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Abstract

The prediction of protein-ligand binding affinities using free energy perturbation

(FEP) is becoming increasingly routine in structure-based drug discovery. Most FEP

packages use molecular dynamics (MD) to sample the configurations of proteins and

ligands, as MD is well-suited to capturing coupled motion. However, MD can be pro-

hibitively inefficient at sampling water molecules that are buried within binding sites,

which has severely limited the domain of applicability of FEP and its prospective usage

in drug discovery. In this paper, we present an advancement of FEP that augments

MD with grand canonical Monte Carlo (GCMC), an enhanced sampling method, to

overcome the problem of sampling water. We accomplished this without degrading

computational performance. On both old and newly assembled data sets of protein-

ligand complexes, we show that the use of GCMC in FEP is essential for accurate and

robust predictions for ligand perturbations that disrupt buried water.
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Introduction

In structure-based lead optimization, a popular strategy to enhance ligand selectivity and

affinity is to design compounds with chemical groups that occupy sites which would otherwise

be filled with water. Free energy perturbation (FEP) methods, particularly the FEP+ imple-

mentation,1 are becoming increasingly routine in prospective drug discovery projects. FEP

calculations typically use molecular dynamics (MD) to efficiently capture the coupled and

concerted motion of atomistic configurations.2,3 However, water molecules that are buried

deep within the interiors of proteins can have residence times as long as hundreds of mi-

croseconds4 – well beyond the typical sampling time of FEP calculations. As a result, FEP

transformations that modify or displace buried water have remained inaccurate as well as

sensitive to the initial placement of water inside the protein.

If a water molecule is expected to be displaced after a ligand modification, one rigorous

treatment, known as “double decoupling”, calculates the free energy to decouple a water

molecule from the hydration site and from bulk water.5,6 These free energies are then com-

bined with the free energy change from the ligand transformation, calculated in the absence

of the water molecule, to make the final prediction. However, the double decoupling method

is computationally expensive, difficult to set up, and involves the complex application of

restraints or constraints. Other techniques, such as those based on inhomogenious fluid sol-

vation theory, can also predict the binding thermodynamics of water at the cost of additional

simulations and calculations.7–10 Due to these difficulties, FEP practitioners instead often

experiment (often through trial and error) with including or excluding the “displaced” water

molecule in the starting structure, or use a fast algorithm to predict the occupancy of the

hydration site prior to running FEP.11

Recently, grand canonical Monte Carlo (GCMC) has shown great promise as a simulation

framework to automatically incorporate the thermodynamics of buried water in ligand FEP

calculations.12–14 Unlike pure MD methods, the number of atoms and molecules in a GCMC

simulation is variable. Molecules are added or removed using specialized moves that are
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accepted or rejected using a Metropolis-Hastings criterion, which is constructed to maintain

a valid thermodynamic ensemble. GCMC is particularly well suited to sampling water in

buried cavities as the specialized moves completely bypass any physical barriers that slow

the binding and unbinding of water. Importantly, GCMC requires no prior knowledge of

the number and location of water molecules in the binding site. These benefits can also be

achieved in simulation methods that have a fixed number of molecules by allowing waters to

make discontinuous jumps across barriers.15,16 However, these types of moves are likely to

have lower acceptance rates than GCMC because each move requires a simultaneous insertion

and deletion, whereas a GCMC move requires only a single insertion or deletion.

Questions of computational efficiency and reliability abound for any new technique in free

energy calculations, particularly so in prospective drug discovery projects where calculations

are conducted at scale and can be subject to strict time constraints. Simulation methods that

involve the addition or removal of molecules have notoriously low acceptance rates, which has

prompted the development of numerous acceleration schemes, such as biasing insertions into

free space17,18 and the use of nonequilibrium trial moves.19,20 One avenue that has remained

as yet unexplored for GCMC-type methods has been the massive parallelism afforded by

modern graphical processing units (GPUs). As GPUs are now routinely used to conduct

MD simulations, new sampling techniques could benefit by exploiting this pre-existing and

powerful infrastructure.

In this work we report a GPU-accelerated implementation of GCMC water sampling in

the Schrödinger FEP+ workflow.21 We begin by discussing the theory behind GCMC and

its validity for use in ligand free energy calculations. Our GCMC protocol is thoroughly

validated, such as by comparing GCMC free energy predictions to double decoupling calcu-

lations and hydration free energies, as well as demonstrating that the location of important

hydration sites can be sampled efficiently. We assemble a large data set of proteins and

ligands that focuses on transformations that displace or disrupt buried water molecules. We

show that GCMC lowers the prediction error irrespective of whether or not the disrupted
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water molecules are included in the starting structure. The propensity for GCMC to increase

the convergence of the free energy predictions is also investigated and discussed. We expect

that expanding the domain of applicability of FEP+ to reliably include modifications that

involve buried water will be of significant benefit to structure-based drug discovery.

Theory

The interpretation of the grand canonical ensemble

Most biomolecular simulations are performed in the isobaric-isothermal (NPT) ensemble,

in which the number of particles (N), pressure (P), and temperature (T) are fixed. In the

grand canonical ensemble (µVT), the number of particles and the pressure fluctuates, but

the chemical potential of the fluctuating chemical species (µ), the volume (V), and the

temperature remain constant. The term grand comes from the French for large and was

first introduced to signify that the grand canonical ensemble is a superset of smaller, petite,

ensembles that have a fixed number of particles.22 Grand canonical Monte Carlo (GCMC)

is a simulation technique that is used to sample from the grand canonical ensemble.

One practical difficulty encountered when trying to implement GCMC is deciding on

what chemical potential to select. The chemical potential is the free energy to add or

remove the molecules from some predefined reservoir. In our GCMC simulations we use

the chemical potential of bulk water. This ensures an inserted water molecule is, in effect,

being transferred from bulk water and any deleted water is being transferred to bulk water.

By construction, this choice of chemical potential ensures that a GCMC simulation of pure

water has the same density as a MD NPT simulation of pure water. We discuss how we

calibrated the chemical potential for bulk water in section 4 of the Supporting Information

(SI).

The µVT and NPT ensembles both deal with fluctuations in the particle density. NPT

simulations sample the density by varying the volume for a fixed number of particles, whereas
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µVT simulations sample the density by varying the number of particles for a fixed volume.

A useful byproduct of having the equal densities in NPT and µVT is that an equivalence

between the density fluctuations can be established. Proved in section 1 of the SI, the

variance of the density, denoted Var(ρ), in the NPT and µVT ensembles are related via

〈V 〉NPT
〈ρ〉2NPT

Var(ρ)NPT =
VµVT
〈ρ〉2µVT

Var(ρ)µVT, (1)

where angular brackets with subscripts represent ensemble averages. This – to our knowledge

– new relation shows that the density fluctuations in NPT and µVT ensembles are equal

when the mean densities are the same and the fixed volume in the µVT ensemble is equal

to the mean of the volume in NPT. Thus, GCMC, particularly when applied to water in

solvated systems, has a similar effect to a barostat as the density of a system can equilibrate

and fluctuate with the same magnitude as in NPT.

Of particular interest is the relationship between free energies in NPT and µVT. We show

in section 2 of the SI that when perturbations are made to the potential energy of a system,

like in FEP, the same free energy estimators (such as thermodynamic integration, Bennetts

Acceptance Ratio method etc.) can be derived for µVT. Pertinently, we also demonstrate

how these estimators will yield predictions that are approximately equal to those in NPT.

Critical to the establishment of the latter is the equivalence of the density in µVT and NPT,

and the approximate equivalence of the variance of the density between the two ensembles.

The thermodynamics of water displacement

This section uses a toy model to quantify the thermodynamic contribution a buried water

molecule has on the binding affinity of a ligand. The aim is to help interpret the results that

are presented later in this paper and to illustrate the benefits that GCMC provides in FEP

when ligand transformations displace bound water molecules.

