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ABSTRACT: Multireference (MR) diagnostics are common tools for identifying strongly 
correlated electronic structure that makes single reference (SR) methods (e.g., density functional 
theory or DFT) insufficient for accurate property prediction. However, MR diagnostics typically 
require computationally demanding correlated wavefunction theory (WFT) calculations, and 
diagnostics often disagree or fail to predict MR effects on properties. To overcome these 
challenges, we introduce a semi-supervised machine learning (ML) approach with virtual 
adversarial training (VAT) of an MR classifier using 15 WFT and DFT MR diagnostics as 
inputs. In semi-supervised learning, only the most extreme SR or MR points are labeled, and the 
remaining point labels are learned. The resulting VAT model outperforms the alternatives, as 
quantified by the distinct property distributions of SR- and MR-classified molecules. To reduce 
the cost of generating inputs to the VAT model, we leverage the VAT model’s robustness to 
noisy inputs by replacing WFT MR diagnostics with regression predictions in a MR decision 
engine workflow that preserves excellent performance. We demonstrate the transferability of our 
approach to larger molecules and those with distinct chemical composition from the training set. 
This MR decision engine demonstrates promise as a low-cost, high-accuracy approach to the 
automatic detection of strong correlation for predictive high-throughput screening. 
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 High-throughput computational chemistry has emerged as an essential tool, especially in 

the generation of data for chemical discovery1-6 and for machine learning7-9 model training10-16. 

Nevertheless, most such efforts1-6, 17-23 involve black-box, single-reference (SR) DFT or 

correlated wavefunction theory (WFT). Although progress has been made24-27 in the automation 

of parameter (e.g., active space) selection in multireference (MR) methods, MR methods 

typically require expert knowledge in their application. It would be desirable to have automated 

tools9, 18-19, 28-31 that can identify molecules in high-throughput workflows9 that have significant 

MR character32-44 and therefore must be studied with MR methods, or alternatively can identify 

if an SR approach is suitable.  

 We recently assembled45 a dataset of 15 MR diagnostics for 3,165 small organic 

molecules (AD-3165) in equilibrium and randomly or maximally distorted (i.e., both stretched 

and compressed) geometries45-46
. The MR diagnostics were evaluated with both DFT33, 40, 42-44, 47 

and WFT (i.e., MP240, 48-49, CASSCF34-37, 40-41, and CCSD34, 38-39, 50, Table 1). For the 11 

diagnostics with literature-recommended cutoffs34-42, 50-51, classification of MR versus SR 

character showed significant disagreement (Table 1 and Supporting Information Tables S1–S2). 

Most CCSD and CAS diagnostics predicted a significant fraction (> 1/3 with C0
2 < 0.9) of 

molecules to be MR, but few DFT or MP2 diagnostics did (1% with nHOMO[MP2] < 1.9, Figure 

1). As could be expected40, 47, 51, few diagnostics correlated with each other, and the best 

agreement was observed between diagnostics that probed similar quantities (i.e., occupations or 

the total atomization energy, TAE40, 42, 50) rather than those that used the same level of theory.45 

Table 1. Summary of MR diagnostics grouped by type and method used 
Type Method Diagnostic Description 
TAE DFT B1

42, A25[PBE]40 Differences in TAE with 
Hartree–Fock exchange fraction 

TAE CCSD(T) %TAE[(T)]50 Differences in TAE from (T) 
term in CCSD(T) 
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excitations CCSD(T) T1
34, D1

38, and D2
39 Average and maximum singles 

amplitude and doubles amplitude 
occupations DFT IND[PBE]43-44, rND[PBE]47, 

IND[B3LYP]43-44, rND[B3LYP]47, 
Finite-temperature DFT orbital 
occupations 

occupations MP2 nHOMO[MP2]40, 48, nLUMO[MP2]40, 

48 
MP2 natural orbital occupations 

occupations CASSCF nHOMO[CAS]40-41, nLUMO[CAS]40-

41, C0
2 34-37 

CAS natural orbital occupations 
and leading weight 

 

