights over many important physical, 

chemical and biological processes, their applications to complex systems containing rare events are limited, because 

experimentally related timescales of such systems (like protein folding and chemical reactions) are well beyond the reachable 

scope for even the most powerful supercomputers. Two distinct strategies are separately developed to combat this issue: either 

to perform enhanced sampling over the atomistic model, or to leverage CG models at the cost of losing atomic details. However, 

traditional enhanced sampling methods can neither scale well to large system sizes, nor transfer well to different system types 

due to the requirement of system-specific expert knowledge. On the other end, although different attempts exist to build CG 

models incorporating atom-level knowledge, transitioning from atomistic models to CG models still remains challenging. 

In this paper we developed a machine-learning approach, (RE-)VIFE, to connect FG and CG models. In (RE-)VIFE, 

simulations on different scales can benefit from each other: CG models are optimized w.r.t. the FG simulations hence 

incorporating information on finer scales; In turn, FG simulations are enhanced under the guidance of CG models. 

Mathematically, (RE-)VIFE belongs to the realm of unsupervised and reinforcement learning. The variational and self-adaptive 

training objective allows end-to-end and online training of parametric models like ANNs. Through several experiments we 

show that (RE-)VIFE is able to yield flexible CG models more rapidly than traditional CG methods, moreover, it can also boost 

the sampling efficiency of chemical reactions and conformational transitions of prototypical biomolecules by several orders of 

magnitude. 

In (RE-)VIFE, CG models can be variationally inferred based merely on equilibrium FG samples, thus involving less artifacts 

and computational cost than existing methods. This feature allows researchers to fully exploit the available atomistic 

simulations in order to construct transferrable CG models. More importantly, (RE-)VIFE also allows one to construct CG 

models even without access to FG samples a priori. We remark here that although the CG models obtained this way are able 

to reproduce the thermodynamic properties of finer-scale simulations, the dynamics is not necessarily correct. In terms of 

Langevin dynamics, our CG models only provide a reliable description of the drifting field, yet the diffusion field remains 

unknown. Inferring the diffusion field based on the available drifting field can be an interesting direction for further studies. 

In the presented examples, (RE-)VIFE is composed of one CG-FG cycle over merely two scales, because we assume that 

sampling over CG models can be readily achieved with simple simulation techniques and converges much faster than the FG 

simulations. While this is true for most cases because CG models are designed for computational tractability, some CG models 

for very large or complex systems may entail heavy computation and may also suffer from the sampling issue like FG models. 

If coarser-grained models were built on top of the CG model, they could possibly help enhance the CG sampling in a way 

similar to how the CG model boosts the FG sampling. Following this line, it is appealing to develop models over a cascade of 

scales via (RE-)VIFE. Besides, if one only needs to enhance the sampling over certain trans-rotationally invariant CVs via RE-

VIFE, parametric energy models with a normalized partition function may be preferred as 𝐹𝜃  due to simpler sampling 

procedure. We leave these interesting ideas for future research 
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Figures 

 

 

Figure 1. Illustration of RE-VIFE. Given simulation samples from fine-grained (FG) models (𝑝FG), a coarse-grained (CG) 

potential (or free-energy) 𝐹𝜃 can be variationally approximated. In turn, a target distribution 𝑝T can be defined based on CG 

simulations running over 𝐹𝜃, according to which a bias potential 𝑉𝜙 can be variationally optimized to boost the FG simulation. 

This illustration consists of only one CG-FG cycle, yet additional cycles corresponding to more scales can be added on top in 

the same manner. 

 

 

 

Figure 2.  Application of VIFE on a 2D toy model. (A) 2D potential energy surface (PES), 𝑈(𝑥, 𝑦) of the toy model. (B) 

Evolution of effective loss function 𝐿(𝜃) defined in Eq. (5) (black dotted line) and KL-divergence 𝐷KL(𝑝FG||𝑝𝜃) (red solid 

line) against training epochs by VIFE. (C) The contour map corresponds to the optimized 𝐹𝜃 by VIFE, the three symbols 

(magenta triangle, red square and yellow circle) represent three free-energy minima found in 𝐹𝜃 . (D) Hollow circles are 

simulation samples produced by Langevin dynamics on 𝑈(𝑥, 𝑦) colored by which local minimum they are minimized to over 