Consider two hypothetical ligands, a and b, that can bind to a receptor. Ligand a is
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Figure 1: A schematic diagram of a receptor that can bind 2 ligands. Ligand a (top panel)
fills the entire binding site of the receptor, whereas ligand b (bottom panel) is smaller and
supports a buried water molecule when it is bound. Relative to ligand b, ligand a can be
said to “displace” a buried water molecule. Irrespective of the nature of the hydration site,
this water molecule contributes favorably to the affinity of ligand b such that ligand a will
incur a penalty to its affinity by displacing it. The goal of applying GCMC water sampling
to ligand FEP calculations is to be able to capture the thermodynamic cost of transferring
water molecules to and from bulk water for different ligands.

larger than ligand b such that ligand b can accommodate a single buried water molecule.

This water molecule resides in the bulk solvent when ligand a is bound. Figure 1 shows

schematic representations of these complexes. We are interested in the relative binding free

energy between these two ligands, and, in particular, the contribution of the buried water

molecule.

Derived in section 3 of the SI, the relative binding free energy between ligands a and

b, denoted ∆∆Ga→b can be expanded into the relative free energy when hydration site is

unoccupied with both ligands, i.e. dry, plus a term that corrects for solvation of the cavity

in ligand b, denoted ∆Gsolv:

∆∆Ga→b = ∆∆Gdry
a→b + ∆∆Gsolv, (2)
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where

∆∆Gsolv = −kBT ln
(

1 + e−β∆Gbind
water

)
. (3)

Here, ∆Gbind
water denotes the standard free energy to transfer a water molecule from the bulk

solvent to the hydration site. The derivation in section 3 of the SI fully accounts for the

indistinguishably of water. Because the water molecule is bound with ligand b and not

with ligand a, ∆∆Gsolv is always less than or equal to zero and, crucially, this property is

irrespective of the details of the receptor and the ligands. Thus, the hydration of a site near

a ligand contributes favorably to the binding affinity. For a new ligand to displace a water

molecule and have a lower (i.e. more favorable) binding free energy, the new ligand must

be able to compensate for loss of hydration, for instance, by increasing the strength of the

interaction with the receptor.

Also in section 3 of the SI, an alternative form of the solvent correction is shown to be

∆∆Gsolv = kBT ln(1− p), (4)

where p ∈ [0, 1] is the fractional occupancy of the hydration site with ligand b. In a relative

binding free energy calculation, this relation shows that it may not be sufficient to place a

water molecule in the starting receptor structure. Instead, to correctly capture the thermo-

dynamic contribution of a hydration site, it is important that the hydration site is occupied

by a water molecule with the correct frequency during the simulations. The primary goal of

using GCMC in a ligand FEP calculation is for the occupancy of all hydration sites to be

accurately sampled in order to fully capture their thermodynamic contribution to relative

binding free energy calculations.
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Simulation details

The relative binding free energy between two ligands is computed by alchemically transform-

ing one to another when they are bound to the complex and when they are solvated in bulk

water. All solvent FEP calculations are conducted in NPT ensemble. For the calculations

in the complex, this work explores different water sampling methods.

General MD and FEP details

The OPLS3e forcefield23 was used throughout along with the SPC water model. The Nosé-

Hoover chains integrator24 was used in the MD stages to maintain a constant temperature

of 300 K in all simulations. Hydrogen mass repartitioning was used along with the RESPA

multiple time-stepping algorithm25 with timesteps of 4 fs for bonded interactions, 4 fs for

nonbonded interactions within the distance cutoff, and 8 fs for electrostatic interactions

in reciprocal space. No salt or neutralizing counterions were added to the systems. When

simulating from the NPT ensemble, the Martyna-Tobias-Klein barostat was used to maintain

pressure at 1 atm.26

As previusly described,27 FEP+ uses replica exchange solute-tempering (REST). Replicas

are exchanged every 1.2 ps. The data collected during REST is used to calculate free

energies. Unless otherwise stated, 16 lambda windows (replicas) were used for core-hopping

transformations and all others used 12 lambda windows - no charge-changing transformations

were used in this study. The default simulation length used in this study is 20 ns (i.e. 20ns

per lambda window). The Bennett Acceptance Ratio28 method is used to calculate the

relative free energy between neighboring lambda windows, and the estimated free energies

are summed to give the relative free energy of the whole transformation. The cycle-closure

algorithm29 is used to combine the relative binding free energies over a FEP+ map into

consistent predictions.
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GCMC specific details

Our simulation protocol iterates between a GCMC stage, where attempts to insert and delete

water are made, and an NVT MD stage. The combination of these two stages ensures the

simulations sample from a type of grand canonical ensemble; although the simulations have

a fixed number of solute atoms, this ensemble will be referred to as µVT for brevity. In

the production µVT FEP protocol, each MD stage lasts for 5ps. In the GCMC stage, a

“local” 30 routine is performed with a probability of 90%. In this mode, 34,000 insertion or

deletion attempts are made within an orthorhombic box with faces that are a minimum of

4 Å away from the ligand. With a probability of 10%, a “globalâĂİ routine is performed in

which 102,000 insertions and deletion attempts are made over the entire simulation volume.

The combination of these two modes ensures that water molecules near the alchemical per-

turbation region are well sampled and that density fluctuations of the whole system do not

occur on detrimentally slow timescales. After the final attempt is made in either the local or

global modes, velocities for all atoms in the system are drawn from the Maxwell-Boltzmann

distribution before restarting the MD stage.

Using the scheme of Woo et al.,18 insertions are biased into unoccupied space by using

a 3D grid that tracks cavities within the system. The length of each cell is 0.22 Å, and

a cell is deemed to be “occupied” if the entire volume of the cell is within 1.5 Å of an

atom. An insertion move is attempted by first, selecting an “unoccupied” cell, and second,

selecting a position within the cell for the water oxygen atom with a uniform probability.

The orientation of the proposed water molecule is randomly drawn uniformly over the unit

sphere. As described by Woo et al., the use of the occupancy grid requires a particular

Metropolis-Hastings criteria to ensure the algorithm maintains detailed balance.

GCMC equilibration

Before starting REST, but after the minimization and relaxation stages, GCMC is used to

equilibrate water around the ligand and equilibrate the system density for each lambda win-
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dow. To accelerate the water placement and density equilibration, the GCMC equilibration

stage occurs after every 25 fs of MD and global attempts are made with a probability of

75% . For the first 20 ps of this equilibration scheme, heavy atom position restraints are

applied with a force constant of 50 kcal/mol/Å2. This is followed by another 20 ps without

any position restraints.

The implementation and performance of the GCMC GPU code

Our implementation of GCMC has been highly optimized on GPUs and achieves a simu-

lation performance that is comparable with pure MD with a barostat. The GCMC energy

evaluations use the same force field and treatment of long range interactions as MD.

GCMC insertion and deletion attempts are typically made in sequence within a for-loop.

In our implementation, this sequence of attempts is “unrolled” onto the GPU and attempts

are evaluated simultaneously within fixed-size batches. If a move is accepted within a batch,

the remainder of the attempts are discarded, the system configuration is updated, and a new

batch is evaluated. No more than one move is accepted per batch. Batched attempts are

made on the GPU until the specified total amount of attempts has been completed. This

approach is ideally suited to GCMC because of its low acceptance rate, which ensures that

the number of discarded attempts is low. In our implementation, the probability to accept

an insertion or deletion attempt is roughly 0.5 %. Thus, batching attempts on a GPU is

much faster than the sequential for-loop approach as the number of batches can be made to

be much smaller than the number of attempts.

To evaluate the performance of the GCMC GPU code, a protein-ligand complex was

taken from the bace1 data set from a previous publication.1 The system was solvated and

minimized using the default FEP+ protocol for NPT and simulated for 5 ns. Using the

final structure, the system was simulated for 5 ns in NPT as well as with the GCMC-MD

simulation protocol described above on the same GPU and CPU. It was found that the

GCMC-MD simulation was 11 % faster than the simulation in NPT, with the relative speed-
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up due to the fact that in our workflow, the barostat in NPT is updated more frequently

than GCMC is performed.

Comparing FEP protocols

FEP predictions made with three different water sampling protocols are compared through-

out this manuscript. These protocols are summarized in Table 1. The protocol where GCMC

water sampling is used during both the equilibration and production REST stages is referred

to as µVT. When no GCMC water sampling is performed either during the equilibration or

the REST stages and a barostat is applied, the protocol is referred to NPT.