 
Figure 1. MR character of AD-3165 structures with nHOMO[MP2] (left) and C0

2 (right). (Top) 
Percentage of structures classified as single reference (SR, blue) or multi-reference (MR, red) 
according to the diagnostic cutoffs. (Bottom) Uniform manifold approximation and projection 
(UMAP)52 of all 15 MR diagnostics with the structures in the top 10% (red) and bottom 10% 
(blue) of the relevant MR diagnostic (nHOMO[MP2] at left and C0

2 at right) shown as solid red and 
blue circles, respectively. The remaining data is shown as translucent and colored according to 
the colorbar at right. A representative MR structure (3-methoxyazetidine) and two SR structures 
(equilibrium ethane and isobutylamine) are shown inset on the left UMAP plot. Atoms in 
structures are colored as follows: carbon in gray, hydrogen in white, nitrogen in blue, and oxygen 
in red. 
 
 To ascertain which diagnostics were better at diagnosing MR effects47, 53, we quantified45 

how well they predicted the difference in recovery of the correlation energy between CCSD and 

CCSD(T): 
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 %Ecorr[(T)]=100×
E[CCSD]− E[HF]
E[CCSD(T)]− E[HF]

  (1) 

which we selected for its good agreement with differences between CCSD and CCSDT 

correlation energies and weak size dependence (Supporting Information Figure S1). Nearly all 

WFT-based MR diagnostics were better predictors of %Ecorr[(T)] than any of the 

computationally affordable DFT-based diagnostics, even for the WFT-based diagnostics that 

were not suitable for cutoff-based MR classification.45 Although MR diagnostics often disagree, 

non-linear dimensionality reduction52 confirmed regions of consensus45 for strongly SR 

molecules such as saturated alkanes in equilibrium or MR stretched (e.g., 3-methoxyazetidine) or 

conjugated molecules (Figure 1).  

 Consensus among diagnostics suggests that machine learning (ML) models trained on a 

range of MR diagnostics should be able to overcome present limitations for the automated 

detection of MR effects (i.e., low %Ecorr[(T)]). In choosing an ML approach to apply to this task, 

supervised learning is not suitable because unambiguous assignment (i.e., MR or SR) is only 

possible for a small fraction of structures (Figure 1). Conversely, unsupervised learning (e.g., 

clustering) is expected to struggle54-55 to uncover the MR versus SR boundary. Here, we develop 

a fully automated, low-cost, and transferable ML decision engine for MR character classification 

using semi-supervised learning56. As its name suggests, semi-supervised learning requires a 

fraction of labeled data (i.e., as in supervised learning) to aid illumination of the underlying 

distribution (i.e., as in unsupervised learning) for the remaining data. We employ virtual 

adversarial training57 (VAT) as our semi-supervised learning algorithm, a technique that has 

demonstrated best-in-class performance in image classification58 by reducing sensitivity to 

feature space perturbations59. Because VAT only requires augmentation of the supervised 

learning loss function with an unsupervised term, it can be employed with standard artificial 
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neural network (ANN) architectures (here, a fully-connected, ANN classifier, see Computational 

Details and Supporting Information Text S1).  

 This application of semi-supervised learning to chemistry exploits the robustness of VAT 

to noisy inputs and demonstrates good performance on a combination of DFT-based and ML-

predicted45 WFT-based diagnostics that ensure modest computational cost. Because VAT model 

training requires only a fraction of training data (here, molecular geometries) to have assigned 

labels (here, MR vs SR) for the supervised loss term, we are able to leverage the general 

consensus among MR diagnostics for the most extreme cases. We compute all 15 MR 

diagnostics and label structures as MR or SR only when they are in the top or bottom 10% for 

more than half (≥8) of MR diagnostics over the ranges in the training data (Figure 1 and see 

Computational Details and Supporting Information Figure S2).  

