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ABSTRACT: Electrochemical techniques have long been her-
alded for their innate sustainability as efficient methods for 
achieving redox reactions. Carbonyl desaturation, as a funda-
mental organic oxidation, is an oft-employed transformation to 
unlock adjacent reactivity. To date, the most reliable methods 
for achieving it have relied on transition metals (Pd/Cu) or stoi-
chiometric reagents based on I, Br, Se, or S. Herein we report an 
operationally simple pathway to such structures from enol 
silanes and phosphates using electrons as the primary reagent. 
This electrochemically driven desaturation exhibits a broad 
scope across an array of carbonyl derivatives, is easily scalable 
(1-100g), and can be predictably implemented into synthetic 
pathways using experimentally or computationally derived 
NMR shifts. Mechanistic interrogation suggests a radical-based 
reaction pathway.   

   The removal of one molecule of hydrogen adjacent to a car-
bonyl compound is one of the simplest organic oxidation reac-
tions known and is a widely employed tactic in synthesis.1-3 
Classic methods for accomplishing this transformation involve 
indirect -functionalization approaches traversing through 
halide, sulfur, and selenium derivatives.4-8 Chemoselective 
methods that directly afford enones from ketones are indeed 
more desirable and have been extensively explored (Figure 1). 
Amongst them, the Saegusa-Ito reaction, discovered in 1978, 
remains the most oft-applied method for such applications.9 In 
its canonical implementation, formation of a silyl enol ether, 
followed by exposure to stoichiometric (from 0.5–1.0 equiv) 
quantities of Pd delivers the desired -desaturated product.9 
Variants that employ a co-oxidant (e.g. O2, quinone or [Cu]) to 
lower the [Pd]-levels have also been reported.10,11  Another 
popular approach involves the use of stoichiometric IBX 
through an SET-based process.12,13 Recently, two new methods 
have also appeared from the Newhouse and Dong groups that 
allow the use of catalytic amounts of palladium and copper, re-
spectively.14-20 These methods expand the scope of available 
desaturation methods to nitriles, esters, lactones, and lactams 
and do not require the preparation of enol ethers. Since the es-
sence of this reaction involves a formal 2-electron oxidation, it 
stands to reason that even simpler redox approaches might be 
developed. Indeed, in 1973, the Shono group demonstrated 
that enol acetates can undergo anodic oxidation in AcOH as sol-
vent to afford the corresponding enone. In order to deliver syn-
thetically useful yields of product, -substitution was required 
with simple cyclohexanone-substrates providing <10% 
enone.21,22 Similar reactivity was also observed by Moeller and 
co-workers in their studies of silyl enol ether alkylation where 

 Figure 1. Desaturation of carbonyl and enol compounds: 
State-of-the-art, electrochemical precedents, and Electrochem-
ically Driven Desaturation (EDD). 

trace amounts of enone were isolated as a by-product (<5% 
yield).23-25 Building on these encouraging studies, we report 
herein an electrochemically driven approach to elicit desatura-
tion that requires no metals or chemical oxidants and features 
a broad substrate scope with inherent scalability. The utility of 
this method is placed in the context of the most popular and 
recently disclosed methods, and a simple method for predicting 
reactivity is also described. 

   The TMS-enol ether of cyclododecanone 1 was chosen for in-
itial optimization of electrochemically driven desaturation 
(EDD); an abbreviated summary is depicted in Table 1 (see SI 
for more extensive tabulation). Trial runs using the literature  
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Table 1. Optimization of the EDD reaction. aIsolated yield. n.d.: 
not detected 

conditions noted above provided only trace quantities of prod-
uct. Our prior experiences for electrochemical reaction devel-
opment served as a template for this study.26-33 A myriad of 
electrolytes, electrodes, and solvents were evaluated. First, an 
electrolyte screen revealed that inorganic non-nucleophilic 
salts proved optimal (entries 4-7) with NaSbF6 ($0.56/gram) 
delivering the highest conversion. The use of a graphite anode 
was found to be essential whereas several materials were suit-
able for the cathode (entries 8-11). Ultimately the low cost (ca. 
$0.1/cm2) and efficiency of graphite motivated its selection for 
both electrode materials. Of all solvents screened, MeCN, ace-
tone, DMA, and DMF could be employed but MeCN gave the 
highest yield across a broad range of substrates. A variety of 
bases were also tested with heteroaromatic amines proving 
most promising (entries 15-16). 2,4,6-Collidine (30% v/v – en-
try 18) emerged as optimum providing the desired product 2 
in 62% isolated yield. The final set of EDD conditions tolerates 
exogenous air and moisture, lead to completion in 90 minutes 
or less, and can be setup in minutes, using a simple undivided 
cell and a commercial potentiostat. 