In this work we also explore using GCMC to equilibrate water around the ligand prior

to launching REST in the NPT ensemble. This protocol is referred as “NPT pre-solvate”.

As this ensemble requires that each lambda window has the same number of atoms in the

system, water molecules that are furthest from the protein and ligand are removed until

this condition is met. This removal step is followed by a brief minimization on each lambda

window..

Table 1: The complex leg sampling protocols that are evaluated and compared in this study.

Protocol name Description
µVT GCMC is performed during equilibration and the REST stage.
NPT There is no GCMC water sampling.

NPT pre-solvate GCMC sampling is only performed during equilibration and
the REST stage is in NPT.

The prediction of conserved hydration sites

Critical to the utility of the combination of GCMC water sampling and MD is the ability

to predict the location of conserved water molecules, particularly those that are relevant for

ligand optimization. It is of interest how quickly and efficiently the GCMC-MD protocol can

populate hydration sites.
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Methods

Well characterized hydration sites were selected from four protein-ligand systems: HIV1

protease (PDB entry 3FX5), PTP1B (PDB entry 2QBS), HSP90 (PDB entry 3RLP), and

Brd4(1) (PDB entry 3JVK). The hydration sites that will be used to assess the speed and

accuracy of the GCMC protocol have been either displaced or considered for displacement

via ligand modifications in previous work31–34 and are shown in Figure 2.

A single hydration site was used from HIV1 protease. This water molecule forms hydrogen

bonds with the ligand as well as ILE 50 from protein chain A and ILE 150 from protein chain

B. The two hydration sites from PTP1B are buried in a subpocket between the ligand and

the protein residues near ALA 217 and ARG 221. The four hydration sites from HSP90 are

found between the ligand and the protein, near ASN 51, SER 52, and ASP 93. The four

conserved hydration sites in Brd4(1) lie between acetylated lysine and protein residues GLY

85, MET 105, MET 132.

All crystallographic water molecules within 4 Å of the ligands were removed from the

protein-ligand structures, which included the conserved waters of interest. As the purpose is

to investigate the placement of water in known structures, 50 kcal/mol/Å2 harmonic position

restraints were placed on the proteins and ligands. The systems were solvated within an

orthorhombic solvent buffer that was at least 8 Å from the protein. To be consistent with

the current FEP+ workflow for neutral transformations, no counterions or salt was added

to the systems. The systems were relaxed using the standard FEP+ minimization and

thermalizing protocol.

Each system was simulated 20 times for 1 ns with a different random seed using the local

mode of GCMC-MD. Configurations were recorded every picosecond. A hydration site was

determined to be “occupied” by a water molecule if it was within 1.5 Å of the crystallographic

position and no closer to any other hydration site.
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Figure 2: The average water occupancy of conserved hydration sites in 4 protein-ligand sys-
tems. Top left, HIV1 protease (PDB code 3FX5); bottom left PTP1B (PDB code 2QBS);
top right HSP90 (PDB code 3RLP); bottom right Brd4(1) (PDB code 3JVK). The conserved
water molecules (red spheres) were removed from the systems before running 20 repeats of 1
ns-long GCMC-MD simulations. The plots show 10 ps moving-averages of the hydration site
occupancies averaged over twenty repeats (lines) and their corresponding 95% confidence in-
tervals (transparent colors). The confidence intervals were calculated by bootstrap sampling
over the simulation repeats.

Results

Figure 2 shows the conserved hydration sites and their occupancy, averaged over all repeats,

as a function of simulation time. The hydration sites in HIV1 protease, PTP1B, and HSP90

are rapidly populated, with all hydration sites in all twenty repeats being fully occupied

within 25 ps (125000 insertion/deletion attempts). Once occupied, these sites remain fully

hydrated for the remainder of the simulations. The four hydration sites in Brd4(1) on

the other hand demonstrate partial occupancy, with average occupancy in hydration site 4

probably requiring more than 1 ns to fully equilibrate. While the average occupancies in

Brd4(1) are slower to converge than the other systems, there are multitudinous instances

when all 4 sites are simultaneously occupied; the longest first time for this to occur in one

of the repeats is 177 ps (885000 insertion/deletion attempts).
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Validation of the µVT free energy calculations

As discussed in the Theory section, binding free energies calculated in the µVT ensemble

should deviate minimally from free energies calculated in the NPT ensemble. However, direct

comparisons between binding free energies calculated in µVT and NPT can be hindered by

the long autocorrelation times of buried water molecules that can occur in the NPT ensemble.

Two model scenarios were used to probe the expectation that free energies in µVT and NPT

are sufficiently close and thereby validate our implementation of GCMC water sampling in

FEP+. In the first model scenario, absolute hydration free energies were calculated and

compared using µVT and NPT. Unlike deep within the interior of a protein, there are no

barriers that hinder water sampling, so hydration free energies that are calculated in NPT

should be directly comparable to those calculated in µVT. In the second model scenario,

the relative binding free energy between two ligands was computed in µVT and NPT. The

ligand transformation involved the displacement of a buried water molecule. While this is

automatically handled in µVT, alchemical decoupling is required in NPT to account for the

buried solvation contribution to the relative binding free energy. The predictions from both

protocols were expected to be in close agreement.

Comparing hydration free energies in µVT and NPT

Two hundred small molecules were randomly selected from Schrödinger’s small molecule test

set23 and their absolute hydration free energies were calculated in NPT, µVT, and – as a

negative control – NVT. It was expected that the µVT hydration free energies would be in

much closer agreement with NPT than the NVT free energies. The small molecules were

solvated in a cubic box whose faces were at least 15 Å from the solute. As a trivial source

of error in NVT free energy calculations comes from having unequilibrated system densities,

all simulations were first equilibrated with GCMC. For consistency, the same GCMC equi-

libration method was performed before the µVT and NPT calculations. Before launching
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into the REST stages of the calculations in NVT and NPT, it was ensured that each lambda

window had the same number of water molecules. Hydration free energies were calculated

using 12 lambda windows, each of which were run for 10 ns in the REST stage.

Results

Both relative and absolute hydration free energies calculated in the µVT and NPT ensembles

were found to be very close agreement. The root-mean-square deviation (RMSD) between the

absolute hydration free energies calculated in µVT and NPT was found to be 0.082 ± 0.004

kcal/mol. In contrast, the RMSD between the absolute hydration free energies calculated in

NPT and NVT was found to be 0.213 ± 0.004 kcal/mol. Significant differences between NVT

and NPT can arise because the density of the surrounding water in NVT can be significantly

perturbed by the addition or removal of a solute. In contrast, the water density in the NPT

and µVT can relax via volume fluctuations and molecule number fluctuations, respectively.

Comparing relative binding free energies in µVT and NPT

Relative binding free energy calculations in which a perturbation changes the occupancy of

a buried water molecule require care in pure NPT protocols. If a water molecule cannot

adapt to the perturbation – for instance, because of steric hindrance – the water molecule

must be transferred to the bulk solvent prior to carrying out the perturbation in a separate

set of calculations. The change in the free energy for this transfer (the standard binding

free energy of water for a given site) can be calculated using double decoupling5 – so called

because it involves alchemically decoupling the water molecule from a particular hydration

site and by decoupling it from bulk solvent. The free energy to decouple a water molecule

from bulk solvent is the hydration free energy of water, which has already been calculated

for the SPC water model as part of the calibration of the chemical potential.

In choosing a test system to compute relative binding free energies in µVT and in NPT

with double decoupling, there are two primary criteria. The first is that the hydration site
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should be sufficiently buried so that no other water molecules can occupy the site when a

water molecule is being decoupled from it. This is because in MD, unlike pure Monte Carlo

packages,6,13 it is extremely difficult to apply restraints that prevent other water molecules

from entering a hydration site. The second criteria is that the perturbation between the two

ligands must be sufficiently small to ensure the calculation can be reasonably converged in a

short simulation time. Two HSP90 ligands, shown in Figure 3, taken from a study by Wood-

head et al., fulfill these two criteria.33 The transformation between the two ligands involves

an addition of a methyl group that displaces a buried water that is completely occluded from

bulk. Following the naming scheme by Woodhead et al., the ligand containing a methanol

group is referred to as ligand 1, and the ligand with the added methyl – transforming the

methanol to a methoxy group – that displaces a water molecule is referred to as ligand 2.