 To evaluate VAT model performance, we compare to two alternatives: i) a conventional 

cutoff approach and ii) unsupervised learning with clustering. For the cutoffs, we use a 

previously recommended combination51 of four CCSD(T)-based diagnostics, i.e., D1 > 0.05, T1 > 

0.02, D2 > 0.18, and %TAE[(T)] > 5% that we augment with a recommended CASSCF leading 

weight cutoff34-37, 51, C0
2 < 0.9 (Table 1). We classify a geometry as MR if any of the five 

diagnostics exceeds cutoff. The clustering approach uses all MR diagnostics to generate one SR 

and one MR cluster for the binary classification task (see Computational Details). We compare 

the classification of AD-3165 test set geometries from these three approaches to the 

computed %Ecorr[(T)], which is not provided as input to the models. For a model to be predictive, 

it should classify input geometries with low %Ecorr[(T)] as MR, those with high %Ecorr[(T)] as 

SR, and transition smoothly from MR to SR classification with increasing %Ecorr[(T)].  

 The VAT model’s classification of the AD-3165 test set distinguishes well between 
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low %Ecorr[(T)], MR geometries and high %Ecorr[(T)], SR geometries, transitioning at around 96% 

(Figure 2). The ca. 120 structures that the VAT classifies as SR are consistent with intuition, i.e., 

primarily equilibrium or randomly distorted molecules (i.e., only one is in a maximum-energy 

structure) with relatively saturated bonds (e.g., cyclopropane in Figure 2). The cutoff approach is 

qualitatively consistent with the VAT model, but its transition region is wider and less smooth 

(i.e., more structures with similar %Ecorr[(T)] are classified as both SR and MR, Figure 2). Still, 

cutoffs misclassify45 molecules we would expect to be labeled MR such as N2 or propyne as well 

as distorted geometries of conjugated molecules (i.e., pyrrole, methanimidamide, or 1-

ethylaziridine) because their diagnostics approach but do not exceed recommended cutoff values 

(Supporting Information Table S3).  

 
Figure 2. (left) MR classification (0 for SR and 1 for MR) versus %Ecorr[(T)] for each AD-3165 
test prediction by k-means (red translucent circles), the cutoff model (green translucent circles), 
or VAT model (blue translucent circles) along with a 10-point moving average colored the same 
as individual symbols, shown inset legend. The Bhattacharyya coefficient (BC) for each model is 
shown in the inset bar graph for k-means in red, cutoff in green, and VAT in blue. (right) 
Representative structures and their type (maximum energy, max. E; random; or equilibrium, 
equil.) shown at bottom from AD-3165 along with the model classification (SR or MR) for each 
model type (colored as in the left inset legend) along with the %Ecorr[(T)] for the structure shown 
at top right. The top left quadrant shows a randomly distorted 1,3-butadiyne, the bottom left 
quadrant shows a max. E 1-ethylaziridine, top right quadrant shows a max. E trioxidane, and the 
bottom right quadrant shows an equilibrium cyclopropane. Atoms in structures are colored as 
follows: carbon in gray, hydrogen in white, nitrogen in blue, and oxygen in red. 
 
 Unlike cutoffs or the VAT, unsupervised learning models, i.e., k-means and 

agglomerative clustering (AC), do not transition from MR to SR smoothly with %Ecorr[(T)] 

(Figure 2 and Supporting Information Figure S3). The clustering models label too many 
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structures as SR, including structures that are expected to have MR character (e.g., stretched 1,3-

butadiyne in Figure 2). Thus, the k-means model only achieves consistent agreement with the 

VAT or cutoff approach in cases of extreme, unambiguous SR character (e.g., cyclopropane in 

Figure 2). At the same time, the few structures the k-means model has labeled as MR have a 

large range of %Ecorr[(T)] values, indicating the underlying data structure has not been learned 

(Supporting Information Figure S4).  