𝐹𝜃. Colors are in line with the symbols in panel C. The contour map of 𝑈(𝑥, 𝑦) is shown in grey as background. 
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Figure 3.  Coarse grain Chignolin via VIFE. (A) Distributions of 𝐹𝜃 for all-atom MD simulation samples (black solid line) 

and for CG simulation samples (red dashed line). (B) 2D FES spanned by rmsd and Rg of all-atom MD simulation samples 

(left panel) and CG simulation samples (right panel). (C) Representative CG structures colored by cyan (carbon atoms) and 

blue (nitrogen atoms), superimposed with their best-aligned FG counterparts (colored by transparent yellow). Numbers in 

parenthesis are the rmsd values (in unit of nm) of CG structures w.r.t. the folded structure. 
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Figure 4.  RE-VIFE sampling of Ala2 in explicit water. (A) Chemical structure of Ala2 and two coarse-graining variables: 

the torsions 𝜙 and 𝜑. (B) Distributions of 𝐹𝜃 for all-atom MD simulation samples (black solid line) and for CG simulation 

samples (red dotted line). (C) 1-ns simulation trajectories projected on torsion 𝜙 (upper panel) and torsion 𝜑 (lower panel). 

Blue squares correspond to vanilla MD, red dots to MD biased by 𝑉𝜙. (D) The contour map of 𝑉𝜙 optimized via RE-VIFE. 

Superimposed black dots are representative samples produced by the enhanced MD simulation under 𝑉𝜙. (E) Contour map of 

𝐹𝜃 optimized via RE-VIFE. 

 

 

 

 

Figure 5.  RE-VIFE sampling of chemical reactions in ionic liquid. (A) The retro-Claisen rearrangement under study. The 

reactant is a 7-member-ring ether while the product is an aldehyde containing a 3-member ring. Two potential chiral carbons 

in the product are indicated by star symbols. The breaking and forming bonds are denoted as 𝑑1 and 𝑑2, respectively. (B) 

Trajectories of 𝑑1 (black) and 𝑑2 (red) during RE-VIFE simulations. (C) Upper panel: the optimized CG potential 𝐹𝜃(𝑠) (black 

solid line) in unit of kJ/mol and the associated (unnormalized) target distribution 𝑝T(𝑠) (red dashed line). Lower panel: the 

optimized bias potential 𝑉𝜃  in unit of kJ/mol. (D) 2D FES over the CG variable 𝑠  and chirality order parameter 𝑞C . (E) 



15 

 

Snapshots of various molecular configurations during RE-VIFE. From left to right: reactant, transition state (T.S) and two 

enantiomer products. 
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PART I. SUPPUPLEMTAL TEXTS 

 

I. Training objective of (RE-)VIFE 

Given the target distribution  sp  and an approximate 

distribution  sp , there are some practical ways to define 

the divergence between the two. The most commonly used 

one is the Kullback-Leibler divergence or relative entropy. 

A. Kullback-Leibler divergence 
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where both distributions are assumed to admit densities (i.e. 

absolutely continuous) with respect to a same measure. KL-

divergence is known to be asymmetric and possibly infinite 

when there is non-overlapping area between the two 

distributions. Therefore, effective utilization of KL 

divergence as a optimization objective requires substantial 

overlap between  sp  and  sp (1). 

B. Training objective of VIFE 

Now we consider the derivatives of Eq. (S1) w.r.t. the 

parameters  , namely,  KL ||D p p  . First, we can re-

write p  and p  in terms of the free energy, 
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following which Eq. (S1) becomes 
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It can be found that  KLD p p  is now a functional of 

F , hence we can obtain the functional derivatives, 
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Notice that Eq. (S6) is equivalent to 
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so we finally arrive at the derivatives of KLD  w.r.t.  , 
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We remark here that Eq. (S8) holds for arbitrary fixed

 sp  when  sp  is a learnable distribution used to 

approximate  sp . So it can be easily generalized to the 

training objective of RE-VIFE (Eq. (4) in the main text). 

Besides, the derivation of Eq. (S8) shares dramatic similarity 

with the training objective of TALOS (2). 