Methods

The relative binding free energy between ligand 1 and ligand 2 was calculated in µVT using

3 repeats, where each repeat comprised 24 lambda windows at 10 ns each. PDB entry 2XJJ

was used as the starting structure. Averaged over the 3 repeats, the relative binding free

energy was predicted to be 2.04 ± 0.08 kcal/mol, which was in good agreement with the

experimental value of 1.98 kcal/mol.33 The two buried water molecules – shown bound with

ligand 1 in Figure 3 – were removed from the starting structure and the relative binding free

energy was computed in the NPT ensemble using the same simulation length and number

of repeats as with the µVT calculations. The contribution that the water molecules have to

the relative binding free energy in the NPT ensemble was computed in separate decoupling

calculations. In the presence of ligand 1, both water molecules were decoupled, and in

the presence of ligand 2, the other water molecule was decoupled. Decoupling both water

molecules, rather than just the one that was sterically displaced, accounts for the possibility

that the remaining hydration site has a partial occupancy; a priori the water occupancy of

this site in the presence of ligand 2 was not known for certain, despite the fact that no water
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is present in the cyrstal structure (PDB entry 2XJG).

Restraints on a water molecule are required when decoupling it from a hydration site,

otherwise – to the detriment of the convergence – it will drift away from the site when it

is partially decoupled. Unlike previous studies, which used absolute position restraints or

volume constraints,5,6 we use relative position restraints to ligand atoms. We restrain only

the oxygen atom in the water molecule so that it is free to explore different orientations

during the decoupling. Inspired by the restraints used by Boresch et al.,35 three atoms are

chosen from the ligand to define one distance restraint, one angle restraint, and one dihedral

restraint. The ligand atoms, shown in Figure 2 of the SI (section 5), were chosen to reduce

the possibility of collinear geometries of the four atoms, which breaks the definition of a

dihedral angle. The equilibrium distance, angle, and dihedral angle used in the restraints

were informed by short equilibrium simulations. Force constants were selected by trial and

error to be as small as possible to minimise the perturbation to system, but large enough to

ensure the water molecule did not move into a collinear geometry when in the decoupled state.

The restraints were applied to the water molecule during the same alchemical schedule that

decoupled the water molecule, such that, at λ=0, the water(s) were fully interacting without

any restraints and, at λ=1, the water molecule(s) were fully decoupled and fully restrained.

In the fully decoupled state, the free energy to apply to restraints can be analytically derived

and estimated using the rigid rotor approximation, which is shown in section 5 the SI.

Results

The free energies to decouple the water molecules in the presence of ligands 1 or 2 are shown

in Figure 3 and the raw data is contained in Table 1 of the SI. There is excellent agreement

between the relative free energy calculated in µVT and the total NPT free energy difference.

The disparity in the free energy between the two approaches (labelled as “hysteresis” in

Figure 3) is 0.05 ± 0.14 kcal/mol, which is smaller than the statistical variance encountered

in typical relative free energy calculations. This result, along with the hydration free energy
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Figure 3: Comparing the relative binding free energies of two ligands computed in the µVT
and NPT ensemble. Left: The crystallographic binding modes of two ligands (cyan sticks)
bound to HPS90 (green cartoon). ASP 93 is also shown in grey sticks. Relative to ligand 1,
ligand 2 displaces a buried water molecule. Right: the relative free energy between ligands 1
and 2 has been calculated in the µVT ensemble and the NPT ensemble. The latter requires
the thermodynamic contribution of the buried waters to be calculated using the double
decoupling technique. The left vertical leg shows the contribution to remove both water
molecules and the right vertical leg shows the free energy to add back the remaining water
molecule. The sum of the NPT free energies (shown in kcal/mol) should equal the relative
free energy calculated with µVT. The overall discrepancy between the two approaches – the
hysteresis – does not differ from zero by a statistically significant amount.

calculations, demonstrates that our implementation of µVT delivers predictions that are

practically equivalent to well sampled NPT calculations.

In the absence of the water molecules, the relative free energy to add a methyl to the

ligand is predicted to be very favorable using NPT. This is because the transformation does

not account for the displacement of water which, as shown by equation 3 in the Theory

section, is an unfavorable contribution to the free energy.
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The accuracy of GCMC-FEP on water disrupting trans-

formations

In cases where the occupancy of buried hydration sites is affected by ligand transformations,

we expect that FEP that is enhanced with GCMC water sampling will have a lower average

error compared to FEP that does not used GCMC. We also expect FEP with GCMC to

be less dependent on whether or not crystallographic water molecules were included in the

protein structure.

Replication of Wahl and Smieško’s study

Previously, Wahl and Smieško constructed a data set of ten ligand perturbations across

four different proteins to assess the accuracy of a GCMC equilibration protocol that was

previously developed by ourselves.36 X-ray crystal structures exist for all ligands in the

study and transformations were made between matched pairs of ligands if the perturbation

displaced or interacted with buried water but left the protein and ligand conformations

largely unaffected. To explore the sensitivity of FEP on the initial solvation in the binding

site, they repeated the FEP transformations starting from both crystal structures of each

ligand.

We replicated the ten transformations in the Wahl and Smieško data set using the same

two starting structures (which were supplied by Wahl and Smieško in the supporting infor-

mation36) and included the same protein side chains in the REST region as before. Each

transformation was run using both starting structures with the µVT, NPT, and NPT pre-

solvate protocols. The results are summarized in Table 2 and the raw data is shown in Table

2 of the SI.

Both protocols that utilize GCMC water sampling (µVT and NPT pre-solvate) have

lower errors than the pure NPT protocol. The µVT predictions are the most consistent

between the two starting structures, with the RMSD being significantly lower compared to
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Table 2: The root-mean squared errors (RMSE) (in kcal/mol) of the three FEP protocols
on the water disrupting transformations that were assembled by Wahl and Smieško. The
root-mean squared deviation (RMSD) of the predictions in the different structures is also
shown. Statistical uncertainties show the standard error as calculated by sampling over the
ten ligands using bootstrap sampling.

Edgewise RMSE
Without overlapping water With overlapping water RMSD

µVT 1.71± 0.24 1.77 ± 0.31 0.41 ± 0.06
NPT 2.39 ± 0.68 2.54 ± 0.60 3.03 ± 1.01

NPT pre-solvate 1.77 ± 0.35 1.80 ± 0.33 1.06 ± 0.26

the other protocols.

Expanding the water displacement data set

To more fully assess the impact that GCMC has on the accuracy of FEP, we expanded on

Wahl and Smieško’s data to include more proteins and ligands. Ligand pairs were included

in our data set if 1) they had the same scaffold or binding mode, 2) a small difference

between them was expected to alter the stability (e.g. via steric displacement) of at least

one buried water molecule, 3) there was crystallographic evidence for the existence of the

buried water molecule(s) in question, 4) a crystal structure existed for a ligand that was in

the same congeneric series as the pair, and 5) the affinity of the ligands had been measured

with the same method and by the same group. While there was a preference for using

high quality direct measurements of affinity (such as isothermal titration calorimetry), this

was not always possible for all protein-ligand data sets. Figures 4 and 5 illustrates the

data sets that were selected for this study. Two starting structures were used for all of

proteins; one structure contained all known crystallographic water molecules, whereas the

other had any water molecules that overlapped with at least one of the ligands removed.

The FEP transformations were run for 20ns in the µVT ensemble, NPT ensemble, and the

NPT ensemble with GCMC pre-solvation. All of the structures and binding affinities used

in this study are provided with the supplementary information.
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Figure 4: Four out of the eight data sets used to assess the accuracy of GCMC water sampling
in FEP+. Examples are shown of ligands that either interact with or displace buried water
molecules in each data set, along with the the topology of each FEP map. The ligands names
are taken from the original publications. From top to bottom, the data sets are HSP90 from
Kung et al.,37 HSP90 from Woodhead et al.,33 Chk1 from Fraley et al.,38 and urokinase from
Katz et al.39,40
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HSP90

HSP90 has four highly conserved water molecules that are buried deep within the binding

site in the apo state. Three of these water molecules, (those that are adjacent to ASN51,

SER52, and ASP93), are displaced or disrupted by the two congeneric series considered in

this study.