 Because there is no a priori cutoff value of %Ecorr[(T)] that corresponds to a ground-truth 

MR or SR assignment against which we can judge model classification, alternate means are used 

to quantify model performance. The best-performing models should have maximally distinct 

distributions of %Ecorr[(T)] values in their SR vs MR classes (Supporting Information Figure S4). 

As a measure of the amount of overlap between statistical distributions in two classes, we use the 

Bhattacharyya coefficient (BC), which we evaluate assuming normal distributions60: 
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Here, σ2 and µ are the variance and mean of the SR or MR %Ecorr[(T)] distributions, and lower 

BC values indicate greater dissimilarity (Supporting Information Text S2 and Table S4). The 

VAT model has a much lower BC of 0.55 in comparison to both unsupervised models (k-means: 

0.72 AC: 0.76), consistent with qualitative observations (Figure 2 and Supporting Information 

Figures S3–S4 and Tables S4–S5). Although the cutoff approach yields a smoother SR-to-MR 

transition than clustering, its BC of 0.70 is significantly higher than the VAT model (Figure 2). 

Attempts to improve the cutoff approach by requiring multiple diagnostics to exceed cutoffs, as 

has sometimes been recommended39, 51, 61, reduce the cutoff model’s BC slightly (0.67) but do 

not recover the VAT model performance (Supporting Information Tables S5–S10 and Figure 
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S3). If we choose a %Ecorr[(T)] cutoff to distinguish ground-truth MR or SR labels for 

conventional assessment of classifier performance, superior VAT model performance is also 

observed (Supporting Information Figure S5). 

  Although the VAT model improves upon the cutoff approach, it still requires the 

calculation of computationally demanding diagnostics (e.g., C0
2 from CASSCF). We exploit the 

VAT’s insensitivity to feature space perturbations to reduce computational cost by replacing the 

most expensive (i.e., WFT) MR diagnostics with ML approximations. We recently trained kernel 

ridge regression (KRR) models to predict WFT-based diagnostics from a combination of six 

DFT-based diagnostics and size-independent, transferable geometric features45 (Coulomb-decay 

revised autocorrelation functions45, 62-65 or CD-RACs) with low AD-3165 test set errors (see 

Computational Details and Supporting Information Text S3 and Figure S6 and Tables S1, S11).  

 In our streamlined MR “decision engine” workflow, we calculate DFT MR diagnostics, 

combine them with CD-RACs to obtain KRR-predicted WFT diagnostics, and use these two sets 

of diagnostics as input to the VAT model (Figure 3). Given the good performance of the 

individual KRR models, predictions from the MR decision engine are nearly identical (99% 

unchanged SR/MR assignments) to those made by the original VAT model (Figure 3 and 

Supporting Information Figures S7–S8). Of the six points reclassified (SR-to-MR: 4 and MR-to-

SR: 2) from the full VAT model to the MR decision engine (i.e., with KRR-predicted WFT 

diagnostics), all are geometries at the SR-to-MR transition (%Ecorr[(T)] = 95.6-96.1%) that 

typically contain strained rings (e.g., 2-ethylaziridine, and 2,3-epoxybutane), including two with 

intermediate (i.e., 0.25-0.75) VAT model scores (Figure 3 and Supporting Information Figure S9 

and Table S12). While for these cases some individual diagnostics (i.e., MP2 or CAS) have 

relatively high KRR model errors, most others (i.e., CCSD) are intermediate (Supporting 
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Information Table S13). Conversely, the largest KRR errors are observed for highly distorted 

geometries (e.g., methoxycyclobutane) far from the SR/MR transition region, making the MR 

decision engine insensitive to these larger KRR model errors (Figure 3).  

