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Autocatalysis is an essential property for theories of abiogenesis and chemical evolution. However, the8

different formalisms proposed so far seemingly address different forms of autocatalysis and it remains unclear9

whether all of them have been captured. Furthermore, the lack of unified framework thus far prevents10

a systematic study of autocatalysis. Here, we derive general stoichiometric conditions for catalysis and11

autocatalysis in chemical reaction networks from basic principles in chemistry. This allows for a classification12

of minimal autocatalytic motifs, which includes all known autocatalytic systems and motifs that had not13

been reported previously. We further examine conditions for kinetic viability of such networks, which14

depends on the autocatalytic motifs they contain. Finally, we show how this framework extends the range15

of conceivable autocatalytic systems, by applying our stoichiometric and kinetic analysis to autocatalysis16

emerging from coupled compartments. The unified approach to autocatalysis presented in this work lays a17

foundation towards the building of a systems-level theory of chemical evolution.18

PACS numbers: 05.40.-a 82.65.+r 82.20.-w19

INTRODUCTION20

Life’s capacity to make more of itself is rooted in a21

chemistry that makes more of itself. Autocatalysis ap-22

pears to be ubiquitous in living systems from molecules23

to ecosystems1. It is also likely to have been continu-24

ally present since the beginning of life and is invoked25

as a key element in prebiotic scenarios2–5. However,26

autocatalysis is considered to be a rarity in chemistry6.27

This would suggest that prebiotic molecules may not28

be that different from biomolecules (lipids4,5, nucleic29

acids7–10, and peptides2,3).30

Developments in systems chemistry are changing31

this view, with an increasing number of autocatalytic32

systems synthesized de novo11–13. Chemical replicators33

have been endowed with biomimetic properties such as34

protein-like folding14 and parasitism15. Autocatalysis35

also finds technological applications, e.g. eniantomere36

and acid amplification16–18.37

The elucidation of autocatalysis represents a pri-38

mary challenge for theory. Models based on autocatal-39

ysis were first built to explain a diversity of dynami-40

cal behaviors in so called dissipative structures, such41

as bistable reactions19, oscillating reactions, chemical42

waves20 and chemical chaos. Autocatalysis then be-43

came a central topic for studying the self-replication44

dynamics of biological and prebiotic systems3,21–2345

(see24–26 for recent reviews).46

Despite this long history, a unified theory of au-47

tocatalysis is still lacking. Such a theory is needed to48

understand the origins, diversity and plausibility of49

autocatalysis. It would also provide design principles50

for artificial autocatalytic systems.51

Here, we present a framework that unifies the52

different descriptions of autocatalysis and is based on53

reaction network stoichiometry27–30.54

Let us start from basic definitions in chemistry as55

established by IUPAC31 (see Supplementary Informa-56

tion Section I for full definitions), where autocatalysis57

is a particular form of catalysis: A substance that in-58

creases the rate of a reaction without modifying the59

overall standard Gibbs energy change (∆G◦) in the re-60

action; the process is called catalysis. The catalyst is61

both a reactant and product of the reaction. Catalysis62

brought about by one of the products of a (net) reaction63

is called autocatalysis.64

From this definition, we derive conditions to de-65

termine whether a subnetwork embedded in a larger66

chemical network, can be catalytic or autocatalytic.67

These conditions provide a mathematical basis to iden-68

tify minimal motifs, called autocatalytic cores. Cores69

come in five structural motifs. They allow classification70

of all previously described forms of autocatalysis, and71

also reveal not yet identified autocatalytic schemes. We72

then study the kinetic conditions, which we call viabil-73

ity conditions, under which autocatalytic networks can74

appear and be maintained on long times. We find that75

networks have a different viability depending on their76

core structure, notably that internal catalytic cycles77

increase robustness. Finally, we expand the repertoire78

of autocatalytic systems, by demonstrating a general79

mechanism for its emergence on a multicompartment80

level. This mechanism strongly relaxes chemical re-81

quirements for autocatalysis, making the phenomenon82

more abundant and diverse than previously thought.83
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EXAMPLES, DEFINITIONS AND CONVENTIONS84

Catalysis and autocatalysis85

The following reactions have the same net mass86

balance but a different status regarding catalysis:87

A
(I)−−⇀↽−− B, A+E

(II)−−⇀↽−− B+E, A+B
(III)−−−⇀↽−−− 2B.

(1)
Since no species is both a reactant and product88

in reaction (I), it should be regarded as uncatalyzed.89

Reactions (II) and (III) instead contain species which90

are both a reactant and a product, species E in reaction91

(I) and species B in reaction (III) and following the92

definition above, these species can be considered as93

catalysts. In reaction (II), the amount of species E94

remains unchanged, in contrast to the case of reaction95

(III), where the species B experiences a net production.96

For this reason, reaction (III) represents genuine au-97

tocatalysis. Although reaction (II) is usually referred98

to as simply catalyzed in the chemistry literature, we99

propose to call it an exemple of allocatalysis to contrast100

it with the case of autocatalysis. Then, we can reserve101

the word catalysis for any instance and combination of102

allocatalysis, autocatalysis and reverse autocatalysis.103

We emphasize that such stoichiometric consider-104

ations are necessary but not sufficient to characterize105

catalysis, which according to the definition should also106

accelerate the rate of the net reaction. In the following,107

we will first generalize the stoichiometric conditions,108

then examine kinetic ones.109

Stoichiometric matrix and reaction vectors110

Reaction networks are represented as a stoichio-111

metric matrix ννν27,30, in which columns correspond to112

reactions and rows to species. The entries in a column113

are the stoichiometric coefficients of the species partic-114

ipating in that reaction, the coefficient is negative for115

every species consumed and positive for every species116

produced. A reaction vector ggg = [g1, .., gr]T results117

in a change of species numbers ∆nnn = ννν · ggg. The sup-118

port of ggg (denoted supp(ggg)) is the set of its non-zero119

coordinates. A reaction cycle is a non-zero reaction120

vector ccc such that no net species number change occurs121

: ννν · ccc = 000, or equivalently, ccc belongs to the right null122

space of ννν. Vectors bbbT belonging to the left null space123

of ννν induce conservation laws, because in that case124

b · nb · nb · n represents a conserved quantity. The case of all125

coefficients bk nonnegative is refered to as a mass-like126

conservation law. For example in Fig.1a, conserved127

quantities are nE +nEA (catalysts) and nA +nEA +nB128

(total compounds).129

Lastly, catalyzed reactions may not always be dis-130

tinguished from uncatalyzed one in the stoichiometric131
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Figure 1: Different representation for allocatalysis (a,b,c)
and autocatalysis (d,e,f). a) Combining reactions
(1’)+(2’) affords an allocatalytic cycle that converts
A to B. b) stoichiometric matrix of a), the dashed
square encloses the allocatalytic submatrix ν̄νν′ for
network b). c) Graph representation of the allocat-
alytic subnetwork. d) Combining (1”)+(2”) affords
an autocatalytic cycle converting A to B. e) stoichio-
metric matrix of d), the dashed square encloses the
autocatalytic submatrix ν̄νν′′ for network e). f) a graph
representation of the autocatalytic subnetwork.

matrix. For instance, in reactions (II-III), catalysts132

cancel on each side leading to the same column vector133

as for (I). One way to avoid this is to describe enough134

intermediate steps so that a participating species is135

either a reactant or a product:136

A + E IIa−−⇀↽−− EA IIb−−⇀↽−− E + B, (2)

A + B IIIa−−⇀↽−− AB IIIb−−⇀↽−− 2B . (3)

We call this convention non-ambiguity and assume137

henceforth that it is respected.138

CATALYSIS AND AUTOCATALYSIS IN139

STOICHIOMETRIC MATRICES140

We seek to identify candidate motifs (subnetworks)141

for allocatalysis and autocatalysis within reaction net-142

works based the only knowledge of the stoichiometric143

matrix ννν. Such identification does not make a priori144

assumptions on the values or signs of reaction vector145

coefficients, or on kinetics, which we will examine in the146

next section. A motif has a stoichiometric submatrix ν̄νν147

obtained by restricting ννν to certain rows and columns.148

Restriction to rows delimitates species within the149

system from external species30, such as feedstock com-150

pounds (also so-called food set32) and waste. In Fig. 1,151

external species have been colored in blue, while stoi-152

chiometric submatrices have been boxed in yellow. Fig153

1a (resp. Fig 1d) represents an example of allocatalysis154

(resp. autocatalysis) with its submatrix ν̄νν′ (resp. ν̄νν′′)155

and its hypergraph representation Fig 1c (resp. Fig156
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1f).157