The first congeneric series for HSP90 was taken from the study by Kung et al. in which

the growth of a fused ring and the addition of substituents gradually displace the 3 waters.37

The experimental binding affinities were taken from a high-throughput competition assay.

These measurements should be interpreted with some caution; the binding free energies were

measured with ITC on four compounds and these values had an RMSD of 0.86 kcal/mol

compared to the faster technique. The protein structure was taken from PDB entry 3RLP

(which contains the 3 buried water molecules). The ligand binding modes were based on the

binding poses found in PDB entries 3RLP, 3RLQ, and 3RLR.

In the second congeneric series for HSP90, four ligands were taken from Woodhead et

al.,33 two of these ligands are the same as those used for the comparison of GCMC with

alchemical decoupling (see Figure 3). All ligands in this series displace the buried water

that is closest to ASN51, and the ligands used in this study have different interactions with

the two remaining waters molecules, with one ligand sterically displacing one of them. The

ligands had their affinities measured with ITC. The binding poses of the ligands was taken

from PDB entries 2XAB, 2XJG, and 2XJJ; the protein structure was taken from 2XJJ.

Chk1

Ligands were taken from Fraley et al. in which different rings and ring substitutions inter-

act with a buried pocket that contains three water molecules.38 While some ligands do not

sterically displace the waters, some or all of the waters can be displaced by the modifica-

tions in this series. The ligands were aligned to the crystallographic ligand in the structure

that accompanied the publication (PDB entry 2HOG). In that structure, one of the buried
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water molecules is displaced. Despite knowing the overall binding modes of the ligands, the

orientations of the ligand perturbations required further modelling. The orientation of one

of the ligand modifications (compound 24) was taken from PDB entry 2C3K with the rest

predicted using Glide.41

Some of the ligands contained aromatic nitrogens whose tautomeric state was uncer-

tain, for instance, ligand 21 in Figure 4. Tautomers for all ligands were generated with

Epik.42 After using Epik, uncertainty remained for ligands 13 and 21 which was resolved

with Schrödinger’s macro-pKa prediction protocol.43

As 2HOG is missing residues 44 to 50 as well as the side chain for TYR 20, PDB entry

2E9V (resolved at 1.9 Å, 0.65 Å backbone RMSD from 2HOG) was used as the starting

protein structure for FEP. The oxygen positions of the unperturbed three-water network

were also taken from 2E9V.

Urokinase

Four ligands were taken Katz et al.39,40 to explore the displacement of the buried water (in

the vicinity of ASP 189) by F and Cl. Although more chemical substituents were synthesized

and assayed by Katz et al., the binding affinities of the four ligands selected for this study

were measured more rigorously than many others.

The protein structures and ligand binding modes were taken from PDB entries 1GJ7

and 1GJB. PDB entries 1GJ7 and 1GJB show that the addition of Cl to the scaffold shifts

the binding mode of the ligand towards ASP 189 and the buried hydration site water by

approximately 1 Å. As a result, the ligand pose in 1GJB was used as the basis for the FEP

map in the presence of the buried water molecule, and pose in IGJ7 was used for the FEP

map in the absence of the water molecule. ASN 192 was added to the REST region as both

1G7J and 1G7B resolve this residue in 2 conformations. Experimental evidence accumulated

by Katz et al. indicates that HIS 57 and the phenol in the ligand scaffold form a salt bridge

at pH 7. Thus, HIS 57 was prepared in the biprotonated state and the phenol oxygen was
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deprotonated.

Thrombin

Baum et al. explored 26 small modifications to a single scaffold where all except one all

consist of small additions to a phenyl ring.44 A buried water molecule (adjacent to ASP

189) that is present with the unadorned phenyl group (PDB entry 2ZFF) is displaced by the

addition of CH3, F, or Cl in the meta position (PDB entries 2ZF0, 2ZDZ, and 2ZC9 respec-

tively). The binding affinities of all the ligands were measured using a kinetic competition

assay and a subset of 12 ligands also had their affinities measured with ITC. The absolute

difference of the measured affinities between the two techniques range from 0.02 kcal/mol to

0.80 kcal/mol with an RMSD of 0.50 kcal/mol. The 12 ligands that were assayed with ITC

were used previously by a previous FEP+ study.1 The experimental affinities were taken

from the competition assay given its greater coverage of ligands. Only the neutral ligands

that had unambiguous stereochemistry (a total of 24) were used in this work.

PDB entry 2ZFF was used for the protein structure and as the basis for the binding

modes of the ligands. Restraints were placed on a Na+ ion adjacent to ASP 189 to prevent

its diffusion. As indicated by Figure 5, ligand 5 was placed at the center of the map with

all ligands connected to it. The orientation of most of the ligands with substitutes in the

ortho and meta position was unknown and highly unlikely to change during the course of

the simulation. Two orientations were added to the FEP map, both with an edge to ligand 5

and edge between them. The relative free energies between these modes were combined into

a single relative free energy prediction using the same scheme as established previously.47,48

Scytalone dehydratase

The ligands developed by Chen et al.45 for scytalone dehydratase are commonly used for

validating protocols that displace water molecules (see, for instance Michel et al.13,49). This

series explores nitrogen substitutions to quinoline derivatives as well as the growth of a
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Figure 5: Four out of the eight data sets used to assess the accuracy of GCMC water sampling
in FEP+. Examples are shown of ligands that either interact with or displace buried water
molecules in each data set, along with the the topology of each FEP perturbation map. The
ligands names are taken from the original publications. From top to bottom, the data sets are
thrombin from Baum et al.,44 scytalone dehydratase from Chen et al.,45 Brd4(1) and Taf1(2)
from Crawford et al.46 The thrombin map (top, yellow cartoon) explores two orientations
for ligands that have substitutions in the ortho and meta position. These orientations are
represented by two connected nodes in the map.
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cyano-nitrile group into a conserved hydration site. PDB entry 3STD – in which the buried

water has been displaced – was used as the protein model for FEP and as the basis for

binding modes of the ligands. The location of the water oxygen atom was taken from PDB

entry 5STD.

Based on an experimental measurement of a close chemical analogue,50 the quinoline

nitrogen in ligand 3d of this set (shown in Figure 5) is expected to have a pKa of 8.0. As the

experimental assay was conducted at pH 7,45 this ligand will be protonated in solvent. A

preliminary FEP+ calculation between the protonated and neutral form of ligand 3d when

bound to the protein predicted that the pKa lowers by roughly 9 units. Based on this result, it

was assumed that the remaining ligands bind in their neutral forms. Schrödinger’s method

to determine macro-pKas was run on the remaining ligands to estimate the pKas of the

aromatic nitrogens.43 These predictions, shown in Table 4, have an expected error of about

1 pKa unit, making the protonation state of ligands 2d, 6d, and 8d in solvent uncertain. A

correction, described previously,51 was applied to predicted relative free energies to account

for the pKa of the ligands in solvent. The uncertainty in the macro-pKa predictions –

particularly for 2d, 6d, and 8d – adds a degree of uncertainty to the scytalone dehydratase

FEP predictions that is not present in the other data sets.

Bromodomains Brd4(1) and Taf1(2)

There are four hydration sites that are present in all apo bromodomains whose propensity for

displacement has been previously investigated by GCMC.52 Eight ligands were taken from a

study by Crawford et al. in which an alkyl chain was grown into the buried water pocket for

a large number of bromodomains.46 Crystallographic structures that accompanied the work

show some of the four waters are displaced for Brd4(1) and Taf1(2). The same FEP ligand

map was used for both Brd4(1) and Taf1(2).

For Brd4(1) and Taf1(2), PDB entries 5I80 and 5I29 were used as the structure that

contained all four buried molecules, respectively, whereas PDB 5I88 and 5I1Q were used as
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the structure whose water molecules had been displaced and disrupted. The ligand binding

modes were based on 5I88 and 5I1Q for Brd4(1) and Taf1(2), respectively.