 
Figure 3. (left) Flowchart of the MR decision engine that combines DFT-calculated diagnostics 
with CD-RACs as input to KRR models to predict WFT MR diagnostics, which are used 
alongside DFT-calculated diagnostics as input into the VAT model for MR classification. (right) 
The maximum scaled KRR errors with respect to calculated values among all KRR-predicted 
diagnostics versus %Ecorr[(T)] for each structure in the AD-3165 test set for structures reassigned 
with KRR diagnostics by the VAT (6 points, blue translucent squares), cutoff model (58 points, 
green translucent squares), or neither (569 points, gray translucent circles). Scaled errors refer to 
errors relative to rescaling each diagnostic from 0 to 1 over the AD-3165 set. Representative 
structures are shown in inset with their geometry type: cyclobutane (VAT), methoxycyclobutane 
(neither), and 1-methylaziridine-2-carbonitrile (cutoff). Atoms in structures are colored as 
follows: carbon in gray, hydrogen in white, nitrogen in blue, and oxygen in red. 
 

  Comparisons to using KRR predictions in the cutoff approach highlight the benefits of 

the VAT because a small regression error in the KRR-predicted diagnostic can correspond to a 

large classification error near the recommended cutoff (Supporting Information Figure S10). In 

the cutoff approach, KRR-predicted diagnostics reclassify 58 structures (i.e., 9%, SR-to-MR: 24 

and MR-to-SR: 34) from the calculated diagnostics result, nearly 10× that of the MR decision 

engine (Figure 3 and Supporting Information Tables S8 and S14–S15). The majority of 

reclassifications arise for molecules at intermediate (95.3-96.2%) %Ecorr[(T)] values from modest 

prediction errors of diagnostics (e.g., D2 predicted: 0.178 vs calculated: 0.182 for a molecule 

with a distorted three-membered ring) that cross the recommended cutoff boundary (Figure 3 and 
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Supporting Information Tables S14–S15 and Figure S11). Quantitatively, the BC of the MR 

decision engine is nearly unchanged from the VAT, and the insensitivity of the VAT to noisy 

inputs maintains and widens the MR decision engine’s superior performance to a cutoff approach 

(Supporting Information Figures S8 and S12 and Table S16).  

To validate the transferability of our MR decision engine for obtaining MR classification 

at DFT cost, we curated two additional test datasets of geometries that are chemically distinct 

from AD-3165. PS-401 consists of equilibrium geometries with heteroatoms (i.e., P or S) added 

through isovalent substitution (i.e., N or O) of AD-3165 molecules. LG-8934 contains larger (i.e., 

six to eight heavy atom) molecules generated following the same protocol45 as AD-3165 (Figure 

4 and see Computational Details). We apply the VAT, KRR, and combined MR decision engine 

trained only on the AD-3165 training set to these diverse test sets to quantify transferability 

across chemical composition and size, respectively.  

 
Figure 4. Approach for generation of the PS-401 (left) and LG-8934 (right) datasets. For PS-
401, this approach consists first of selecting equilibrium N/O-containing molecules in AD-3165, 
substituting only one of either an N or O atom with P or S and re-optimizing the geometry, 
leading to two new molecules when multiple N or O atoms are present, as shown, and computing 
diagnostics and %Ecorr[(T)]. For LG-8934, the approach follows the protocol of AD-3165 
established in Ref. 1: random selection of 1289 unique molecules of ≥ 6 heavy atoms that are 
absent from AD-3165, selecting seven geometries for each unique molecule (i.e., equilibrium, 
maximum energy, and five randomly selected), and computing diagnostics and %Ecorr[(T)]. 
Representative structures shown in inset are colored as follows: hydrogen in white, carbon in 
gray, nitrogen in blue, oxygen in red, phosphorus in orange, and sulfur in yellow. 