 

II. Parametric models in (RE-)VIFE 
There is relatively large margin for the specific functional 

forms for 𝐹𝜃  (and/or 𝑉𝜙 ). For example, it can be a linear 

expansion of certain basis functions as in VES where   are 

the expansion coefficients (3); or can be a non-linear neural 

network, where   are the built-in parameters of neural 

network (4). 
A. Orthonormal polynomials or functions 

If Dim(𝐬) ≤ 3 , we recommend orthonormal basis 

functions as 𝐹𝜃  and 𝑉𝜙 , and the expansion coefficients are 

the learnable parameters. For periodic CG variables 𝐬 , 

Fourier expansions can be adopted. For non-periodic 𝐬 , 

Legendre or Chebyshev polynomials can be used (3). 

Orthonormal polynomials usually yield smooth energy 

function, so generally no additional regularization is needed. 

B.  Building blocks for neural network models 

ANNs are expressive parametric models which can be 

used as 𝐹𝜃  and 𝑉𝜙 . Modern deep learning models have 

evolved based on specially designed architecture. Here we 

briefly introduce some building blocks which may be useful 

for constructing the deep models in (RE-)VIFE. 

1. Multi-layer perceptron (MLP) 

MLPs are most commonly seen ANNs consisting of fully 

connected hidden layer. The input of a MLP, 𝐬, should trans-

rotational invariant features of the molecular system. More 

importantly, each dimension of the input vector 𝐬 should be 

indexible. MLP will transform the input vector to hidden 

features, and finally yields an output vector. 

2. Transformer & Attention 

If s consists of a sequence (or set) of feature vectors, 

(𝐬1, 𝐬2, … 𝐬𝑛), (e.g., s can be a series of features describing 

each amino residue along a protein), then the Transformer-

like model (5) based on attention mechanism can be 
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constructed. Specifically, the attention mechanism learns a 

pair of Query vector and Key vector, and regard s as the 

Value vector, then perform multi-head self-attention (5) to 

transform (𝐬1, 𝐬2, … 𝐬𝑛)  into a new series of vectors 

(𝐳1, 𝐳2, … 𝐳𝑛). Based on the new feature vectors, one can 

employ MLP to point-wisely transform 𝐳𝑖  to an output 

vector. One merit of Transformer-based model is resulting 

potential can be transferable to systems of different sizes and 

containing various types of particles. We refer readers 

interested in this topic to relevant reference (5). 

3. Message-passing neural networks (MPNN) 

Molecular systems consisting of particles (e.g., atoms) can 

be viewed as a graph, where vertices (or nodes) represent the 

particles while the interactions between particles can be 

modeled by graphical edges. MPNNs (6) are generalization 

of graph neural network family, hence can be used to model 

molecular systems. MPNNs exhibit a nice property that 

preserves the trans-rotational invariance and permutation 

invariance of the many-particle system. There are several 

recently developed MPNNs that specifically aim at 

molecular systems, including SchNet (7) and PhysNet (8). 

Both models directly learn a function based on the Cartesian 

coordinates and the type of the particles. Such models are 

potentially useful in constructing particle-based CG models 

for biomolecules. 

C. Neural allocative potentials (NAP) 

We note here that it is not the absolute value but the 

difference of energy makes physical sense. If we do not 

exploit this property, the absolute value of the energy 

produced by ANNs may grow rapidly but the energy 

difference does not. This is harmful to our purpose, because 

it was recently revealed that the smoothness and continuity 

of ANNs become vulnerable if the absolute values of built-

in parameters are too large hence the weight matrices of 

ANNs become ill-conditioned (9). Given above 

considerations, we first choose a lower bound and an upper 

bound for the bias potential, and "quantized" this energy 

range into 𝐾  fixed levels {𝐸𝑘}𝑘=1..𝐾 , based on which we 

propose the following functional form, 
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where 𝛼𝑘(𝐬; 𝜃) corresponds to the output of an ANN with a 

soft-max output layer. The associated force takes the 

following form, 
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In other words, we transform the problem of learning a 

scalar into learning a simplex {𝛼𝑘}𝑘=1..𝐾 . Following this 

form, NAP is trained to allocate proper amount of energy to 

configuration 𝐬, rather than estimate the absolute value of the 

bias potential. Therefore, the training of 𝐹𝜃(𝐬) is more robust 

and the gradient will be well-behaving. 

D. Gradient regularization 

In order to ensure the to-be-optimized function 𝐹𝜃(𝐬) to be 

smooth enough for integration, we introduce several 

techniques to effectively regularize the gradient, ∇𝐬𝐹𝜃(𝐬). 