Results

Table 3: The mean unsigned error (MUE) and root-mean squared errors (RMSE) in kcal/mol
of the three FEP protocols on the water disrupting maps shown in Figures 4 and 5. The
errors for the protocols marked with ∗ have been calculated with the highest confidence data
sets - the Kung HSP90 has been excluded due to the high experimental uncertainty and the
scytalone dehydratase data has been omitted owing to uncertainty of the ligand pKas. The
root-mean squared deviation (RMSD) between the FEP predictions when using different
initial structure is also shown. The standard errors have been calculated by bootstrap
sampling over all ligand perturbation.

Without overlapping water With overlapping water
MUE RMSE MUE RMSE RMSD

µVT 1.11 ± 0.09 1.43 ± 0.11 1.15 ± 0.10 1.47 ± 0.11 0.43 ± 0.04
NPT 1.40 ± 0.17 2.23 ± 0.36 1.52 ± 0.15 2.12 ± 0.19 2.32 ± 0.30

NPT pre-solvate 1.11 ± 0.10 1.42 ± 0.11 1.15 ± 0.12 1.51 ± 0.12 0.59 ± 0.05
µVT∗ 0.89 ± 0.09 1.18 ± 0.13 0.98 ± 0.10 1.29 ± 0.13 0.46 ± 0.05
NPT∗ 1.06 ± 0.11 1.41 ± 0.14 1.22 ± 0.13 1.66 ± 0.19 1.35 ± 0.23

NPT pre-solvate∗ 0.94 ± 0.09 1.22 ± 0.11 0.96 ± 0.11 1.33 ± 0.14 0.61 ± 0.06

Sampling water with grand canonical Monte Carlo, either throughout the entire FEP

calculation (µVT) or as an equilibration step (NPT pre-solvate), has a significantly lower

error than the protocol without GCMC (NPT). Table 3 and Figure 6 aggregate the root-

mean-squared error (RMSE) from all 139 perturbations from the eight protein data sets.

The difference between the RMSEs of the µVT and pre-solvate protocols over all the data

sets is not statistically significant.

Figure 6 shows that when using the NPT protocol, it is possible to pick a starting

arrangement of water that results in a lower error in FEP compared to the other arrangement.

For instance, the NPT protocol that has the lowest RMSE with urokinase is when the

starting structure does not contain the conserved water molecule (see Figure 4). The opposite

is true with HSP90 data set from Woodhead et al., as the lowest error occurs when the
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Figure 6: The edgewise error for all data sets. Top panel: the RMSE aggregated over all pairs
of compounds in each map. Lower panel: the RMSE for each data set. Error bars reflect
standard errors which have been calculated by bootstrap sampling over all perturbations.
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overlapping conserved water (seen in figures 3 and 4) is included in the starting structure.

For some systems, such as Taf1(2), NPT is equally accurate irrespective of whether the

starting structure contains the conserved overlapping waters or not. Prospectively however,

one would not know whether starting with or without overlapping water would be detrimental

to the results.

Table 3 and Figure 4 of the SI show the root-mean squared difference (RMSD) between

predictions when calculations are started with and without overlapping water molecules.

With an RMSD of 2.32 kcal/mol, the NPT protocol is completely unreliable for perturbations

that disrupt or displace buried water molecules. The µVT protocol drastically reduces the

dependence of the free energy predictions on the starting placement of water relative to the

NPT protocol. The lowest RMSD of 0.43 kcal/mol between predictions is found with the µVT

protocol. The higher consistency of the GCMC predictions indicates that accelerated water

sampling, run either before or during the production free energy calculation, is essential in a

prospective setting. Other sampling metrics – discussed in below – provide further evidence

that the µVT protocol is the most robust compared to the NPT and pre-solvate protocols.

With either the µVT or pre-sovlation NPT protocol, the lowest RMSE occurs with the

structures that do not contain water molecules that overlap with the ligand. This is to be

expected, as GCMC is first run after the systems have been minimized; water molecules

that initially overlap with ligands have the potential to distort the binding modes during

the minimization. The most robust strategy is therefore to not include conserved water

molecules in a FEP map if they sterically overlap with the ligands. As exhibited in Figure

2, any missing water molecules in a structure will be rapidly replaced with GCMC.

Despite the improved accuracy from GCMC water sampling, Figure 6 shows that three

systems, namely the Kung et al. HSP90 set, Brd4(1), and scytalone dehydratase have

RMSEs that are at least 1.5 kcal/mol when using either the µVT and NPT pre-solvation

protocols. As discussed below, the higher error in the scytalone dehydratase data set appears

to stem from the uncertainty in the predicted pKas of the ligands. A higher error in the
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Kung et al. HSP90 data set is also to be expected given the higher experimental error

in this data set. Table 3 shows the RMSEs of the methods when these two data sets are

removed from the analysis. Despite the higher error, Figure 7 shows that the rank ordering

of the predictions with the µVT protocol are still appreciable with HSP90 (Kung et al.)

and scytalone dehydratase. A contributing factor to the error of the µVT protocol may be

an underestimation of the free energy to desolvate cavities, which is analyzed and discussed

below.

pKa correction in scytalone dehydratase

Unlike the other data sets, the relative binding free energy predictions of scytalone dehy-

dratase included a pKa correction to account for the protontion state of the ligands in solvent.

This correction was calculated from the estimated pKas of the ligands using a QM macro-

pKa protocol.43 The predicted pKas are shown in Table 4. It is expected that the uncertainty

in the predicted pKas contributes to the RMSE of this data set, which is 1.74±0.21 kcal/mol

with µVT.

To investigate the sensitivity of the relative binding free energy predictions on the esti-

mated pKas of ligands 2d, 6d, and 8d, the pKa correction for these ligands was recalculated

5000 times by drawing the pKas from a normal distribution centered on the values shown in

Table 4 with a standard deviation of 1 pKa unit – the estimated error of the pKa prediction.

These pKas were applied to the results from the µVT protocol when the starting structure

did not contain the overlapping water molecule. Ninety-five percent of the results had RM-

SEs between 1.49 kcal/mol and 1.99 kcal/mol, indicating a strong dependence of the error

on the predicted pKas.

In order to find the macro-pKa of ligands 2d, 6d, and 8d that achieved the lowest error,

the RMSE was minimized by optimizing the pKas of ligands 2d, 6d, and 8d subject to

the constraint that the solutions could be no more than 1 pKa unit away from the QM

macropKa prediction. With µVT, the lowest RMSE achievable was 1.48 ± 0.16 kcal/mol.
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This procedure was repeated on the NPT and NPT pre-solvate predictions, with the resultant

pKas shown in Table 4. The direction of pKa change was consistent over the three FEP

protocols, suggesting these changes are not solely due to statistical noise and may reflect an

error in predicted pKas.

Table 4: The estimated pKas of the compounds in scytalone dehydratase data set. The pKa
of ligand 3d was taken from a close chemical analogue, whereas all others were predicted
using a QM macro-pKa protocol.43 The ligand names have been taken from Chen et al.45 The
expected error for these predictions is expected to be roughly ±1 pKa unit. The ‘Optimized
to FEP’ multi-column refers to the pKas that have been optimized to minimize the RMSEs of
the FEP predictions in the µVT, NPT, and NPT pre-solvate protocols on the structures that
start without overlapping water. The optimization was constrained such that the prediction
could differ by no more than 1 unit from the QM macro-pKa prediction.

Optimized to FEP map
Ligand Estimated macro-pKa µVT NPT NTP pre-solvate
2d 6.33 6.02 5.50 5.57
3d 8.0 - - -
4d 5.45 - - -
5d 4.06 - - -
6d 7.09 8.08 8.07 8.09
7d 5.42 - - -
8d 7.13 7.69 7.52 7.65

The cost of desolvation

The Theory section of this manuscript describes how the free energy to grow into a buried

pocket can be erroneously predicted to be too favorable when buried waters do not have a

high enough occupancy during the simulation. This feature may be present in the thrombin

and bromodomain data sets.