 

We computed all 15 MR WFT and DFT diagnostics on PS-401 for inputs to the VAT 
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model (Figure 4 and see Computational Details). The VAT model performs well on the PS-401 

set, distinguishing high %Ecorr[(T)] molecules as SR, again smoothly transitioning between 95–

96% to MR at lower %Ecorr[(T)] (Supporting Information Figure S13). This excellent 

performance is quantified by a VAT model BC value of 0.50 on PS-401, which outperforms the 

alternative cutoff-based or k-means models in a manner consistent with observations on AD-3165 

(Supporting Information Table S16).  

We next evaluated whether KRR models, which were trained on a combination of the 

CD-RACs geometric representation with DFT MR diagnostics, performed well on PS-401 or 

LG-8934.45 CD-RACs were designed with transferability in mind16, 30, 66, with reduced size-

dependence and explicit encoding of isovalent atomic properties instead of direct incorporation 

of nuclear charge.45 As a result, KRR model prediction errors of WFT MR diagnostics on PS-

401 or LG-8934 are only around 2× AD-3165 test set errors (Supporting Information Table S17 

and Figures S14–S15). Alternative geometric representations with greater size- and nuclear-

charge-dependence (i.e., the Coulomb matrix67) have poorer transferability (Supporting 

Information Table S17).  

Given the promising results for the KRR models and the robust nature of the VAT 

models, we can expect good performance in the combined MR decision engine (see Figure 3 and 

Supporting Information Figure S12). With the MR decision engine, a small number (i.e., 16 or 

4%) of PS-401 molecules are reclassified from their VAT-model assignments (MR-to-SR: 6 and 

SR-to-MR: 10), thus achieving a good BC (0.51) comparable to the VAT model (Supporting 

Information Tables S16 and S18–S19 and Figure S16). Broadly, across the LG-8934, PS-401, 

and AD-3165 sets, we observe a consistent, smooth transition from SR to MR at 

similar %Ecorr[(T)] values and width of the transition region (Figure 5 and Supporting 
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Information Table S20 and Figure S17). Comparable performance on P- vs S-containing subsets 

of PS-401 as well as LG-8934 structures grouped by the number of heavy atoms demonstrates 

the relatively weak dependence of model performance on chemical composition and size 

(Supporting Information Figures S18–S19 and Tables S21–S22). Quantitatively, SR and 

MR %Ecorr[(T)] distributions in all three sets are distinguished by low BC values of 0.50–0.55 

that are superior to alternative k-means or cutoff approaches (Figure 5 and Supporting 

Information Table S16 and Figure S20).  

 
Figure 5. (left) MR classification (0 for SR and 1 for MR) obtained by the MR decision engine 
vs %Ecorr[(T)] for structures in AD-3165 (blue translucent circles), PS-401 (red translucent 
circles), and LG-8934 (green translucent circles) along with a 10-point moving average colored 
in the same manner, as shown in inset legend. The BC for each set is shown in the inset bar 
graph with AD-3165 in blue, PS-401 in red, and LG-8934 in green. (right) Representative 
structures with their type (maximum energy, max. E; random; or equilibrium, equil.) shown at 
bottom and their %Ecorr[(T)] value shown at top right. Representative structures are grouped by 
row with their classification (MR, transition region (TR), or SR) and by data set in columns (AD-
3165, PS-401, and LG-8934). Representative structures are colored as follows: hydrogen in 
white, carbon in gray, nitrogen in blue, oxygen in red, phosphorus in orange, and sulfur in yellow. 