1. Weight clipping 

One simple and intuitive approach is to clip the weights 

(1) of the neural network 𝐹𝜃 (e.g.,  0.01,0.01   ) after 

each gradient update. The reason behind is that, if the 

parameter space  for   is compact, then all the functions 

𝐹𝜃 will be K-Lipschitz for some K that only depends on  

and not the individual weights. In practice, the clipping range 

is a very important hyper-parameter, which can neither be 

too large (reduced compactness) nor too small (reduced 

capacity of 𝐹𝜃). Besides, usually this method requires batch-

normalization (10) in order to achieve a robust and good 

performance. 

2. Spectral normalization 

One more recent approach to stabilize the training of GAN 

can also be applied in (RE-)VIFE, which is to perform 

spectral normalization for the weight matrices 𝜃  in the 

energy function 𝐹𝜃 . The basic idea is to constrain the 

Lipschitz constant of the function by restricting the spectral 

norm of each layer. Compared to other normalization 

techniques, spectral normalization does not require extra 

hyper-parameter tuning (setting the spectral norm of all 

weight layers to 1 consistently performs well in practice). 

Moreover, the computational cost is also relatively small. 

We refer readers interested in this technique to the reference 

(9). 

3. Drift removal 

In experiments we found that removing the net drift of the 

energy function will help stabilize training. To be specific, 

we added a regularization term to the overall loss function, 

to restrict the mean value of the energy distribution of FG 

samples to be close to zero. This trick works possibly 

because the output of the network is anchored to a nearly 

zero-mean value, so the absolute value of the output (and the 

built-in parameters) will not be too large. 

 

III. Target distribution for RE-VIFE 
A. Well-Tempered (WT) distribution 

Given the density estimation, i.e., 𝐹𝜃(𝐬), we can define the 

target distribution in WT form (11), which is equivalent to a 

partially flattened FES, 
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where     is the WT factor. 

B. Lorentzian-coupled distribution 
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As recently proposed by Debnath et al. (12), the target 

distribution may take the following form: 
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where   is a scaling factor and  WT ;sp   is a pre-defined 

WT distribution with the WT-factor  (Eq. S12). More 

introduction to this kind of target distribution can be found 

in the reference (12). The advantage of such a Lorentzian-

type target is that, the transition-state region (where 

𝑑𝐹𝜃 𝑑𝐬⁄ ≈ 0) can be further enhanced along with metastable 

states. This property is very useful in some scenarios where 

the sampling of transition state is crucial as in transition path 

sampling. 

 

IV. Connection between RE-VIFE and other 

sampling methods 
A. Metadynamics 

Metadynamics (13) is a powerful tool in enhanced 

sampling of rare events if low-dimensional CV 𝐬  can be 

defined a priori. However, metadynamics cannot be readily 

applied to cases where Dim(𝐬) ≥ 3. As introduced in the 

main text, RE-VIFE can be viewed as a generalization of 

metadynamics into large Dim(𝐬)  and parametric bias 

potential functions. 

(1) Metadynamics exploits KDE to coin the target 

distribution which will fail in large Dim(𝐬). In contrast, RE-

VIFE uses parametric models to perform density estimation 

which is even applicable to large Dim(𝐬). 

(2) Metadynamics accumulated non-parametric Gaussian 

as bias potential which will be intractable for large Dim(𝐬); 

while RE-VIFE implements parametric learning to construct 

the bias potential, thus being more flexible and scalable for 

complex systems. 

In summary, RE-VIFE will be more useful if one wants to 

boost the sampling efficiency but does not have enough 

expert knowledge to determine low-dimensional CV. 

B. VES 

The mathematical form of VIFE training objective is 

almost identical to VES (3), although it is derived from a 

different starting point. Both VES and RE-VIFE aims to 

minimize the KL-divergence between the sampled 

distribution and a target distribution. Nevertheless, they can 

be distinguished by several remarkable differences: 

(1) The target distribution in VES has to be defined 

carefully because VES would suffer from gradient vanishing 

or exploding issues when the distributions scarcely overlap. 

Usually this is a very demanding task. In contrast, RE-VIFE 

follows actor-critic learning and coins a target distribution in 

a metadynamics-like fashion, thus always ensures a useful 

gradient for optimization. 