We restrict further the stoichiometric matrix to158

some reactions (columns). We do that in order to guar-159

antee that each reaction of the subsystem has at least160

one reactant and at least one product. The subsystem161

then has a property called autonomy, which means that162

every column of the reduced matrix contains a posi-163

tive and a negative coefficient28. Autonomy ensures164

that the production any catalyst is conditional on the165

presence of other chemical species of the subsystem166

(similarly to the siphon concept in Petri Nets33 but167

without assumption on reaction signs, see Supplemen-168

tary Information Sections II and III). Otherwise, rate169

acceleration would be allowed unconditional on an al-170

ready present substance, in opposition to the definition171

of catalysis.172

Criterion for allocatalysis173

By definition, allocatalysis is an ensemble of re-174

actions by which a set of species remain conserved in175

number (the catalysts) while other external species176

undergo a turnover which changes their numbers. This177

leads to the following conditions:178

There exists a set of species SSS, a submatrix ν̄νν of179

ννν restricted to SSS, and a non-zero reaction vector ccc180

such that: i) ν̄νν is autonomous; ii) supp(ccc) is included181

in the columns of ν̄νν; iii) ccc is a reaction cycle of ν̄νν182

(ν̄νν · ccc = 000), and; iv) ννν · ccc 6= 0. The members of SSS which183

participate to ccc (i.e. that are consumed and produced)184

are called allocatalysts, ccc an allocatalytic cycle and ν̄νν185

an allocatalytic matrix.186

Condition (i) has been discussed above. Condition187

(ii) expresses the involvement of the catalysts in the188

reactions ccc, where all columns of ν̄νν are non-zero due to189

(i), so that all reactions of ccc involve catalysts. Condition190

(iii) expresses the conservation of catalysts and (iv) the191

net reaction. Since the reaction cycle ccc is a cycle of the192

reduced matrix but not of the original matrix, some193

authors have called it emergent30. This emergent cycle194

can establish a non-equilibrium steady state driven195

by the turnover of the external species. Note that196

being allocatalytic is not a property of the sub-matrix197

ν̄νν alone but requires to explicit its relationship with198

the larger matrix ννν as imposed by condition (iv). A199

counterexample would be an isomerization cycle, which200

verifies conditions (i-iii) but is not allocatalytic.201

Criterion for autocatalysis202

By definition, autocatalysis is the process by which203

a combination of reactions involves a set of species204

which all increase in number conditionally on species205

in the set itself (the autocatalysts). This leads to the206

following conditions:207

There exists a set of species SSS, a submatrix ν̄νν of208

ννν restricted to SSS, and a reaction vector ggg such that:209

i) ν̄νν is autonomous, ii) all coordinates of ∆nnn = ν̄νν · ggg210

are strictly positive, or equivalently, ν̄νν has no mass-211

like conservation laws. The members of SSS consumed212

(and produced) by ggg are called autocatalysts, ggg an213

autocatalytic mode and ν̄νν an autocatalytic matrix.214

Condition (i) ensures the conditionality of the215

reactions on autocatalysts, as it forbids cases where216

species of SSS are produced from external reactants only,217

thus playing the role of conditions (i) and (ii) in the218

definition of allocatalysis.219

Condition (ii) expresses the increase in autocat-220

alysts number. The equivalence between its two for-221

mulations is an immediate consequence of Gordan’s222

theorem34. Importantly, the second formulation of (ii)223

does not involve an autocatalytic mode ggg, so that (i)224

and (ii) can be formulated as properties of a matrix225

itself, in contrast with allocatalysis. This allows us226

to look for minimal autocatalytic motifs, which we do227

next. Note that there is no need to specify an explicit228

condition on the turnover of external species (as con-229

dition (iv) does for allocatalysis), their consumption230

being implied by the net mass increase imposed by231

condition (ii).232

Autocatalytic cores233

An autocatalytic core is an autocatalytic motif234

which is minimal in the sense that it does not contain235

any smaller autocatalytic motif. Consequently, an au-236

tocatalytic system is either a core, or it contains one237

or several cores. The stoichiometric conditions show238

that characterizing cores is equivalent to finding all239

autonomous matrices whose image contains vectors240

with strictly positive coordinates only. This well-posed241

formulation allowed us to show that the stoichiometric242

matrix ν̄νν of an autocatalytic core must verify the spe-243

cific properties below (see Supplementary Information244

Sections II - IV for demonstrations and examples).245

First, ν̄νν must be square (the number of species246

equals the number of reactions) and invertible. The247

inverse has a chemical interpretation. By definition of248

the inverse, the k-th column of ν̄νν−1 is a reaction vector249

such that species k increases by one unit, making it an250

elementary mode of production. Likewise, the reaction251

vector obtained by summing the columns of ν̄νν−1 leads252

to increase by one unit of every autocatalyst, and thus253

is an elementary mode of autocatalysis. This shows254

how stoichiometry informs on fundamental modes of255

autocatalysis35.256

Second, every forward reaction of a core involves257

only one core species as a reactant. While this ex-258

cludes reactions between two different core species, a259

single core species may react with itself. As ν̄νν is square,260

this also implies that every species of a core is con-261
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sumed (none is only produced), thus is an autocatalyst.262

Furthermore, every species is the reactant of a single263

reaction. Overall, every species is uniquely associated264

with a reaction as being its reactant, so that ν̄νν admits265

a representation with a negative diagonal and zero or266

positive coefficients elsewhere, at least one coefficient of267

each column being strictly positive to ensure autonomy.268

These properties are constraining enough to allow269

an exhaustive enumeration of reaction graphs that270

are cores. Autocatalytic cores are found to belong to271

five categories, denoted as type I to type V. Fig. 2a272

represents typical members of each category as reaction273

hypergraphs (see Supp. Fig. S1 for general cases). As274

can be seen in these graphs, all minimal motifs contain275

a fork, which ends either in the same compound (or276

node) for type I or in different compounds for types277

II to V. This fork is consistent with the intuition that278

autocatalysis requires reaction steps that amplify the279

amount of autocatalysts. The orange square on the280

links between the nodes indicate that these links could281

contain further nodes and reactions in series.282

The five types differ in their number of graph283

cycles36 and the way these cycles overlap. Type I con-284

sists of a single graph cycle that is asymmetric in a285

stoichiometric sense: the product of the stoichiomet-286

ric coefficients of its reaction products must be larger287

than that its reactants. Types II-V can be described288

as two overlaping graph cycles, where any graph cy-289

cle that does not contain all core species must be an290

allocatalytic cycle (it would otherwise be of Type I,291

contradicting minimality). Equivalently, the product of292

the stoichiometric coefficients of the reaction products293

of these cycles must be equal to that of their reactants.294

Unification: First Examples295

The stoichiometric characterization of autocatal-296

ysis provides a unified approach to autocatalytic net-297

works reported in the literature. The examples below298

and their proofs are detailed in Supplementary Infor-299

mation Section IV. The formose reaction is a classical300

example of autocatalysis known to contain many au-301

tocatalytic cycles38. Fig. 2b and c show Type I and302

II cores both found in the formose reaction. Similarly,303

autocatalytic cores of Type I and II can be found in304

the Calvin cycle and reverse Krebs cycle (Sup. Fig.305

S4a). Some reaction steps Fig. 2b may be catalyzed306

externally (e.g. by enzymes, base, ions), but external307

catalysis in general does not alter the core. By the308

same token, proposed examples of auto-induction25,39309

are found to harbor Type I and II cores (Sup. Fig.310

S4b).311

In the GARD model for self-enhancing growth312

of amphiphile assemblies4,5, all underlying autocatal-313

ysis is described (Supp. Fig. S6) by Type I cycles40314

(self-incorporation) and Type II cycles built up from315
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Figure 2: a. Five minimal motifs. Orange squares indi-
cate where further nodes and reactions may be added,
provided this preserves the motif type (I,II,III,IV,V)
and minimality. b+c: Examples of chemical networks,
along with their autocatalytic cores. blue: external
species, yellow: autocatalysts. b. Type I: Breslow’s
1959 mechanism for the formose reaction37 c. Type
II: Another autocatalytic cycle in the formose reac-
tion. Species denoted as Cx inside the nodes refer to
molecules containing x carbon atoms, which are shown
below in standard chemical representation.

sequential nonoverlapping allocatalytic cycles (cross-316

incorporation, such as N3 in Fig. (3)). More generally,317

when such catalytic cycles are compactly written as318

single reactions (Eq.(1)), they can be treated in the319

RAF framework32, where they form irreducible RAF-320

sets41. This formally establishes the recently suggested321

link5,42 between these models.322

Another proposed extension of autocatalysis is323

’chemical amplification’ due to cavitands43. The mech-324

anism involves a reactive compound in a molecular cage,325

whose free counterpart can react to form two species326

that exchange with the caged species, thus amplifying327

its release. We find that this process can be described328

within our framework and corresponds to a Type III329

core (Supp. Fig. S5).330

Overall, examples of Types I and II seem most331

common, whereas have not yet found examples of Types332

IV and V.333

VIABILITY OF AUTOCATALYTIC NETWORKS334

Stoichiometric conditions do not guarantee that335

autocatalytic motifs amplify. Whether an initial auto-336



5

catalyst amplifies or degrades depends on kinetic con-337

siderations. To address this ’fixation problem’21,26, we338

examined the probability Pex of extinction (or 1− Pex339

of fixation) of species within autocatalytic motifs, as a340

function of transition probabilities of reaction steps.341

Considering an homogeneous system with a steady342

supply of reactants, several authors have noted that343

in the highly dilute autocatalyst regime, appreciable344

rates require first-order autocatalysis21,26,44, i.e. each345

forward reaction step only involves one autocatalyst.346

Among first-order order networks, fixation models have347

so far focused on Type I networks (e.g. Fig.2b), which348

comprise a single graph cycle containing n species. In349

a transition step, a given species may either proceed350

irreversibly to the next species or disappear as a result351

of degradation. King found that if every reaction step352

k among n steps of the cycle has a success probability353

Π+
k (1−Π+

k being the degradation probability), fixation354

is possible if pc =
∏n
k=1 Π+

k ≥ 1/244, a condition called355

decay threshold23,45. Bagley et al.21 used birth-death356

processes to derive Pex for an autocatalytic loop com-357

prising one species (n = 1). Schuster reported detailed358

time-dependent statistics for such networks in various359

contexts26.360

Here we extend the problem considered by Bagley361

et al. so as to include reversible reactions and net-362

works beyond type I using the theory of branching363

processes46. In these stochastic processes, a parent364

(here an autocatalytic species Xs) is replaced by k off-365

spring, with k drawn from a distributionPk, chemically366

corresponding to367

Xs
Pk−−→ kXs. (4)