   EDD could be applied to a diverse set of carbonyl derivatives 
as illustrated in Table 2. As there are numerous desaturation 
methods available to the practitioner all of the results are 
placed into context with direct comparison to the powerful Pd, 
Cu, and hypervalent iodine-based systems. With regards to ke-
tone substrates, both cyclic (from 5-15 membered rings) and 
acyclic derivatives could be employed (2-17). This stands in 
contrast to recently developed catalytic methods that operate 
smoothly on cyclic systems but fail on acyclic ones (14 and 
15).15,18 As EDD of ketones is reliant on formation of a silyl enol 
ether, regioselective desaturation is possible simply by tuning 
conditions (i.e. 7 vs. 8). Substituents at the -, -, and -position 
are all tolerated as well as Lewis-basic heteroatoms (16), al-
kynes (10), proximal cyclopropanes (15), esters (16 and 17), 
TBS protected alcohols (11), and acid-labile ketals (6). A two-
step in situ EDD protocol was also developed to afford enones 

6, 12 and 17 in decent yields directly from the respective ke-
tone starting material. Esters and lactones, substrate classes 
that have only recently succumbed to direct dehydrogena-
tion,14,17,18 can also be subjected to EDD using the correspond-
ing diphenylphosphate ester derivatives (18-31). Such enol de-
rivatives are easily prepared and hydrolytically stable unlike 
the corresponding silyl ketene acetals. Simple lactones and 
benzolactones, which are outside the substrate scope of IBX 
and Saegusa methodologies can be smoothly dehydrogenated. 
As with EDD of ketones, the functional group tolerance here is 
also broad including aryl halides (22 and 24), CF3 (30), oxidiz-
able anisoles (23), tosyl protected amines (29), and alkenes 
(32). In addition, -aryl lactones also afforded the desired 
products in satisfactory yields (21-23 and 25). The difficulty of 
desaturating such substrates has been documented by Dong. 
They are often alternatively accessed through cross-coupling 
on the corresponding vinyl halide derivatives or through -
bromination/elimination sequences.34,35 It worth noting that 
while comparing EDD with other precedented methods, the set 
of conditions reported by the Newhouse group was found to 
provide the desaturated -aryl lactones in moderate yields. 
Next, the particularly difficult class of aldehydes were investi-
gated (32-34, silyl enol ethers employed). Due to the instability 
of such desaturated products the yields observed were moder-
ate (and accompanied by 5-11% of recovered parent alde-
hyde). Other direct catalytic methods for this dehydrogenation 
are not applicable, with the Saegusa protocol being the only 
other option. Lactams, a similarly challenging class of carbon-
yls, were surveyed as diphenylphosphate-ketenimine acetals, 
and in select cases (35-37) were viable. 

   The scalability of the method was evaluated using cyclopen-
tadecanone-derived silyl enol ether 38 on a 4-gram scale 
(Scheme 1A) to afford enone 12, a key intermediate in the syn-
thesis of (R)-muscone 39, a valuable ingredient in the fragrance 
industry.36 A simple increase of current (from 10 mA to 300 
mA) and the use of alternating polarity (to avoid any accumu-
lation of material at the anode) enabled the standard EDD re-
action to smoothly deliver compound 12 in 66% yield. To in-
crease scale further, the design and assembly of a flow appa-
ratus containing six reaction cells was undertaken (Scheme 
1A). After optimization, 100 grams of 38 were successfully con-
verted to compound 12 by increasing the current value to 3.6 
A (compared to 300 mA in batch) to obtain 61% isolated yield 
and 27% recovered starting material 38.  

   From a mechanistic standpoint, the EDD reaction accom-
plishes the formal removal of two electrons and one proton 
from the corresponding silyl enol ether. The electrochemical 
oxidation of silyl enol ethers has been previously disclosed by 
Moeller and studied mechanistically by Wright.25 These studies 
demonstrated that initial anodic oxidation leads to the for-
mation of an enol ether radical cation intermediate by using a 
cyclopropyl ring-opening clock. A similar conclusion was made 
by Moeller and co-workers when they oxidized various alkyl-
enol ethers and thio-enol ethers.37 It is therefore postulated 
that EDD proceeds through three elementary steps: (1) for-
mation of the radical cation intermediate 40; (2) deprotonation 
to afford 41; (3) a second oxidation to form oxonium 42 which 
affords the desired enone product 5 (Scheme 1B, panel A). To 
provide empirical support for the proposed mechanism, three 
control experiments were designed and tested (Scheme 1B, 
panel B to D). First, the standard reaction conditions under air 
revealed the formation of the 1,2-diketone side product 44 in 
9% yield. The amount of this by-product decreases to 4% when 
the reaction performed under inert atmosphere. In addition, 



 

  
Table 2.  Scope of the EDD reaction. aYield based on GCMS conversion. bUsing in-situ protocol. cYield based on NMR conversion.  
dPrepared from phenyl acetate-keteniminyl acetals. n/a: not applicable. n.d.: not detected.         