 

Examining representative molecule classifications by the MR decision engine across the 

three data sets provides chemical insight into the origins of model transferability. Broadly, 

unsaturated molecules in equilibrium (AD-3165: 1H-tetrazole and PS-401: the triazaphosphole 

analogue) and stretched (LG-8934: C4H6N2O2) geometries have comparably low %Ecorr[(T)] (i.e., 

93-94%) across sets and are always classified as MR by the decision engine (Figure 5 and 

Supporting Information Table S23). Conversely, saturated molecules in equilibrium or weakly 
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distorted geometries (AD-3165: ethanol, PS-401: ethylphosphine, and LG-8934: 1,2,5-

pentanetriol) are consistently classified as SR and have comparably high %Ecorr[(T)] (96.3-96.5%) 

values (Figure 5 and Supporting Information Table S23). Molecules that span the SR-to-MR 

transition tend to have intermediate characteristics between these two extremes (Figure 5 and 

Supporting Information Table S23). Notably, all PS-401 molecules are P- or S-substituted 

analogues of AD-3165 molecules, and this substitution consistently decreases %Ecorr[(T)] 

(oxirane: 96.1% vs thiirane: 95.5%) values (Supporting Information Table S24). The MR 

decision engine captures this effect, reclassifying thiirane and 17 other PS-401 molecules as MR 

where oxirane or other AD-3165 molecules were SR (Figure 5 and Supporting Information 

Figure S21 and Table S24). Despite good observed transferability, model retraining will likely be 

necessary when extending to classes of materials (e.g., transition metal complexes) where the 

relationship between MR diagnostic values and MR effects are qualitatively distinct.  

 In summary, we have demonstrated a low-cost approach to predicting MR character that 

overcomes limitations in predictive accuracy and consensus among MR diagnostics. We 

introduced a semi-supervised VAT approach to training an ANN MR classifier using MR 

diagnostics as inputs and labeling only the extreme SR or MR points for which class assignment 

was unambiguous. This VAT model outperformed available alternatives, including unsupervised 

learning and any traditional cutoff-based approach. We showed that the inherent robustness of 

the VAT to noisy inputs enabled us to reduce computational cost. We exploited this benefit to 

replace the calculated WFT MR diagnostics with predictions of these quantities from ML models 

trained on small organic molecules using a combination of DFT-based and geometric descriptors. 

The combined MR decision engine workflow preserved performance of the original VAT model, 

unlike more sensitive cutoff-based approaches. Because the inputs to the MR decision engine are 
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size-insensitive, it achieves good transferability to molecules larger than those in the training set, 

as well as those containing distinct heteroatoms (i.e., P or S). This MR decision engine provides 

a promising avenue for incorporating the automatic detection of strong correlation into high-

throughput screening workflows with low computational cost. 

Computational Details. 

Datasets. We use the AD-3165 data set curated in Ref. 45, which consists of 3,165 geometries 

from the ANI-1 data set46 with up to six C, N, or O heavy atoms in seven geometries, the 

equilibrium, highest energy (max. E), and five randomly selected structures. This set45 includes 

six DFT-based and nine WFT-based MR diagnostics along with %Ecorr[(T)] for all AD-3165 

geometries, computed with MultirefPredict68 and electronic structure codes57, 69-74 (Table 1 and 

Supporting Information Tables S1–S2 and Figure S22). We also generated the PS-401 dataset by 

randomly substituting a single N or O atom to isovalent P or S, respectively for all 401 

compatible molecules (211 N-containing and 190 O-containing) in AD-316545 (Supporting 

Information Table S25). To maintain consistency with AD-3165 structures46, we optimized these 

structures with the same DFT functional (i.e., ωB97X75) and basis set76 (i.e., 6-31G*) as in the 

original work46 using TeraChem72-73 with the L-BFGS algorithm in translation rotation internal 

coordinates77 with all other defaults applied. We followed the AD-3165 protocol45 to compute 15 

MR diagnostics (i.e., both DFT-based and WFT-based) and %Ecorr[(T)] (Supporting Information 

Table S25 and Figures S23–S25).  

We curated the LG-8934 data set by adapting the protocol for generating AD-3165 in Ref. 