A procedure to construct the branching process from368

reaction networks and derive Pk from transition proba-369

bilities Πk is illustrated in Supplementary Information370

Section V. Pex ultimately determines Pk, since the371

probability to go extinct is the probability that all372

descendants go extinct:373

Pex = P0 + P1Pex + P2P
2
ex + ... =

∞∑
k=0

PkP
k
ex. (5)

We first exemplify the method by generalizing known374

results for Type I networks, solutions for other networks375

are reported in the Supplementary Information Section376

V. We then compare the computed Pex of autocatalytic377

motifs which differ in their core structures.378

Reversible Type I cycles379

Consider a Type I cycle, such as N1 in Fig. 3b,380

consisting of n nodes. Starting at the first node, B1, let381

P2 = pc be the total probability that, after realizing382

every step of the cycle, it is converted to 2B1 (k =383

2 descendants), and P0 = 1 − pc the probability of384

premature degradation:385

∅ 1−pc←−−− B1
pc−−→ 2B1. (6)

For reversible reactions, pc results from the integra-386

tion of all possible sequences of forward and backward387

reactions along the cycle. From Bk, let Π−k be the388

transition probability to revert to Bk−1, and Π+
k to389

convert to Bk+1. We have390

pc =
n∏
k=1

Π+
k Γk, (7)

Γk+1 =
∞∑
s=0

(Π−k+1ΓkΠ+
k )s = 1

1−Π−k+1ΓkΠ+
k

, (8)

where Γk recursively defines the statistical weight of391

all back-and-forth trajectories from Bk to itself from392

the transition probabilities Π−k and Π+
k , with Γ1 = 1.393

The overall outcome described by (6) corresponds to394

the simplest type of branching process: a birth-death395

process. Using (5) finally yields396

Pex =
{ 1

pc
− 1, pc ≥ 1

2 ,

1, pc <
1
2 .

(9)

This generalizes Bagley et al’s observation for type397

I networks to n > 1 and reversible reactions. The398

irreversible limit Π−k → 0,Γk → 1 recovers King’s399

result44.400

Viability of autocatalytic motifs401

To investigate how autocatalytic motif structure402

affects survival, we calculated Pex for five different403

cores47 (N1 to N5, Fig. 3): they are of equal size (6404

reaction steps, 6 species), all reactions proceed irre-405

versibly with the same success rate ζ, which plays a406

similar role as the transition probability Π+
k in the ex-407

ample above and is sometimes called specificity23,44,45.408

Fig. 3c highlights how Pex depends on ζ for each409

core structure. The highest ζ for extinction (Pex = 1)410

is observed for the Type I cycle N1, and progressively411

lower values are found for N2 to N4, which are all of412

type II. Type V network N5 tolerates the lowest speci-413

ficity ζ before extinction, sustaining almost three times414

higher failure rates 1−ζ than N1. These differences can415

be qualitatively understood by counting the minimum416

number of steps needed to produce more autocatalysts.417

In respective order, networks N1 to N5 in Fig. 3b do so418

in six, four, three, three and two steps. In particular,419

given their symmetries, the Pex of N3 and N5 have the420

same dependence on ζ as a 3 and 2-membered Type I421

cycle, respectively.422

It has been suggested that large networks are dis-423



6

b)

a)

P
ex

P
ex

N
1

N
2

N
3

N
4

N
5

Figure 3: a) Pex as function of ζ (legend: Pex(ζ) for
Pex < 1) for b) 5 autocatalytic networks of similar
size, starting at the dashed node. N1: Type-I cycle.
N2: Type-II with one fork. N3: Type-II, two nonover-
lapping allocatalytic cycles, a common motif in GARD
with a 1st order RAF representation. N4: Type-II: al-
locatalytic cycles connected by intermediate steps. N5:
Type-V d) Symbols: Pex after 1000 simulated trials,
lines: exact solution. Full expressions are derived in
Supplementary Information Section VI.

favored in general. The examples of Fig. 3 indicate424

that this can be counterbalanced by the presence of425

more allocatalytic cycles in the network. In particular,426

autocatalytic sets in the sense of RAF-sets allow to427

build large and robust networks, since their underlying428

structure is typically built up from allocatalytic cycles.429

EXTENSION TO MULTICOMPARTMENT430

AUTOCATALYSIS431

As a final illustration, we now extend our stoichio-432

metric method to an emergent type of autocatalysis.433

Consider two compartments α and β, the internal chem-434

istry of which admits no autocatalysis (Fig. 4). The435

two compartments allow the same chemistry, but they436

do not have the same access to feedstock species (U,V437

in α and A in β). Upon coupling these compartments438

via a membrane that exchanges A and A2B (Fig. 4a),439

a Type II autocatalytic core emerges (Fig. 4b).440

Here, species AB is limiting in α, whereas in β it is441

an abundant feedstock, which is catalytically exchanged442

through the reversible formation of A2B. By coupling443

compartments, compounds are no longer restricted to444

one role (e.g. feedstock, autocatalyst) and chemical445

reactions are no longer restricted to one direction. The446

reaction used for reproduction in α is then allowed447

+
+

+ +
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Figure 4: Multicompartment autocatalysis a) between
compartments α and β, coupled by exhange reactions
of species A and A2B. AB functions as an autocata-
lyst in α, and as a feedstock species in β. b) Type III
autocatalytic core obtained for the multicompartment
autocatalytic network c) Extinction probability Pex
for multicompartment autocatalysis in a), starting
from a single Aα, as a function of exchange rate kex
and degradation rate kd, relative to other relevant re-
action rates fixed at k (Pex is independent of rates for
r1 and r5). Sloped asymptote: exchange-limited sur-
vival kex = 2kd. Vertical asymptote: reaction-limited
survival kd/k =

√
13−3

2 . The transition between extinc-
tion and potential survival (Pex < 1) is marked by a
dashed white line (solutions for Pex and asymptotes
are derived in Supplementary Information Section
VIII).

to be reused in β, thereby providing the missing loop448

to close the cycle. With three compartments, a type449

III motif can be constructed from a single bimolecular450

reaction (Supp. Fig. S9e).451

In Fig. 4c, the results of the analysis of the viabil-452

ity conditions for this network are shown as a plot of453

the extinction probability vs. degradation rate kd, and454

exchange rate kex. Both of these rates are normalized455

by characteristic rates k present in the other reactions456

which are assumed to be equal to each other.457

The figure shows that to overcome the degrada-458

tion threshold (Pex < 1), the typical reaction rate k459
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over a certain fraction of the degradation rate kd (ver-460