the parent ketone is the only product observed when water is 
added to the reaction. These results suggest that formation of 
compound 44 derived from molecular oxygen via a radical type 
mechanism. Next, to support the crucial role of the base in the 
deprotonation event, the EDD reaction conditions were applied 
to compound 1 with various amounts of 2,4,6-collidine 

(Scheme 1B, panel C). No desired product was obtained when 
base was excluded, reinforcing the importance of the base for 
the EDD reaction and its implication in the deprotonation step 
2 (Scheme 1, panel A). Furthermore, a noticeable improve-
ment was observed between the reaction efficiency and the 
base 



 

  
Scheme 1. (A) Batch and flow scale-up of a key intermediate in the synthesis of (R)-muscone. (B) Mechanistic study of the EDD 
reaction. (C) Gaussian computational experiment to assess the feasibility of the EDD reaction: Case study of TMS enolates. aYield 
based on LCMS conversion. 

concentration.  Finally, a third experiment was conducted to ex-
plore the formation of an oxonium intermediate (Scheme 1B, 
panel D). Compound 45 was subjected to the reaction condi-
tions affording naphthalene 47 in 49% yield. The formation of 
this product is in accordance with the formation of intermedi-
ate (46), which after elimination would deliver 47. Similarly, 

when the diethylphosphate 48 derived from dehydroepi-
androsterone was subjected to EDD, diene 50 was also ob-
served as a side-product. 

During these studies it was empirically noted that ketone, lac-
tam and lactone substrates whose vinylic proton shifts regis-
tered between 4.6 and 5.1 ppm showed good conversion to the 
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desaturated product. However, compounds with NMR shifts 
lower than 4.6 ppm led to the formation of dimer, hydrolysis, 
and other by-products. Compounds with NMR shifts higher 
than 5.1 ppm showed low reactivity toward oxidation. Based 
on these findings and Moeller’s reports,37 it is possible to iden-
tify a trend between the oxidation potential of the enol ether 
(to form a radical cation intermediate similar to 40) and the 
electron density of the pi-system (see SI, figure S10 for details). 
Compounds such as dehydroepiandrosterone-phosphate 51 
and the 8-membered lactam 57 cannot be oxidized under the 
EDD reaction conditions due to the deshielded vinylic proton 
correlating to a higher oxidation potential (CV = 2.06 to 2.47 V). 
When the vinylic proton is shielded, the oxidation potential be-
comes lower and reactivity toward EDD is observed (CV = 1.54 
to 1.72 V). On the other hand, compounds such as dehydroepi-
androsterone-TMS 54, lactone-TMS 56, and lactam-TMS 59 
whose vinylic protons that are too shielded, afforded low 
amounts of the desaturated product (CV = 1.32 to 1.4 V). In this 
case, the enol derivatives react as nucleophilic radicals rather 
than electrophilic radical cations due to greater cationic stabi-
lization, which renders the EDD pathway less favorable.38,39 Ac-
cordingly, this explains why electron withdrawing enol-phos-
phates are required for esters and lactams in EDD rather than 
the corresponding silyl enol ethers. 

   Based on these observations, one could imagine predicting 
the outcome of the EDD reaction by calculating the NMR shift 
of the TMS enol ethers of interest (Scheme 1C, Step 1). With 
this idea in mind, a simple protocol using GAUSSIAN16, a quan-
tum chemical calculation software, was developed. This proto-
col gives access to a calculated NMR shift based on the shielding 
constants using the gauge-including atomic orbital (GIAO) 
method in the WP04 database (functional) with an aug-cc-
pVDZ basis set using tetramethylsilane as a reference (Scheme 
1C, Step 2). Next, to obtain a more accurate value, the NMR shift 
value was corrected using an experimentally generated linear 
regression (Scheme 1C, Step 3 and see SI for detailed graphical 
step-by-step guide). Finally, the corrected NMR shift can be 
used to predict the efficiency of the EDD reaction (Scheme 1C, 
Step 4).  To our knowledge, this is a rare example of using cal-
culated NMR shift to predict the scope of an organic methodol-
ogy.40  

   The desaturation of carbonyl derivatives is a basic reaction of 
utmost utility in organic chemistry as it unlocks a variety of 
useful downstream transformations. Studies in this area con-
tinue to the present day; the contribution reported herein af-
fords a potentially simple solution to this problem. Drawing 
from early studies in electrosynthesis and more recent mecha-
nistic studies of anodic enol-oxidation, a useful protocol for 
EDD has been uncovered. This oxidation protocol can be per-
formed in an undivided cell, on multiple scales, without strict 
removal of air or water, and in the absence of expensive metals, 
ligands, or stoichiometric organic oxidants. As with the oxida-
tion of alcohols, for which numerous methods are available, 
this desaturation study has been placed into context with the 
most powerful methods currently available to aid the practi-
tioner.  Finally, a simple 1H NMR-based rubric was created to 
allow users to experimentally or computationally predict 
which substrates are suitable for EDD, which should facilitate 
its rapid adoption.  
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