(2) Optimization in VES relies on higher-order derivatives 

thus involving higher computational cost, while RE-VIFE 

employs the state-of-the-art first-order optimization 

techniques from deep learning thus being robust, fast and 

economic. 

(3) The functional form of bias potentials supported by 

vanilla VES is limited to linear expansions, thus the 

dimension of the CV space cannot be too large. In contrast, 

RE-VIFE supports any differentiable functions (such as 

neural networks) as valid forms and can be easily extended 

to ultra-large dimensions. 

C. TALOS 

Both TALOS (2) and RE-VIFE are closely connected to 

actor-critic reinforcement learning. They both parametrize a 

pair of value function and policy function in order to boost 

the rare events. But there are several key differences 

demarcating the two approaches: 

(1) In TALOS, the value network is a critic (or 

discriminator) 𝐷𝑤  as in GAN; whereas in RE-VIFE, the 

value network  𝐹𝜃 is a density estimator. 

(2) TALOS optimizes the policy network (i.e., the bias 

potential) to minimize the Wasserstein-1 distance between 

the sampled distribution and the target; while RE-VIFE 

minimizes the KL-divergence for the same purpose. 

(3) The target distribution in TALOS is manually selected 

a priori, the choice of which is sometimes tricky. While in 

RE-VIFE, the target distribution is automatically determined 

and adaptively updated according to the current density 

estimation. 

(4) The critic and policy networks in TALOS can be 

defined on different vector spaces; while in RE-VIFE, both 

must operate on the same space. 

We mark here that the strengths of TALOS and RE-VIFE 

are highly complementary. It remains as an interesting 

research direction that one may combine both methods, that 

is, to minimize the Wasserstein-1 distance between the 

sampled distribution and an adaptively determined target 

distribution. 
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Algorithm S1. Reinforced Variational Inference of Free Energy (RE-VIFE) 

1: 
Input: Initialize value network 𝐹𝜃 and policy network 𝑉𝜙; Learning rate  𝛼𝜃 

and 𝛼𝜙 for 𝜃 and 𝜙, respectively. 
 

2: While 𝜙 do not converge, do  

3: Run MD under 𝑉𝜙, collect samples to calculate 〈𝑉𝜙(𝐬)〉𝑝𝜙
 run FG simulations 

4: Define 𝑝FG(𝐬) ∝ exp (𝛽𝑉𝜙(𝐬)) and calculate 〈𝐹𝜃(𝐬)〉𝑝FG
 reweight biased samples 

5: For 0t m   train 𝐹𝜃 for m  iterations 

6: Draw samples from 𝐹𝜃, calculate 〈𝐹𝜃(𝐬)〉𝑝𝜃
. run CG simulations 

7: Calculate ℒ(𝜃) = 〈𝐹𝜃(𝐬)〉𝑝FG
− 〈𝐹𝜃(𝐬)〉𝑝𝜃

  

8:             Adam , ,       update value network 

9: End For  

10: Define target distribution 𝑝T according to 𝐹𝜃   

11: Calculate ℒ(𝜙) = 〈𝑉𝜙(𝐬)〉𝑝T
− 〈𝑉𝜙(𝐬)〉𝑝𝜙

  

12:   Adam , ,       update bias potential 

13: End While  
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PART II. SIMULATION DETAILS 

 

I. VIFE for numerical model: 2-dimensional 3-

well potential 
A. Simulation setup 

The potential energy function of the 2D 3-well potential 

(14) takes the following form given the inverse temperature 

 : 
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For the overdamped Langevin simulation, we chose 

1  , and the diffusion tensor was set to be: 

 

1
0

0 5

0 1
0

5

xx

yy

D

D





 
  
   
  
 
 

D  

The resulting white-noised Langevin dynamics was 

simulated with a discrete time integration step of 0.01. 

50,000 samples in total were collected every 100 integration 

steps.  

B.  Functional form 

𝐹𝜃 is constructed on the 2D  ,x y  space via a MLP with 

two hidden layers and a soft-max output layer. Hidden layers 

consist of 64 units with hyperbolic tangent (tanh) as 

activation function; output layer consists of 11 logits which 

uniformly discretize the energy range from -5 to 5. Namely, 

the output layer takes the form of NAP. Spectral 

normalization was exploited to regularize the gradients. 