tical black dotted line in Fig. 4c), as we have seen461

in the case of single compartment autocatalysis, but462

additionally, the rate of exchange kex must outpace463

the rate of degradation (black oblique dotted line in464

Fig. 4c). Stochastic simulations (Supp. Fig. S9c) show465

autocatalytic growth in these conditions for surviv-466

ing populations, thus confirming that these emergent467

motifs can indeed exhibit to autocatalysis.468

DISCUSSION469

We presented a theoretical framework for auto-470

catalysis based on stoichiometry, which allows a precise471

identification of the different forms of autocatalysis.472

Starting with a large stoichiometric matrix, we show473

how to reduce it, and how to distinguish allocatalysis474

from autocatalysis at the level of this reduced stoi-475

chiometric matrix. A detailed analysis of the graph476

structure contained in these reduced stoichiometric477

matrices reveals that they contain only five possible re-478

current motifs, which are minimal in the sense that they479

do not contain smaller motifs. Fundamental modes of480

production of minimal autocatalytic cores are encoded481

in the column vectors of the inverse of the autocat-482

alytic core submatrix. Autocatalytic cores are found483

to have a single reactant for each reaction. This means484

that autocatalytic networks require the availability of485

certain chemical species in their cores to operate prop-486

erly. Conversely, the same property also implies that487

the proper functioning of an autocatalytic network488

will guarantee the stable supply of certain products,489

a definitive advantage when these products are key490

enzymes or metabolites.491

We identified these minimal motifs in known ex-492

amples of autocatalysis such as the formose reaction,493

metabolic networks, the GARD model and RAF sets.494

Autocatalytic cores also provide a basis for algorithms495

to identify these recurring autocatalytic motifs in large496

chemical networks48,49, as has been done for gene reg-497

ulatory networks50. In this way, we may be able to498

break the complexity of large chemical networks into499

smaller, more manageable structures.500

Autocatalytic motifs are found to confer differ-501

ent degrees of robustness, which we evaluated using502

the notion of viability. This viability can be precisely503

evaluated as a survival probability in an appropriately504

defined branching process. This approach is applicable505

to many models for autocatalytic systems upon iden-506

tification of their cores, highlighting the interest of a507

unified framework. Viability results from a competi-508

tion between reactions that produce autocatalysts and509

side-reactions such as degradation. This is intimately510

related to the ’paradox of specifity’: autocatalytic mo-511

tifs are more likely to be found in large networks with512

many different chemical components engaging in many513

different reactions. However, putting all those compo-514

nents together disproportionately favors side-reactions,515

leading to extinction23,45.516

Multicompartment autocatalysis introduced here517

offers a way around this problem: coupled compart-518

ments can produce autocatalysis from few reactions and519

generate extensive networks without mixing all compo-520

nents, thereby reducing the accumulation of degrada-521

tive side reactions. Overcoming degradation is a general522

issue, known as the error threshold when replicators523

degrade by mutation. Compartments also relax this524

threshold51, particularly when they are transient52.525

The emergence of multicompartment autocatalytic526

cycles relies on the environmental coupling of reaction527

networks, which allows to access conditions unattain-528

able in a single compartment. In our example, this529

allowed us to reuse the compounds and reactions to530

complete autocatalytic cycles. The principle is more531

general, however: autocatalysis may come from pairing532

physico-chemical conditions which cannot coexist in533

one homogeneous phase, as found in the autocatalytic534

dissolution of copper53 and pitting corrosion. Such535

principles may be exploited to more readily design536

autocatalytic systems with biomimetic functionalities.537

Overall, our framework shows that autocatalysis538

comes in a diversity of forms and can readily emerge in539

unexpected ways, which makes autocatalysis in chem-540

istry more widespread than previously thought. This541

invites to search for further extensions of autocataly-542

sis, which provides new vistas54 for understanding how543

chemistry may complexify towards life.544

MATERIALS AND METHODS545

Theoretical methods and derivation of results are546

detailed in the Supplementary Information, which is di-547

vided up in the following sections: I) Terminology and548

definitions, II) derivation of autocatalytic cores from549

Graph theory, III) their chemical interpretation and550

IV) application to formose, autoinduction, metabolic551

cycles, chemical amplification, RAF sets, GARD V)552

branching process derivation and determination of Pex.553

VI) determination of Pex for Fig. 3. VII) determina-554

tion of Pex for Fig. 4d. VIII) autocatalysis from one555

bimolecular reaction and 3 compartments.556
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SUPPLEMENTARY INFORMATION673

I. TERMINOLOGY674

A. IUPAC Definitions675

To promote the consistent use of terminology,676

IUPAC committees establish recommendations which677

serve as a basis for the Compendium of Chemical Ter-678

minology (The Gold Book), of which some relevant679

entries are reproduced here. Comments in italic have680

been added for clarity.681

Chemical Reaction: A process that results in the682

interconversion of chemical species. Chemical reactions683

may be elementary reactions or stepwise reactions. (It684

should be noted that this definition includes experi-685

mentally observable interconversions of conformers.)686

Detectable chemical reactions normally involve sets687

of molecular entities as indicated by this definition,688

but it is often conceptually convenient to use the term689

also for changes involving single molecular entities (i.e.690

’microscopic chemical events’).691

Catalyst: A substance that increases the rate of a692

reaction without modifying the overall standard Gibbs693

energy change in the (net) reaction; the process is694

called catalysis. The catalyst is both a reactant and695

product of the (catalyzed) reaction. The words cata-696

lyst and catalysis should not be used when the added697

substance reduces the rate of reaction (see inhibitor).698

Catalysis can be classified as homogeneous catalysis,699

in which only one phase is involved, and heterogeneous700

catalysis, in which the reaction occurs at or near an701

interface between phases. Catalysis brought about by702

one of the products of a (net) reaction is called auto-703

catalysis. Catalysis brought about by a group on a704

reactant molecule itself is called intramolecular catal-705

ysis. The term catalysis is also often used when the706

substance is consumed in the (net) reaction (for exam-707

ple: base-catalysed hydrolysis of esters). Strictly, such708

a substance should be called an activator.709

Autocatalytic Reaction: A (net) chemical reac-710

tion in which a product (or a reaction intermediate)711

also functions as a catalyst. In such a reaction the712

observed rate of reaction is often found to increase713

with time from its initial value.714

B. Allocatalysis715

We refer to allocatalysis as the form of catalysis716

in which, at the end of a catalytic cycle, the catalyst(s)717

have not changed in number. By their equal participa-718

tion in either direction, allocatalysts will thus drop out719

of the net reaction. Some authors refer to autocatalysis720

as homocatalysis and allocatalysis as heterocatalysis,721

which is a lexicologically consistent choice of terms722

that express an opposition (same vs different). This723

opposition between same and different is e.g. found724

in the IUPAC terminology for a homogeneous catal-725

ysis (occuring in the same phase) and heterogeneous726

catalysis. For the IUPAC recommended terminology727

’autocatalysis’, a consistent choice that expresses this728

opposition is ’allocatalysis’ (self vs other).729

C. Remarks730

1. Directionality of autocatalysis731

In an allocatalytic reaction, catalysts are produced732

and consumed in equal amount, and both the ’for-733

ward’ or ’backward’ are acceletated, independently of734

whether the reaction goes in one or the other direction.735

In contrast, the term autocatalysis only applies in one736

direction, due to the requirement of having catalysts737

be the product of the net reaction. However, the reac-738

tion in the other direction is still a form of catalysis,739

sometimes refered to as ’reverse autocatalysis’. For740

example, water adsorbed on a copper surface H2O(ads)741

can strongly accelerate its own disproportionation55.742

2H2O(ads) −−⇀↽−− H2O ·OH(ads) + H(ads), (10)
H2O ·OH(ads) −−⇀↽−− H2O(ads) + OH(ads). (11)

In this direction, the net reaction produces no catalysts743

(instead, it degrades them):744

H2O(ads) −−⇀↽−− H(ads) + OH(ads), (12)

hence it does not satisfy the stoichiometric require-745

ments for autocatalysis. However, in the opposite sense746

an appropriate stoichiometry for autocatalysis can be747

realized:748

H(ads)+OH(ads)+H2O(ads) −−⇀↽−− 2H2O(ads). (13)

Note that reaction (11) is still a form of catalysis:749

H2O is a reactant and product in reaction (11), which750

represents an accelerated pathway for reaction (12).751

2. Inhibition752

A compound is a catalyst in the context of a par-753

ticular experimental condition where it accelerates the754

rate of a reaction. A change of those conditions may755

change this label, the compound may become an in-756
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hibitor instead. E.g. consider757

A + B 1−−⇀↽−− AB, (14)

A + E 2−−⇀↽−− AE, (15)

AE + B 3−−⇀↽−− AEB, (16)

AEB 4−−⇀↽−− E + AB. (17)

For a rate acceleration to occur, steps 2,3,4 must758

together proceed faster than reaction 1. Template-759

assisted ligation of DNA or RNA provides an example760

where this may not be the case: below a critical anneal-761

ing temperature the detachment of the product (here,762

AB in step 4) becomes increasingly slower for longer763

strands, and the template becomes an inhibitor.764

3. Autonomy and siphons765

The concept of autonomy is closely related to the766

concept a siphon in Chemical Reaction Networks (CRN)767

theory56: A Siphon Σ is a subset Σ ⊂ S of all species768

S, which for each reaction that has a species in Σ as a769

product, has at least one of its reactants in Σ.770

In this definition, a reaction can be irreversible771

in a mathematical sense: the reverse reaction does772

not exist. For a reversible CRN, a reverse reaction773

does exist, and the siphon definition must apply to774

the forward and backward direction, thus becomes775

equivalent to autonomy. A reaction must then imply776

both one or more products and one or more reactants777

from Σ (siphon reactions), or none at all (external778

reactions). Note that autonomy is less restrictive than779

the conditions posed in Barenholz et al.28, where in780

addition species must be both reactant and product781

of a reaction. This last conditions is a proved as a782

consequence for minimal structures in our choice of783

formalism (see below).784

II. MATHEMATICAL DERIVATION OF785

AUTOCATALYTIC CORES786

A. Reaction graph definitions787

Reaction graphs described below correspond to788

weighted directed hypergraphs without self-loops in the789

language of graph theory. In this section, the word cycle790

is used in the sense of graph theory (see below), not791

in the sense of reaction cycle used to denote right null-792

vectors of the stoichiometric matrix. In the following,793

letters used for scalars indicate positive numbers, and794

cycles and paths are understood as directed.795

Definition 1. A reaction graph H is a triplet796

(S,R,M) where {s1, ..., sn} is the species set, R =797

{r1, ..., rm} is reaction set, each rj being an ordered798

pair (Xj, Y j) of non-empty and non-intersecting sub-799

sets of S respectively called reactants and products, and800

M is the stoichiometric matrix with coefficients mij.801

mij = 0 when the species si does not participate to the802

reaction rj, mij < 0 when species si is a reactant of803

rj, and mij > 0 when species si is a product of rj.804

The stoichiometric matrix M contains all the in-805

formation about the hypergraph, the column of M806

corresponding to reactions, and the rows to species.807

Definition 2. A subgraph of H = (S,R,M) is a808

triplet H′ = (S′, R′,M ′) where S′ is a subset of S, R′809

is a set of reactions which reactants and products are810

in S′ and intersect the reactant set and product set811

of a reaction in R, with corresponding stoichiometric812

coefficients M ′.813

Definition 3. A reaction graph is square if it has the814

same number of reactions and species.815

Definition 4. A directed path is a sequence of alter-816

nating species and reactions, all reactions and species817

being distinct, where species which precede and succeed818

a reaction are respectively a reactant and a product of it.819

A path is a minimal path if it is not possible to form820

a path starting and ending at the same species using a821

strict subset of its reactions. A path is semi-open if822

it either starts or ends with an edge.823

Definition 5. In a directed path, an edge has a back-824

branch if one of its products is a species located up-825

stream in the path, and this product is called a back-826

product. An edge has a forward-branch if one of its827

reactants is a species located downstream in the path,828

and this product is called a forward-reactant.829

Definition 6. A cycle has an identical definition as a830

path, except that the first and last species are the same831

species. A cycle is minimal if it is not possible to form832

a cycle with a subset of its species and reactions.833

Definition 7. A species S is the solitary reactant834

(product) of a reaction if S is the only reactant (resp.835

product) of this reaction, otherwise it is a co-reactant836

(resp. co-product).837

Definition 8. A reaction is simple if has a single838

reactant and a single product.839

Definition 9. Consider a simple reaction R with re-840

actant x and product y, with respective stoichiometries841

−a and b. The contraction of R consists of: (i) re-842

moving R; (ii) merging x and y into a single species z,843

and; (iii) multiplying by a (resp. b) the stoichiometric844

coefficients associated with z for all reactions formerly845

associated with x (resp. y).846

Definition 10. In a square graph, a perfect match-847

ing is a bijection between species and reactions. It848

corresponds to all pairs (i, σ(i))i=1...N , where i is the849
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index of a species, σ is a permutation of [1...N ], and850