45 to larger molecules (i.e., six to eight heavy atoms), which were not present in AD-3165. As in 

AD-3165, seven geometries were selected including the equilibrium, highest energy, and five 

random for each of 1,289 unique chemical compositions (Supporting Information Table S26). 
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For LG-8934, we computed the six DFT-based and both MP2 MR diagnostics along 

with %Ecorr[(T)] (Table 1 and Supporting Information Figures S26–S29). From a theoretical 

dataset size of 9,023, a small number (89, ca. 1%) of DFT-based diagnostics could not be 

computed, leading to a final set of 8,934 geometries (Supporting Information Table S27).  

ML models. We employ KRR models trained in Ref. 45 on a combination of DFT-based 

diagnostics and CD-RACs geometric descriptors9, 45, 62-65 to predict WFT-based diagnostics 

(Supporting Information Text S3). Consistent with observations on AD-316545, the DFT 

diagnostics alone cannot predict %Ecorr[(T)] in PS-401 or LG-8934 (Supporting Information 

Figure S30). In this work, VAT ANN classifier models were built with PyTorch78-79, and 

hyperparameters were tuned using Hyperopt80 (Supporting Information Tables S28 and S29). We 

use the same 80% train/20% test set partitions of AD-3165 as in the prior KRR models.45 We 

selected the VAT model that gives the lowest unsupervised loss on a validation set that is 20% of 

AD-3165 training data (i.e., 16% overall, Supporting Information Figures S31–S32). As model 

inputs, we label only the training data structures in the bottom or top 10 percentile over a 

majority (i.e., ≥ 8 of 15) of MR diagnostics, which corresponds to 379 (181 MR and 198 SR) of 

2,532 AD-3165 training points. This value was selected by trial and error, and the VAT model is 

relatively insensitive to this choice (Supporting Information Figure S32 and Tables S30–S31). 

VAT scores are assigned SR (i.e., 0) if they are below 0.5 and MR (i.e., 1) if ≥ 0.5. The k-means 

and AC models are applied on all 15 MR diagnostics, as implemented in scikit-learn. After 

inspection, the clusters are assigned SR or MR based on their extreme points. Increasing the 

number of clusters and assigning them as SR or MR to minimize the BC value on %Ecorr[(T)] 

values can improve performance but at the cost of requiring manual inspection and reassignment 

of the additional clusters (Supporting Information Table S32). UMAP52 was carried out on 15 
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MR diagnostics for AD-3165 in Ref. 45 and adapted for Figure 1. 
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analysis on AD-3165 test set; VAT classification and MR and SR %Ecorr[(T)] distributions using 
KRR-predicted diagnostics; KRR error and %Ecorr[(T)] analysis on reclassified structures on AD-
3165 test set; summary of Bhattacharyya coefficients; agreement of VAT MR classification with 
noisy inputs; KRR errors on PS-401 and LG-8934; KRR error and %Ecorr[(T)] analysis on 
reclassified structures on PS-401; Bhattacharyya coefficients, Fermi–Dirac fitting, MR decisions 
versus %Ecorr[(T)], and MR and SR %Ecorr[(T)] distributions on different datasets; detailed 
information for main text structures; detailed information and %Ecorr[(T)] analysis on pairs of 
geometries in PS-401 and AD-3165 where the MR decisions are changed after element 
substitution; histogram of all diagnostics on all datasets; list of excluded structures from LG-
8934; MR diagnostics vs %Ecorr[(T)] for PS-401 and LG-8934; range of hyperparameters 
allowed; best hyperparameters for VAT models; unsupervised loss vs model accuracy; 
agreement of VAT models on different labeling thresholds; additional k-means cluster model BC 
values. (PDF) 

Total energies, correlation energies, MR diagnostics, KRR-predicted diagnostics, and MR 
classification of different methods of all molecules in AD-3165, PS-401, and LG-8934; list of 
molecules eliminated during LG-8934 set curation; list of molecules in PS-401 that do not have 
corresponding structures in AD-3165; the VAT model trained on AD-3165 training set; 
geometries of all molecules in AD-3165, PS-401, and LG-8934 (ZIP) 
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