C.  Training details 

We trained 𝐹𝜃  with a mini-batch size of 500. Samples 

from 𝐹𝜃  was drawn through importance sampling. The 

default Adam optimizer with a learning rate of 10-4 was 

adopted. Optimization was performed on Tensorflow 

(v1.15.0). 

 

II. VIFE for Chignolin 
A. Data source 

The all-atom simulation data of chignolin is taken from 

reference (15), which contains over 500,000 samples in total. 

These samples were used to approximate 𝑝FG.  

B.  Functional form 

The hybrid 𝐹𝜃  is composed of two terms: 𝐹FF  and 𝐹Θ , 

respectively. 𝐹FF contains restraints over bonds and angles. 

Specifically, we impose harmonic-form restraints as 𝐹FF, 

    
2

FF FG

1

2
s s sF k    

where 𝐬 is a bond or angle, 〈𝐬〉FG <s> is the average value of 

the corresponding 𝐬 from the FG simulations. The stiffness 

factor 𝑘 is set to be 100 kJ/mol. We also manually set the 

torsional angle omega to be 𝜋. 

𝐹𝜃  is designed to account for many-body interactions 

based on all phi and psi torsions. We expand each torsional 

angle with trigonal functions and use them as the input for 

the torsion. For example, for torsional angle 𝜑, 

    cos ,...,cos ,sin ,...,sins n n       

In order to construct a model potentially transferrable to 

different proteins, a standard Transformer model (5) was 

chosen as 𝐹𝜃  based on self-attention mechanisms. Position 

embedding (5) was used to encode the information of the 

amino-acid sequence. Code is adapted from GitHub: 

https://github.com/Kyubyong/transformer. 

C.  Training details 

We regularized the model by removing the drift of mean 

energy of the FG samples. 𝐹𝜃  was optimized with a mini-

batch size of 512. The default Adam optimizer with 𝛽1 = 0 

and 𝛽2 = 0.999 was used as recommended by Ref. (16), and 

a warm-up learning rate schedule as recommended by Ref. 

(5) was adopted. Optimization was performed on Tensorflow 

(v1.15.0). 

 

III. RE-VIFE for Alanine dipeptide (Ala2) 
A. Simulation setup 

For the alanine dipeptide in aqueous solution, no ions were 

added since the terminal of the alanine was neutrally blocked 

(namely, ACE-ALA-NME) surrounded by 384 SPCE water 

molecules (17). All the simulations were executed on 

AMBER17 package (18) using FF99SB force field (19) 

parameters. The aqueous solution system was put in a 

rectangular simulation box with periodic boundaries on. 

SHAKE algorithm (20) was adopted to constrain all covalent 

bonds involving hydrogen atoms, and a 2 fs time step was 

permitted. The system underwent a standard relaxation 

procedure and equilibrated to an NTP ensemble (300 K, 

1atm). To equilibrate the system to the appropriate volume, 

the pressure of the system was adjusted to 1 atm by the 

Berendsen weak-coupling algorithm (21) with the relaxation 

time constants of 0.2 ps under another 1 ns long normal MD. 

For production run, samples were collected every 1 ps from 

10 parallel walkers (22). 

B.  Functional forms 

Both 𝐹𝜃  and 𝑉𝜙  are functions of the 2D  ,   space. 

Since   and   are periodic variables, we construct both 

functions using the Fourier polynomial: 
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where 8N   for both 𝐹𝜃 and 𝑉𝜙. 

C.  Target distribution 

In order to train 𝑉𝜙 , we chose a WT-form target 

distribution with 1 𝛾⁄ = 0.4 based on 𝐹𝜃  according to Eq. 

(S12). 

D.  Training details 

In each RE-VIFE iteration, we ran MD simulations for 40 

ps to collect samples as 𝑝FG. Before every training step of 

𝑉𝜙, 𝐹𝜃 was first trained for 5 steps (i.e., 𝑚 = 5 in Algorithm 

S1). We adopted the Averaged SGD algorithm as 

recommended by Refs. (23) and (3) for each optimization 

step, and the update step-size for 𝑉𝜙 and 𝐹𝜃 is 0.1. Codes for 

optimization was inherited from Ref. (2) and (3). In total, 

RE-VIFE was performed for 200 iterations, which is 

equivalent to 8-ns MD simulation. 