σ(i) is the index of a reaction. A perfect matching of851

a graph, or a subgraph, G is called a G-matching.852

Remarks:853

• Consider reactions E = ({a}, {b, c}) and F =854

({b}, {c}); a− E − b− F − c is a path, but it is855

not minimal because it contains a−E−c. Simple856

paths are necessarily minimal (Fig. S1a).857

• Consider E = ({a}, {b}) and F = ({b}, {a, c});858

a−E − b−F − c is a minimal path and F has a859

back-branch (Fig. S1a). In particular, it contains860

a cycle a− E − F − a.861

• Simple paths are exactly cycle-free minimal862

paths.863

• More generally, a minimal path can have back-864

products and forward-reactants (Fig. S1a).865

• A hypergraph cycle can have reactions connecting866

several of its species, but a minimal cycle cannot.867

Thus, a minimal cycle only contains simple paths868

(it is identical to a cycle in a regular graph).869

• Cycles are square.870

B. Relationship with linear algebra871

x � 0 denotes a real vector with only strictly872

positive coordinates.873

Definition 11. A matrix M is productive if there874

exists a real vector γ such that M . γ � 0. Equivalently,875

M intersects the strictly positive orthant IRn
>0.876

Definition 12. A matrix is autonomous if its877

columns all contain a strictly negative and a strictly878

positive coefficient.879

Definition 13. A minimal cycle is weight-880

symmetric if the product of the absolute values881

of the stoichiometric coefficients associated with its882

reactants equals the product of the stoichiometric883

coefficients associated with its products. Otherwise, the884

cycle is weight-asymmetric.885

Remarks:886

• Autonomous matrices are stoichiometric matrices887

of reactions systems such that every reaction has888

at least one reactant and at least one product.889

• The Leibniz formula for the determinant shows890

that the non-zero terms of det(M) exactly cor-891

respond to the products of stoichiometric coeffi-892

cients mi,σ(i) determined by each possible perfect893

matching of the graph.894

• A minimal cycle C has exactly two perfect match-895

ings, which correspond to the matching of its896

reactions with their solitary reactants and soli-897

tary products respectively. det(C) = 0 if and only898

if C is weight-symmetric.899

• Be H′ the hypergraph obtained from H by con-900

tracting a simple reaction R. The cofactor expan-901

sion implies that |det(H′)| = |det(H)|. Addition-902

ally, any cycle C of H becomes a cycle C′ in H′ ob-903

tained by contracting R, and |det(C′)| = |det(C)|.904

C. Autocatalytic cores905

Definition 14. A core is a minimal productive reac-906

tion graph, i.e. a reaction graph that does not contain907

any productive subgraph.908

Finding cores is equivalent to finding minimal ma-909

trices which are productive and autonomous. In this910

section, we denote M ∈ IRn,m the stoichiometric ma-911

trix of the graph H, where n is the number of rows912

(species) and m the number of columns (reactions).913

If M is productive, we denote γ a vector such that914

M.γ � 0. Productivity of M is indifferent to the sign915

of its columns as the sign of the coefficients of γ is not916

constrained. Therefore, we choose the convention that917

any productive vector γ is positive, up to taking the918

opposite for some columns of M .919

Remarks:920

• M invertible implies M productive, as the image921

of M is then the full space IRn,m, which contains922

the strictly positive orthant.923

• Below, species or reactions ’can be removed’ is924

understood as ’can be removed while preserving925

productivity and autonomy’. Being able to re-926

move a row (a species) or a column (a reaction)927

contradicts the minimality of a core.928

• Removing columns (reactions) preserves auton-929

omy, but not necessarily productivity.930

• Removing rows (species) preserves productivity,931

but not necessarily autonomy.932

• A row corresponding to a species that is always933

a co-reactant or a co-product can be removed934

without affecting autonomy (every column still935

contains positive and negative coefficients) and936

productivity.937

Proposition 1. In a core, every species is both a938

reactant and a product.939

Proof. Every species must be produced, otherwise it940

would not be possible to find a positive γ verifying941

M.γ � 0. Now, suppose a species S is never a reactant942
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and only a product. All reactions such that S is their943

only product can be removed without affecting the944

productivity of other species. In the resulting graph,945

either S is not the product of any reaction anymore,946

or S is only a co-product of the remaining reactions.947

In both cases, S can be removed without affecting948

autonomy.949

Proposition 2. A core is square, invertible, every950

species is the solitary reactant of a reaction, and is951

reactant for this reaction only.952

Proof. Consider M ∈ IRn,m a productive stoichiomet-953

ric matrix with n species and m reactions, with rank954

k. Obviously k ≤ m,n. We must also have m = k,955

otherwise a column could be removed while preserving956

the image of M , thus productivity. Additionally, every957

species must be the solitary reactant of at least one958

reaction, otherwise it could be removed. This implies959

m ≥ n. Overall, k = m ≥ n ≥ k, so that k = m = n,960

meaning that M is square and invertible. As every961

species S is the solitary reactant of at least one reac-962

tion R and m = n, the species is a reactant for only963

R.964

Remark: Property 2 implies that M can be re-965

arranged in such a way that it has a strictly negative di-966

agonal, and only non-negative off-diagonal coefficients.967

Proposition 3. In a core, a square autonomous sub-968

matrix must have a product outside its set of species.969

Proof. Be A a square autonomous submatrix of M and970

write M =
(
A C
B D

)
. We need to show that B > 0.971

As A is autonomous, every A-reaction has a reactant972

in the set of A-species. By Property 2, reactants are973

always solitary, thus B ≥ 0. Now suppose B = 0. Then974

det(M) = det(A).det(D). Either det(A) = 0, implying975

det(M) = 0, contradicting M invertible, or det(A) 6= 0,976

then A is productive, contradicting the minimality of977

M .978

Proposition 4. A core is strongly connected.979

Proof. Consider a species x0 of M . Below, we recur-980

sively construct sets Dk = {x1, ..., xk} of increasing981

cardinal, such that every xi is downstream x0, until982

k = n− 1, implying that for any species y 6= x, there983

exists a path from x to y. We denote R(S) the only984

reaction with reactant S, which is well defined by Prop-985

erty 2. Step 1: We take x1 as a product of R(x0).986

Step k: Suppose Dk exists, k < n − 1. Re-arrange987

M such the top left block A of size k corresponds to988

species set Dk and reaction set R(Dk). As A is au-989

tonomous, by Property 3, there exists a species xk+1990

outside of Dk which is downstream Dk, hence Dk+1991

exists.992

Proposition 5. In a core, every species is involved in993

a cycle.994

Proof. Obvious from Property 4, considering the back995

and forth paths joining any two species.996

Proposition 6. Consider a partition of a core into997

two species sets V and W . V cannot be upstream of998

W , i.e. reactions with products in W cannot have all999

their reactants in V .1000

Proof. Suppose on the contrary that M can be written1001

M =
(
A B
0 C

)
where A and B span V , C spans W ,1002

and B ≤ 0. Given the latter inequality, Property 11003

implies that A is non-empty and autonomous. Consider1004

γ > 0 such that M.γ � 0. Be α and β the respective1005

restrictions of γ to the reaction spaces of A and B.1006

Then A.α + B.β � 0. As B.β ≤ 0, we have A.α � 0,1007

contradicting the minimality of M .1008

The definitions below are generalizations of the1009

notion of ear decomposition in regular graphs (Fig.1010

S1b).1011

Definition 15. A hyper-ear is a hypergraph compris-1012

ing a minimal cycle C, called the base cycle, such that1013

C has a reaction with a product x outside C, and a min-1014

imal path P starting at x, such that its last reaction,1015

R, has a product in C, R being the only P-reaction1016

to have a product in C. A proto-ear has a similar1017

definition, but where C is a simple path (called the base1018

path) instead of a minimal cycle.1019

Description of proto-ears and hyperears - In1020

a hyper-ear or a proto-ear, any C-reaction can have x1021

as a product, and any C-species can be the product of1022

R, the last reaction of P (Fig. S1b). We denote by u1023

a species which is the product of R, v any C-species1024

which is the reactant of a C-reaction which produces1025

x, ’−’ a simple path (including the empty path), o a1026

simple path comprising at least one species, o being a1027

subcase of the ’−’ category. By convention, a uv motif1028

can correspond to a single same species which is both a1029

R-product and a reactant for x production. Any proto-1030

ear falls into a class described by a chain made of the1031

symbols u, v, o, and ’−’, as soon as it contains at least1032

a u and a v. Reciprocally, any such chain represents1033

one or more proto-ears. Any hyper-ear is obtained by1034

cyclic closure of the base path of a proto-ear. Such1035

closure is denoted by the ′∗′ symbol at the beginning1036

and the end of the chain.1037

Theorem 1. Cores are of one of the following types:1038

• TYPE I: a weight-asymmetric minimal cycle;1039

• TYPE II: a cycle comprising all species as soli-1040

tary reactants, and one or more weight-symmetric1041

sub-cycles without intersection between them;1042
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• TYPES III-IV-V: one of the three types of hyper-1043