In the thrombin data set, phenyl decorations that occupy a buried hydration site are

predicted to bind more strongly than experiment. Averaging over all the perturbations

that displace buried water, the mean difference between the µVT predictions (starting with

a structure without buried water) and experiment is -0.60 [-0.96, -0.26] kcal/mol. Here,

square brackets show the 95% confidence intervals that have been estimated by bootstrap
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Figure 7: The correlation between the experimental binding free energies and the predicted
binding free energies for each test system using the µVT protocol. The starting protein
structures for these results did not contain any overlapping water molecules. The dark and
light grey regions are within 1 kcal/mol and 2 kcal/mol of y = x line, respectively. Kendall’s
tau is shown for each data set with 95 % confidence intervals that have been estimated
by boostrap sampling the ligands. The affinity of the ligands highlighted in orange in the
thrombin, taf1(2), and brd4(1) plots may be affected by an underestimation of the binding
strength of water and are discussed in the section titled “The cost of desolvation”.

sampling the edges. With NPT, the difference between the water displacing predictions and

experiment is -0.73 [-1.18, -0.35] kcal/mol on average. The predicted over-stabilization of

the phenyl decorations from these calculations could come from an underestimation of the

binding affinity of water at that site, as illustrated by equation 3.

In the bromodomain data sets Brd4(1) and Taf1(2), the binding pockets “without over-

lapping water” are not devoid of water like with the thrombin data set. Nevertheless, there

is an indication that the affinity of the buried water is also underestimated in these data,

particularly so with Brd4(1). Collecting all the predictions that grow the hydrophobic chain

from the smallest ligand (ligand 2), the µVT predictions differ from experiment by -0.84

[-1.11, -0.56] kcal/mol in Taf1(2) and by -2.58 [-3.17, -1.96] kcal/mol with Brd4(1). These

values indicate that the affinity of ligand 2 is being underestimated relative to the com-
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pounds that displace or disrupt the buried water network. This underestimation could be

ameliorated using a water model in which the water network was bound more strongly to

the protein. The erroneously low predicted affinity for ligand 2 could also be a result of un-

explored binding modes, where additional, stable binding modes would lower the predicted

affinity.

The underestimation of the water stability in these cases could be due to the SPC water

model that was used, and may be alleviated with a different water model. The effect of

different water models on the accuracy of FEP predictions will be investigated in future

work.

Comparing the µVT and NPT pre-solvation protocols

Although the prediction accuracy of the µVT and the pre-solvate NPT protocols are statisti-

cally equivalent over the whole data set, the quality of the sampling is better with µVT. Two

features of the FEP+ workflow were used to probe the FEP sampling quality: the hysteresis

of the thermodynamic cycles in the perturbation maps and the degree of convergence of the

solute-tempering replica exchange method.

Comparing Hysteresis

The hysteresis of a closed perturbation cycle is measured by the sum of the relative free

energies within the cycle. Because free energy is a state function, this sum should be zero in

the infinite sampled limit. The lower the hysteresis, the more consistent the configurations

and states sampled by the transformation edges within the cycle appear to be. All of the FEP

maps used for the water disrupting data set contain a number of closed perturbation cycles.

The hystereses for all of the cycles in the water disrupting data set are aggregated and shown

in Figure 8, where it can be seen that the µVT protocol has a lower cycle closure error than

the NPT pre-solvate one. Calculating the differences of the hystereses for the same cycles

of the NPT pre-solvate and the µVT protocols and averaging over both starting structures
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reveals that the hysteresis in the µVT protocol is better by a statistically significant degree.

Specifically, the hysteresis of µVT protocol is 0.21 [0.13, 0.29] kcal/mol lower on average

than the hysteresis for the pre-solvate NPT protocol.

Figure 8: The average hysteresis over all closed cycles in the maps.

Comparing the quality of replica exchange

A score was devised to quantify and compare the sampling efficiency of replica exchange

in the three sampling protocols. Replica exchange allows the different replicas to perform

a random walk over the lambda windows. In the infinite sampling limit, each replica will

have occupied all of the lambda windows with the same frequency. The deviation of the

normalized lambda window sampling frequencies from a uniform distribution is therefore a

measure of sampling quality. Owing to its simplicity, the Kullback-Leibler divergence was

used to measure the deviation of the lambda window sampling frequencies, denoted f , from

a uniform distribution, denoted u:

D(f ||u) =
N∑
i=1

fi ln

(
fi
ui

)
, (5)
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where N is the number of lambda windows and ui = 1/N . A “better” sampled replica has a

score, i.e. D(f ||u), that is closer to zero. This direction of the Kullback-Leibler divergence,

as opposed to D(u||f), the ensures that the score remains finite even if some of the sampling

frequencies are zero.

Figure 9 shows the replica exchange scores for every replica in every perturbation edge in

the water displacing data set. The NPT protocol with a pre-solvation stage has a noticeably

worse score (higher deviation from uniform) than the µVT and NPT protocols. To ensure

that the improvement displayed in Figure 9 is statically significant, the scores were averaged

over each edge. These edgewise scores are statistically independent of each other, which

facilitates a statistical test for significance. Calculating the difference between the scores of

the same edge reveals that on average, the µVT protocol score is 24.8 [17.7, 32.1] % lower

(i.e. better) than the pre-solvate NPT score. Compared to NPT, the µVT scores are 13.6

[7.6, 20.1] % lower. The square brackets denote 95% confidence intervals that have been

calculated using bootstrap sampling of the edges.

Evaluating the performance of GCMC-FEP on a previous

benchmark

Previously, we applied the FEP+ workflow on a data set comprised of eight proteins, 199

ligands, and 330 perturbations.27 Using OPLS 2.1 and 5 ns of simulation time per lambda

window, an RMSE of 1.1 kcal/mol was obtained across the perturbations. To further evaluate

the performance of GCMC water sampling in protein-ligand free energy calculations, the

µVT, NPT, and NPT pre-solvate protocols were applied to this data set.

Methods

Seven out of the eight of the protein-ligands structures and FEP maps were taken from a

previous FEP study of ours.1 These proteins were bace1, cdk2, jnk1, mcl1, p38, ptp1b, and
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Figure 9: The average replica exchange score (calculated using equation 5) over all edges and
replicas in the water disruption data set. Error bars indicate the standard errors that have
been calculated using bootstrap sampling. The score measures the deviation the sampling
distribution over the lambda windows has from a uniform distribution. On average, the µVT
protocol produces samples that have a more uniform sampling distribution than the NPT
pre-solvate method. The µVT replica exchange scores are better than the solvate scores by
a statistically significant degree when the scores from the same edge are compared. Replica
exchange is more efficient when structures do not start with water molecules that directly
overlap with ligands.
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tyk2. A thrombin FEP was also included in that study, but this data set was omitted as all of

the ligands within it are already part of the thrombin data set that was analyzed earlier in this

manuscript. Over three-quarters of the ligands in the bace1 sterically overlap with a buried

water molecule that is present in the starting structure. Notably, the starting structures for

cdk2, jnk1, mcl1, and tyk2 were completely absent of any buried water molecules. With the

exclusion of thrombin, there are a total of 314 FEP edges in the seven protein data sets in

this collection. Each edge was simulated for 20 ns using the µVT, NPT, and NPT pre-solvate

protocols using the OPLS3e forcefield.

Results

Table 5 shows the total error of the µVT, NPT, and NPT pre-solvate protocols over the

seven protein data sets that we previously studied.1 The three methods have RMSEs that are

within statistical uncertainty of each other. Figure 10 shows how the RMSEs are distributed

for each individual system.

As demonstrated earlier in this manuscript, the FEP predictions from NPT simulations

that do not use any form of GCMC sampling can be very dependent on the starting placement

of water. The data set where this sensitivity should be most evident is bace1, where a number

of ligands displace a buried water molecule. Under the expectation that the µVT predictions

are more converged than the NPT predictions as a result of the buried water molecule, the

bace1 FEP map was repeated in NPT and run for 50 ns per edge.