 

IV. RE-VIFE for Claisen rearrangement 
A. Simulation setup 

The simulation was performed at the QM/MM interface on 

AMBER14 MD platform. The self-consistent charge density 

functional tight-binding (SCC-DFTB) method (24) was 

adopted to approximate the quantum mechanical 

Hamiltonian of the reactant molecule. The solvent is a kind 

of ionic liquid, containing a pair of soluble ion pairs termed 

as [C2mim]+[NTf2]-. We adopted the classical force field 

developed by Sieffert and Wipff (25, 26) to describe the 

solvent molecules (or ions) and SHAKE was imposed on the 

solvent. No additional ions were added. 

The system underwent a standard relaxation procedure and 

equilibrated to an NTP ensemble (300 K, 1 atm) lasting for 

1-ns long normal MD. A cutoff of 10.0 Å was applied for 

calculating nonbonding interactions. All the simulations 

were performed with a 1-fs time integration step (no SHAKE 

on QM-treated molecule) and with periodic boundary 

condition. In production MD run, samples were collected 

every 0.5 ps from 8 parallel walkers. 

B.  Functional forms 

In reference of the work by Zhang et al. (27), we set 𝑠 =
0.82𝑑2 − 0.18𝑑1  as a one dimensional CV for enhanced 

sampling.

 

So both 𝐹𝜃  and 𝑉𝜙  are functions of 𝑠 , and they are 

expanded by Legendre polynomials up to the same order. For 

instance, 𝐹𝜃 takes the following form, 

    
1

i N

i i

i

F s f s 




   

where if  denotes the i-th order Legendre polynomial, 

50N  , and s  linearly rescales s  to the range of [0,1], 

with min 0s   and max 0.35s   nm,  

 min max max min

2 2

s s s s
s s

    
    
   

 

C.  Target distribution 

In order to enhance the chemical transition, we optimized 

𝑉𝜙  according to a Lorentzian-coupled target distribution 

(Eqs. S13 and S14), where 𝑝WT(𝑠; 𝛾) in Eq. (S13) takes a 

WT factor 1 𝛾⁄ = 0.2 and 𝜁 = 500. 

D.  Training details 

In each RE-VIFE iteration, we ran MD simulations for 60 

ps to collect samples as 𝑝FG. Before every training step of 

𝑉𝜙, 𝐹𝜃 was first trained for 5 steps (i.e., 𝑚 = 5 in Algorithm 

S1). Similarly to Ala2, we also adopted the Averaged SGD 

algorithm as for each optimization step, and the update step-

size for 𝑉𝜙 and 𝐹𝜃 is 0.5. In total, RE-VIFE was performed 

for 100 iterations, which is equivalent to 6-ns MD 

simulation. 

E.  Characterizing the chirality 

We define the chirality order parameter 𝑞C as follows (28). 

First we pick the position of central carbon (corresponding 

to the chirality site) as 𝐑C, and order the attached four atoms 

from 𝐑0 to 𝐑3 according to conventions (Fig. S3). We then 

define several geometric vectors (Fig. S3): 𝒗𝑖 = 𝐑𝑖 − 𝐑C. In 

order to judge the chirality of the central carbon atom, we 

first calculate the cross product of two in-plane vectors, 

    2 3 1 2   u v v v v   

Finally, the chirality order parameter 𝑞C is defined as the 

cosine of the angle between 𝒖 and the pseudo-normal vector 

𝒗0, e vectors, 

 0
C

0


q

u v

u v
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PART III. SUPPLEMENTAL FIGURES 

 

 

 

 
Figure S1.  Distributions of 𝐹𝜃 for real samples (termed as FG) drawn from Langevin dynamics simulation on the numerical model potential 

(black), and for generated samples (termed as CG) drawn from the inferred 𝐹𝜃 (red). 

 

 

 

 

 

 

 

 

 
Figure S2.  Reference FES for torsional angles  ,   of Ala2. The reference FES is obtained via kernel density estimation 

over 750 ns MD simulation of Ala2 in explicit water. The data is accessible to the public 

(https://github.com/markovmodel/mdshare). 
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Figure S3.  The chiral carbon atoms in the product. We order the attached atoms to the central carbon by the ordering 

R3>R2>R1>R0. Upper panels: Illustration of the ordering of the central chiral carbon atom and the geometric vectors. Lower 

panels: Clockwise sequence of the attached groups corresponds to R-configuration, and a counter-clockwise sequence to S-

configuration. This figure is adapted from Ref. (28) with permission. 
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