ears, any subcycle of which is weight-symmetric:1044

(III) ∗u−vo∗; (IV) ∗u−u−v∗; (V) ∗u−v−u−v∗.1045

Proof. Core type are represented in Fig. S1c. H1046

denotes the reaction graph and M its stoichiometric1047

matrix.1048

1049

SUFFICIENCY1050

1051

Step 1: All types have a non-zero determinant.1052

TYPE I: Invertibility is a direct consequence of1053

the remark on the determinant of minimal cycles.1054

TYPE II: Consider a minimal weight-symmetric1055

subcycle C of H. Any H-matching consistent with a1056

C-matching can be associated to another H-matching1057

obtained by reversing the C-matching. Thus, det(H)1058

has the form det(C).α + β, where the first term com-1059

prises all C-consistent H-matchings. As det(C) = 0, it1060

suffices to show that β is a single non-zero term. By1061

Property 3, C must have a reaction R1 with a prod-1062

uct x1 outside of C. As by definition of TYPE II,1063

subcycles are non-intersecting, R1 must be the only1064

C-reaction with a product outside C, and x1 must be1065

the only product of R1 outside C. All non-zero terms1066

in β require matching R1 to x1, otherwise R1 would1067

be matched with a C-species, which would impose a C-1068

matching (C being a minimal cycle), contradicting the1069

definition of β. We now order the indexes k following1070

the downstream order of the xk species along H, and1071

show recursively that β corresponds to the H-matching1072

where every Rk matches xk: (step 1) By construction,1073

R1 matches x1. (step k) Suppose Rk−1 matches xk−1.1074

Either Rk is a simple reaction, and, as its reactant xk−11075

is already matched, Rk necessarily matches its only1076

product xk. Or Rk has a back-branch forming a mini-1077

mal cycle. However, cycles are non-intersecting, so that1078

the back-product xi of Rk is necessarily downstream1079

xk and upstream xk−1, thus xi is already matched by1080

the recursion hypothesis. Thus, Rk can only match xk.1081

TYPES III-IV-V: Consider the stoichiometric ma-1082

trix M with non-negative off-diagonal coefficients:1083

M =

−1 c e
a −1 f
b d −1

 (18)

We have det(M) = −1+df +ac+ade+bcf +be. Strict1084

subcycles must be weight-symmetric, as otherwise, the1085

minimality of M would be contradicted. Consequently,1086

when their factors are both non-zero, the products df ,1087

ac, and be must be equal to 1. By contracting all1088

simple reactions and multiplying the columns of M1089

if necessary so that solitary reactant stoichiometries1090

are all normalized to −1, TYPE III corresponds to1091

d = f = 0 and a, b, c, e > 0, TYPE IV to f = 01092

and a, b, c, d, e > 0, and TYPE IV to all coefficients1093

strictly positive. In all these cases, we have det(M) >1094

−1 + ac+ be = 1.1095

Step 2: All types are minimal1096

TYPE I: Removing any subset of species or reac-1097

tions would result in an acyclic graph, contradicting1098

Property 5.1099

TYPE II: Removing any subset of species or reac-1100

tions either leads to a hypergraph where a subset of1101

species is upstream the rest, contradicting Property 6,1102

or to a non-invertible minimal cycle.1103

TYPE III-V: Removal of any set of reactions (and1104

a fortiori of species, given that they all are solitary1105

reactants) leaves at most one cycle in the graph, the1106

latter being non-invertible.1107

NECESSITY1108

By Property 5, there exists a minimal cycle C in1109

H. Either C is weight-asymmetric, then H = C is of1110

TYPE I. Or C is weight-symmetric. Then, by Property1111

3, there is a C-reaction with a product x outside C. By1112

Property 4, there exists a path P from x to any species1113

in C (Fig. S1d). We can take P minimal and such that1114

only its last reaction has a product in C, thus forming1115

a hyper-ear ∗mu−vm∗ where m symbols stand for any1116

other hyper-ear motif. Below, we show that hyper-ears1117

are either one of the types II-V, or contain a TYPE1118

II, III or IV core as a subgraph, overall demonstrating1119

that H is necessarily a hyper-ear of TYPE II-V.1120

Before continuing the proof of the theorem, we1121

show an additional property based on the sufficiency1122

of TYPE I and TYPE III.1123

Proposition 7. In a core, a minimal path can have1124

back-branches but no forward-branch, and the cycles1125

formed by back-branches are non-intersecting.1126

Proof. Consider a minimal path P in a core H.1127

Forward-branches require reactions to have multiple1128

reactants, contradicting Property 1. Therefore, P is1129

either a simple path or it has back-branches. Suppose1130

there exists two back-products y and z of the respective1131

reactions ry and rz, respectively forming intersecting1132

cycles Cy and Cz (Fig. S1e). Without loss of gener-1133

ality, y and z can be taken closest, y upstream of z,1134

and such that there is no other cycle nested within1135

Cy and Cz than possibly themselves. Cz is necessarily1136

weight-symmetric, as it would otherwise contradict the1137

minimality of H. There are two cases. Case 1: rz is1138

upstream ry (Cz is nested within Cy). Call P ′ the path1139

from the product of rz to ry then y then z. Then Cz1140

and P ′ form a TYPE III core. Case 2: ry is upstream1141

rz (Cz and Cy are entangled). Call P ′ the path joining1142

y to z. Then Cz and P ′ form a TYPE III core. Overall,1143

we have shown that the existence intersecting cycles1144

along a minimal contradicts the minimality of H.1145

We now go back to the proof of the theorem.1146
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Proof. Consider the minimal path P of the hyper-ear,1147