Bace1 convergence analysis

The bace1 structure was taken from the PDB entry 4DJW which contains two buried water

molecules in the volume enclosed by the violet mesh shown in the leftmost panel of Figure

11. Twenty-eight out of the 36 the ligands in the FEP map have chemical groups, such as Cl,

cyano-nitrile, and methoxy groups, that sterically overlap with one of the two buried water

molecules. The center panel of Figure 11 demonstrates that when the pure NPT simulations
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Table 5: The mean unsigned error (MUE) and root-mean-squared error (RMSE) in kcal/mol
of each FEP protocol across the 314 FEP edges taken from our previous study.1 The RMSEs
for the individual protein data sets are shown in Figure 10. The errors presented here were
obtained after simulating for 20 ns per lambda window. The NPT RMSE increases to 1.02
± 0.04 kcal/mol when including the final 20 ns of bace1 simulations after they were extended
to 50 ns per lambda window.

MUE RMSE
µVT 0.81 ± 0.04 1.03 ± 0.05
NPT 0.80 ± 0.03 1.00 ± 0.04

NPT pre-solvate 0.81 ± 0.04 1.03 ± 0.04

Figure 10: The edgewise RMSE of the µVT, NPT, and NPT pre-solvate protocols on data
sets that were collected by a previous publication of ours.1
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are extended up to 50 ns, the ∆∆G predictions converge on the predictions from the 20 ns

µVT predictions. Table 6 shows that convergence to the µVT predictions is accompanied

by an increase in the RMSE; when the first 30 ns of the extended NPT simulations are

discarded, the RMSE very close to the RMSE of µVT.

The slow convergence of the NPT predictions is a result of the slow diffusion of a single

water molecule from a buried pocket. The rightmost panel in Figure 11 shows the water

occupancy of the subpocket takes at least 50 ns to fully equilibrate with the water displac-

ing ligands using the NPT protocol, but is fully equilibrated from the start of the µVT

simulations.

If the presence of the clashing water did indeed hinder convergence in NPT, then removing

that water from the starting protein structure should result in NPT predictions that are closer

to the µVT predictions. To test this, the overlapping water was removed from the protein

and the FEP map was re-run with NPT for 20 ns. The RMSE of these predictions, shown

in Table 6 are closer to the RMSE of the µVT protocol. The RMSD of the µVT predictions

and the NPT predictions after 20ns initially with the overlapping water was 0.39 ± 0.04

kcal/mol. Without the overlapping water molecule, the NPT predictions have an RMSD of

0.28 ± 0.03 kcal/mol relative to the µVT predictions. Thus, removing the overlapping water

results in predictions that are closer to the µVT predictions.

As established with the water disrupting data sets, the bace1 predictions made with µVT

are more robust with respect to the initial placement of water than the NPT predictions.

When the FEP map was re-run in µVT without the overlapping water, the RMSD between

the µVT predictions made with and without the initially clashing water is 0.22 ± 0.03

kcal/mol compared to an RMSD of 0.35 ± 0.04 kcal/mol with NPT.
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Table 6: The RMSE (in kcal/mol) of the µVT and NPT protocols – both run for 20 ns –
on the bace1 system. The starting protein structure in our original study contained a water
molecule that overlapped with many of the ligands.1 The FEP simulations were extended to
50 ns per lambda window in NPT using the structure that contained the overlapping water
molecule to assess the level of convergence. The last 20 ns of these extended simulations
produce an RMSE that is closer to the µVT predictions, as do the NPT predictions when
the starting structure does not contain the overlapping water molecule.

With overlapping water Without overlapping water
µVT 1.20 ± 0.14 1.20 ± 0.13
NPT 1.11 ± 0.12 1.18 ± 0.12

NPT after 50 ns 1.13 ± 0.13
NPT from 30 ns to 50 ns 1.19 ± 0.12

Figure 11: Evaluating the convergence of the NPT FEP predictions on the bace1 map. The
starting structure contains 2 buried water molecules, one of which sterically overlaps with
28 out of the 36 ligands. Left: the starting structure of ligand 13k in which the position of
the Cl atom (in green) overlaps with a buried water that is present in the starting structure
(modeled on PDB entry 4DJW). The violet mesh envelops a volume in which the water
occupancy was tracked. Middle: The absolute difference of all NPT ∆∆G predictions over
50 ns to the µVT predictions at 20 ns. The differences from each edge are shown as light green
lines, the thick green line indicates the mean absolute difference, and the associated 95 %
confidence region is also colored in green. On average, the NPT predictions tend towards the
µVT predictions as time progresses. Right: the mean water occupancy of the violet volume
as a function for time for the 20 ns µVT calculations (in orange) and for the 50 ns NPT
calculations (in purple). The thick lines indicate the mean over all physical state simulations
for the ligands that overlap with the starting buried water. The shaded regions represent
the 68th percentile regions of the water occupancy samples – approximately equivalent to
one standard deviation in a normal distribution. The orange dotted line indicates the mean
water occupancy of the violet volume during the µVT simulations.
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Conclusion

Despite the increasing success of free energy perturbation techniques to predict the relative

binding free energies of ligands, a reliable protocol for transformations that displace buried

water molecules has remained elusive. In this work, we have shown that sampling water with

grand canonical Monte Carlo within FEP calculations is a robust solution to this issue and

computationally efficient enough for large scale lead optimization projects.

To assess the impact of using GCMC in FEP calculations, we assembled a data set con-

sisting of 8 proteins and 139 ligand transformations that displace or disrupt conserved, buried

water molecules. To model prospective FEP applications in which practitioners are uncertain

of the placement of water, the protein structures were prepared in the presence and absence

of the important buried water molecules. GCMC, run only at the start or throughout the

production simulation, significantly reduced the error of the predicted relative affinities with

respect to the experiment. Without GCMC, the FEP predictions were extremely sensitive to

the initial water placement (with an RMSD of 2.32 kcal/mol). In contrast, running GCMC

throughout the entirety of the FEP simulations resulted in far more reliable predictions (with

an RMSD of 0.43 kcal/mol).

FEP calculations with GCMC can be reliably applied in cases when one has no prior

knowledge of the buried and conserved water molecules within binding sites. Any buried

hydration sites that are unoccupied at the start of the simulation will be rapidly populated

by GCMC (see Figure 2). The most accurate FEP predictions were obtained when the

clashing, buried water molecules were not present in the starting protein structure, as these

waters had the potential to distort the ligand binding mode during the energy minimization

stages. As a result of this observation, the FEP+ worklow automatically removes water

molecules that overlap with ligands before running simulations in the µVT ensemble.

GCMC sampling of water has expanded the domain of applicability of ligand FEP and,

as a result, has highlighted other issues that affect accuracy. For instance, with scytalone

dehydratase, we found that the predictions were very sensitive to the estimated pKas of the
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ligands. Although not investigated in this work, we anticipate GCMC to reveal even larger

sensitivities to pKa in systems where there is strong coupling between hydration and proton

affinity. Our results also suggest that the SPC water used in FEP+ could be enhanced to

more accurately account for the desolvation free energy of buried water molecules, although

we leave the systematic analysis of the accuracy of different water models for future research.

Because GCMC greatly accelerates sampling of water, it is important to note that FEP

calculations are likely to be more sensitive to the water model than before.

In spite of its reported promise for FEP calculations,12–14 GCMC has unfairly garnered a

reputation that it is conceptually difficult as well as slow and cumbersome to use. In the the-

oretical work that underpins our simulation methodology, we show how GCMC equilibrates

and varies the system density in a similar way as a barostat would. Ultimately, this results

in relative binding free energies that are approximately equivalent between the µVT and

NPT ensembles for aqueous systems. Regarding GCMC’s ease of use, our implementation

exploits the parallelism afforded by GPUs, which results in a computational performance

comparable to that of a barostat. In addition, GCMC sampling has been fully integrated in

the FEP+ workflow.

As the benefits of using GCMC to accelerate water sampling can be achieved with no

additional overhead to users, we recommend using GCMC whenever possible in protein-

ligand FEP calculations.
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The supporting information includes derivations of equations 1, 2, 3, and 4, a detailed

discussion on the theoretical equivalence of free energy differences in µVT and NPT, a

description of how the chemical potential was calibrated, the methods used to alchemically

decouple the two buried water from HSP90 (the results of which are shown are in Figure

3), and additional FEP results from the water displacement data sets. Additionally, all of

the inputs files for the expanded water displacement set are supplied, as well the output

files for the µVT calculations when overlapping water is not included in the starting protein

structure.
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