where P starts at x. By Property 7, P has no forward-1148

branch.1149

Case A (TYPE II): Suppose P has one or more1150

back-branch. Consider a reaction R′ of P which has a1151

back-branch, with back-product y′ and forming a cycle1152

C′. C′ is necessarily weight-symmetric by minimality of1153

H. Call x′ the product of R′ outside C′. Consider the1154

path P ′ starting at x′, then going downstream of P1155

until it reaches a shortest subpath u−v of C, then to x,1156

and finally from x to y′ in P . By Property 7, all cycles1157

along P are non-intersecting, and by construction, C1158

is non-intersecting with the cycles of P. Consequently,1159

P ′ only has non-intersecting cycles, so that C′ and1160

P ′ form a TYPE II motif. Thus, the base cycle of1161

the hyper-ear cannot have species outside u − v, as1162

otherwise the core made of C′ and P ′ would be a strict1163

subset of H, contradicting its minimality. This shows1164

that H is a ∗u − v∗ hyper-ear with a minimal path1165

comprising non-intersecting cycles, the latter being1166

necessarily weight-symmetric. Thus H is a TYPE II1167

core.1168

Case B (TYPES III-V): Suppose P has no1169

back-branch, in other words P is a simple path.1170

Subcase B.1 (TYPE III): Suppose H a hyper-ear1171

which has only one u and one v symbol, thus a ∗u−v−∗1172

hyper-ear. The case ∗u − v∗ with a simple path is1173

covered by the definition of TYPE II. If the ′−′ symbol1174

does not represent an empty path, then it comprises1175

at least one species, so that H is a ∗u− vo∗ hyper-ear1176

with simple path P, corresponding to TYPE III.1177

Subcase B.2 (TYPE IV): Suppose the hyper-ear1178

comprises one u or v symbol in addition to the u− v1179

motif. We first note that u−u− v and u− v− v proto-1180

ears are isomorphic to ∗u− v − ∗, which falls into the1181

categories of TYPE II or TYPE III cores. Therefore,1182

in a core, a hyper-ear containing two successive u or v1183

symbols is necessarily of the form ∗u− u− v∗ or ∗v −1184

v − u∗, or their cyclic permutations, as any additional1185

symbol would allow to find a strict subgraph u− u− v1186

or u−v−v forming a core, contradicting the minimality1187

of H. Furthermore, ∗u− u− v∗ and ∗v− v− u∗ hyper-1188

ears are isomorphic. Indeed, the matrices of their1189

reduced forms correspond to the matrix shown in the1190

SUFFICIENCY section of the theorem, where exactly1191

one coefficient is set to zero. Thus, these motifs as well1192

as all their cyclic permutations, fall into the category1193

of TYPE IV.1194

Subcase B.3 (TYPE V): Subcase B.2 imposes that1195

any motif containing four or more u or v symbols must1196

alternate u and v symbols. Any motifs with five or1197

more u or v symbols contains, up to permutation, a1198

u−v−u−v proto-ear as a strict subgraph. However, the1199

latter is isomorphic to TYPE IV cores, which implies1200

that ∗u − v − u − v∗ (TYPE V) is the only motif in1201

this class which does not contradict the minimality of1202

H.1203

1204

III. CHEMICAL INTERPRETATION OF1205

AUTOCATALYTIC CORES1206

We remind that the notion of ’graph cycle’ (closed1207

successions of nodes and edges) differs from the notion1208

’reaction cycle’ (right null vectors of the stoichiomet-1209

ric matrix). The latter name was historically chosen1210

because the two notions overlap in the particular case1211

of the simplest catalytic cycles, but there are counter-1212

examples for both (we give one later). We employ1213

’reaction cycle’ and ’graph cycle’ to distinguish these1214

notions.1215

By the minimality of autocatalytic cores, an au-1216

tocatalytic motif is either a core, or it contains one or1217

several cores. If P is a property of cores, then for any1218

autocatalytic motif, either it verifies P , or it contains1219

an autocatalytic motif verifying P . In particular,1220

• by Property 1, every autocatalytic motif contains1221

an invertible autocatalytic motif;1222

• by Property 2, every autocatalytic motif contains1223

an autocatalytic motif such that every product1224

is also a catalyst of the reaction, or equivalently,1225

such that every species appears on both side of1226

the total chemical equation.1227

The five categories of cores are schematically rep-1228

resented in Fig. S1c. The convention of representation1229

are as follows. The edges of the graph correspond to1230

reactions and the yellow nodes to species. Reaction1231

have two sides, the reactant side and product side, and1232

each side of the edge representing the reaction connects1233

to one or several nodes representing the species, with1234

a stoichiometry for each connection. In the Type I1235

core, the edge from the top node to the bottom node1236

ends with a fork, the two ends of which connect to a1237

single bottom node (S1c). This means that the bottom1238

species is produced with a stoichiometry of 2 by this1239

reaction. For simplicity, we have represented the con-1240

nection between all other edges and nodes without fork.1241

However, in all generality, any connection between a1242

edge and a node could be a fork (e.g. could be of1243

stoichiometry >1), as soon as the rules on graph cycle1244

symmetry are respected, as explained below. Forks also1245

appear in Types II-V, but where they connect to two1246

distinct nodes, which are two distinct product species.1247

The orange squares indicate that the reaction repre-1248

sented can be replaced by a chain of reactions with a1249

single reactant species and a single product species.1250

The mathematical derivations are done without1251

constraint on the number of reactants or products a1252

reaction step can have. However, in a chemical system,1253

elementary reactions are in principle either unimolecu-1254

lar or bimolecular. This restricts the range of possible1255
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core graphs. This restriction operates only at the level1256

of the stoichiometry of each single reaction, not at the1257

level of the overall structure of cores. Indeed, even1258

without invoking the restriction on bimolecularity, the1259

mathematical derivation results in cores such that ev-1260

ery reaction step involves at most a single species as1261

reactant and at most two species as products, so that1262

bimolecularity can always be respected, provided rules1263

on the stoichiometry of each connection.1264

In a chemical autocatalytic core, an edge with a1265

fork connecting to two distinct nodes (e.g. a reaction1266

with two distinct product species) must have a stoi-1267

chiometry 1 for each connection in order to respect1268

bimolecularity. If a reaction has only one product1269

species, then its stoichiometry can be 1 or 2, as soon1270

as it respects rules on cycle stoichiometry, which we1271

detail now.1272

Consider a simple graph cycle C, simple meaning1273

that every reaction as a single reactant species and1274

a single product species. Note ai (resp. bi) the stoi-1275

chiometry of the reactant (resp. product) of reaction i.1276

If
∏
i ai 6=

∏
i bi, we say that C is weight-asymmetric,1277

otherwise it is weigth-symmetric. Weigth-asymmetric1278

simple graph cycles are an example of graph cycle1279

which has no reaction cycle. Weight-symmetric graph1280

cycle taken in isolation have a reaction cycle (their1281

determinant is zero as shown in the derivation of cores1282

above), thus they correspond to allocatalytic cycles1283

in the context of a larger reaction graph where the1284

reactions of the graph cycle consume and/or produce1285

species outside of its own species set. The most classical1286

example of an allocatalytic cycle is represented in Fig1287

S1f, where reactant S is provided from the environment,1288

binds to cataylst E to form complex ES converted into1289

EP, finally dissociated into E which is recycled, and1290

product P.1291

Type I cores are weight-asymmetric simple graph1292

cycles, as C in S1c . Consequently, in Types II-V, any1293

simple graph cycle must be weight-symmetric (these1294

graph cycles correspondg reaction cycles), otherwise1295

the core would contain a Type I core, contradicting its1296

minimality. For example in S1c: in Type II, C must1297

be symmetric, but this does not apply to C′ because1298

it is not even a simple cycle; in Types III-V, C, C′1299

and C′′ must be symmetric. Type II cores consist of1300

a large graph cycle (C′ in Fig S1c) comprising smaller1301

graph cycles embedded within it (for example C in Fig1302

S1c). Given the above, each of these smaller cycles1303

must be weight-symmetric, and obeys the definition of1304

an allocatalytic cycle. The Type II category includes1305

circularly closed successions of such allocatalytic cy-1306

cles, where the product of one allocatalytic cycles is1307

the catalyst of the next allocatalytic cycle, which is1308

a typical example of autocatalytic set. In addition1309

however, Type II allows intermediate non catalyzed1310

reaction steps.1311

Notably, every core follows the basic structure1312

represented on Fig S1d, comprising a base cycle C and1313

a minimal path (in the sense of reaction hypergraphs,1314

see former section) starting from a reaction fork and1315

joining back to a node of C. This structure should1316

enable a systematic algorithmic search for autocatalytic1317

motifs in large stoichiometries.1318

IV. EXAMPLES AND APPLICATION OF THE1319

STOICHIOMETRIC CRITERIA1320

A. Example of autocatalytic submotif1321

We illustrate the concepts of autocatalytic sub-1322

motif and the properties demonstrated above on a toy1323

model for the Formose reaction, to which we have added1324

one auxiliary reaction C3 −−⇀↽−− D3, so that we obtain1325

a stoichiometric matrix1326

1 2 3 4

ννν =

C1

C2

C3

D3

C4


−1 −1 0 0
−1 0 2 0
1 −1 0 −1
0 0 0 1
0 1 −1 0


C1 + C2

1−−⇀↽−− C3

C1 + C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2 C2

C3
4−−⇀↽−− D3

(19)

this full matrix has a left nullvector lll = (1, 2, 3, 3, 4),1327

i.e. we have a mass-like conservation law1328

L = nC1
+ 2nC2

+ 3nC3
+ 3nD3

+ 4nC4
. (20)

Thus, this matrix does not correspond to an autocat-1329

alytic motif. Upon removing C1 (then considered as a1330

feedstock molecule), we obtain an autocatalytic matrix1331

ννν∗1332

1 2 3 4

ννν∗ =

C2

C3

D3

C4

−1 0 2 0
1 −1 0 −1
0 0 0 1
0 1 −1 0


C2

1−−⇀↽−− C3

C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2 C2

C3
4−−⇀↽−− D3

(21)

This matrix is autonomous and invertible with1333

inverse:1334

ννν−1
∗ =

1
2
3
4

1 2 2 2
1 1 1 2
1 1 1 1
0 0 1 0

 = (gggC2 , gggC3 , gggD3 , gggC4). (22)

The columns of the inverse are reaction vectors1335

associated to a given species, of which they produce1336

one extra unit. We will refer to them as elementary1337

production modes.1338

Among the production modes, gggD3 = (2, 1, 1, 1)T1339

is the sole vector which uses the auxiliary reaction, and1340
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D3 only ever occurs as a product1341

2C2 + 2C3 + C4
gggD3
−−−⇀↽−−−−
−gggD3

2C2 + 2C3 + C4 + D3. (23)

If we now consider ΓΓΓ = gggC2 + gggC3 + gggD3 + gggC4 , we1342

obtain a reaction balance such that every species has a1343

net increase:1344

ΓΓΓ : 7C2 +6C3 +4C4 −−→ 8C2 +7C3 +5C4 +D3. (24)

ννν∗ is not minimal as D3 is only produced, and does1345

not participate as a catalyst. Indeed, Property 2 im-1346

plies the existence of an autocatalytic submotif without1347

species which does not participate as a catalyst. An1348

autocatalytic submotif is obtained by removing the1349

reaction1350

C3 −−⇀↽−− D3, (25)

and the species D3, to obtain the autonomous subma-1351

trix ν̄̄ν̄ν1352

1 2 3

ν̄̄ν̄ν =
C2

C3

C4

−1 0 2
1 −1 0
0 1 −1

 C2
1−−⇀↽−− C3

C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2 C2

(26)

The matrix ν̄̄ν̄ν is also invertible1353

ν̄̄ν̄ν−1 =
1
2
3

1 2 2
1 1 2
1 1 1

 = (gggC2 , gggC3 , gggC4). (27)

The columns of ν̄̄ν̄ν−1 correspond to reaction vectors,1354

whose application yields one net copy of the corre-1355

sponding molecule, e.g. ∆nk = (ν̄̄ν̄ν · ggg(k))k = 1. This is1356

illustrated for C2 in Fig. S2.1357

The individual replication cycles are1358

C2 + C3 + C4
gggC2
−−−⇀↽−−−−
−gggC2

2C2 + C3 + C4 (28)

2C2 + C3 + C4
gggC3
−−−⇀↽−−−−
−gggC3

2C2 + 2C3 + C4

2C2 + 2C3 + C4
gggC4
−−−⇀↽−−−−
−gggC4

2C2 + 2C3 + 2C4

We can construct ΓΓΓ = gggC2 + gggC3 + gggC4 , which leads to1359

the overall reaction1360

5C2 + 4C3 + 3C4
ΓΓΓ−−⇀↽−−
−ΓΓΓ

6C2 + 5C3 + 4C4. (29)

We see here that every species has a net production1361

and is on both sides of the balance, thus participates1362

as a autocatalyst. Furthermore, ν̄̄ν̄ν is a Type I core and1363

consequently does not contain any smaller autocatalytic1364

submotifs.1365

B. Autoinduction1366

The concept of autoinduction was put forward by1367

D. Blackmond25, to distinguish between autocataly-1368

sis that is mediated by external catalysts (i.e. not1369

part of the autocatalysts that are reproduced) called1370

’autoinduction’, and autocatalysis that functions with-1371

out the aid of external catalysts (i.e. all catalysts are1372

autocatalysts). We thus obtain a hybrid of pure al-1373

locatalysis and autocatalysis, for which the simplest1374

example would be1375

A + B + E −−⇀↽−− 2A + E. (30)

The IUPAC definitions impose that autoinduction quali-1376

fies as autocatalysis. It follows then from our framework1377

that we can find autocatalytic cores in autoinduction1378

networks, which is indeed confirmed in Fig. S3 for the1379

two types of autoinduction that have been proposed25.1380

The concept of ’autoinduction’ addresses a no-1381

tion of self-sufficiency (also encountered in RAF sets,1382

Sec.IVE): external allocatalysts become essential to1383

succesful autocatalysis, yet they are not reproduced.1384

Depending on the context, they could be seen as part1385

of the environment, in the same sense as essential feed-1386

stock species. Examples of autoinduction occur in1387

autocatalytic metabolic networks (with locally allocat-1388

alytic enzymes) or e.g. the formose reaction which is1389

often catalyzed by base and divalent metal ions.1390

The presence of external allocatalytic cycles does1391

not add new cycles to the autocatalytic core. A practi-1392

cal consequence is that one can write catalyzed reac-1393

tions very compactly for the core, while still maintain-1394

ing nonambiguity, which we make use of in our analysis1395

of metabolic cycles.1396

C. Metabolic cycles1397

At least two metabolic cycles are known to be1398

autocatalytic. In our analysis of autoinduction, we1399

pointed out that the core does not contain external1400

allocatalysts (here: enzymes). Written purely in terms1401

of autocatalysts, we find a type II autocatalytic core1402

for the reverse Krebbs cycle (Fig. S4a). For the Calvin1403

cycle depicted in Fig. S4b, we identify three Type I1404

cores (two structurally equivalent, differing only in the1405

reaction chosen to link the same core species) and 4 of1406

type II.1407
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D. Chemical amplification1408

Chen et al.43,57 advanced a general strategy to1409

achieve self-amplifying behavior, demonstrated by the1410

encapsulation of the reactive compound DCC in a cav-1411

itand (indicated by an oval around the molecule in1412

EDCC, Fig. S5), which they referred to as chemical1413

amplification. This phenomenon is consistent with the1414

IUPAC definition of autocatalysis, which we will now1415

illustrate by finding its autocatalytic core.1416

Let us first assess a reaction network formed by1417

two reactions proposed by Chen et al, in absence of1418

the cavitand complexes. In that case, applying our for-1419

malism readily reveals that the network cannot exhibit1420

autocatalysis: there are no autocatalytic submatrices.1421

1 2

ννν =

DCC
X
I1
Y

DCU
Z


−1 0
−1 0
1 −1
0 −1
0 1
0 1


DCC + X 1−−⇀↽−− I1,
I1 + Y 2−−⇀↽−− DCU + Z.

(31)

Now, let us add the species EDCC and two exchange1422

reactions with DCU and Z that liberate DCC, i.e.1423

DCC + X 1−−⇀↽−− I1, (32)

I1 + Y 2−−⇀↽−− DCU + Z, (33)

EDCC + DCU 3−−⇀↽−− DCC + EDCU, (34)

EDCC + Z 4−−⇀↽−− DCC + EZ, (35)

for which we have the matrix1424

1 2 3 4

ννν =

DCC
X
I1
Y

DCU
Z

EDCC
EDCU

EZ



−1 0 1 1
−1 0 0 0
1 −1 0 0
0 −1 0 0
0 1 −1 0
0 1 0 −1
0 0 −1 −1
0 0 1 0
0 0 0 1


(36)

This network admits an autocatalytic submatrix, and1425

we obtain an autocatalytic core of type III consisting1426

of the species DCC, I1, DCU and Z, as can be seen in1427

Fig. S5b. The new reagent EDCC serves as a feedstock1428

compound, that allows to dispense new DCC, that can1429

now serve as an autocatalyst. The generality of the1430

mechanism follows from an exchange that could have1431

been performed with different reactants than DCU and1432

Z to yield an equivalent network, as shown in Refs43,57.1433

E. Autocatalysis in RAF sets1434

A definition of Reflexively Autocatalytic Food-1435

generated sets can be found in Ref.24: a set of reactions1436

R is RAF if every reaction is catalyzed by at least one1437

molecule involved in a reaction in R, and every reactant1438

in R can be constructed from the food set f by successive1439

applications of reactions from R. The philosophy1440

behind the RAF set is that ’every reaction’ in a RAF-1441

set can be accelerated by the catalysts themselves.1442

RAF sets do not perform autoinduction, except when1443

members of the food set f within a RAF-set also serve1444

as allocatalysts.1445

In the RAF-set formalism, reaction and catalysis1446

are distinct mathematical objects. Graphically, RAF-1447

sets are typically represented as bipartite graphs (S6a),1448

with nodes (white squares) corresponding to reactions,1449

which connect to nodes (colored circles) which serve1450

as reactants (entering bold arrow) and products (leav-1451

ing bold arrow) via directed edges. A dashed arrow1452

connecting to a reaction indicates that a species is a1453

catalyst for a reaction. Within the RAF framework,1454

the following terms are employed as distinct: i) auto-1455

catalytic reaction ("is a single chemical reaction for1456

which one of the products also catalyzes the reaction"),1457

ii) autocatalytic cycle ("is a sequence of reactions that,1458

once completed, results in two (or more) copies of the1459

molecule that was started with"such as the toy formose1460

reaction), iii) autocatalytic set (or RAF set).1461

It is important to note that the RAF-set formalism1462

and the distinctions above depend on the chosen level of1463

coarse-graining of the description. In that description1464

(see Fig. S6a) allocatalysts in the same allocatalytic1465

cycle are represented by a single species. The combi-1466

nation of reactions that form the allocatalytic cycle1467

is represented by a single dashed line, connecting to1468

an uncatalyzed reaction. Here, there exists a level of1469

description where a RAF set appears as autocatalytic1470

reaction involving catalytic cycles. By comparing Figs.1471

S6a, we see that the level of description is critical in1472

assessing whether a network is a RAF-set or not. From1473

the definition of a RAF-set, the detailed version of the1474

network in Fig.S6a would not be a RAF, but the less1475

detailed description next to it would be.1476

Another example is the toy formose reaction,1477

where two different choices of coarse-graining yield1478

two different description in the RAF framework. Even1479

when neglecting the role of catalytic base and metal1480

ions, the toy formose reaction without coarse-graining1481

is not a RAF-set32, since its individual steps are not1482

catalyzed:1483

C1 + C2 −−⇀↽−− C3, C1 + C3 −−⇀↽−− C4, C4 −−⇀↽−− 2C2.
(37)

Framed solely in terms of C1 and one autocatalyst (e.g.1484

C2, C4) one could propose a description in which we are1485

oblivious of these steps, and write it as an autocatalytic1486
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reaction in the sense of RAF sets, such as1487

2C1 + C2 −−⇀↽−− 2C2, 4C1 + C4 −−⇀↽−− 2C4. (38)

This would work as long as we consider them satisfac-1488

tory levels of description, depending on the context1489

(e.g. further reactivity of intermediates, separation of1490

timescales): either of these hypothetical cases satisfy1491

the RAF criteria.1492

An interesting contrast occurs between RAF sets1493

and our formalism: RAF-sets require a level of coarse-1494

graining without intermediates to define catalysis in1495

terms of single catalysts, which ensures a compact and1496

unique description. Our formalism requires each cat-1497

alytic cycle to have at least one intermediate to satisfy1498

nonambiguity. Although less compact, the description1499

is flexible: adding further steps is always possible and1500

does not alter the conclusions, which must remain in1501

accord with chemical definitions.1502

In describing catalysis in terms of uncatalyzed1503

reactions, it becomes possible to formalize the under-1504

lying structure of catalysis in different models. We1505

will now illustrate how this formally establishes that1506

all autocatalysis in the GARD model qualifies as a1507

RAF-set.1508

F. GARD model1509

GARD stands for graded autocatalysis replica-1510

tion domain22, and is a model for the autocatalytic1511

assembly of amphiphile assemblies (e.g. micelles). It1512

describes micelles with a composition nnn = {n1, ..., ns},1513

that follow an evolution equation1514

dni
dt

=
(
k+
i ρiN − k

−
i ni

)1 + 1
N

s∑
j=1

βijnj

 . (39)

The surfaces are in contact with a reservoir, that con-1515

tains species Zi at concentration ρi and that can enter1516

the surface, which has an area proportional to N . The1517

incorporation happens with a base rate of k+
i , but can1518

be facilitated by other amphiphiles, for which the cat-1519

alytic rate enhancement is characterized by βij . A1520

special ingredient in GARD is the division process,1521

which splits a mature surface in two new ones, after1522

achieving a maximal size.1523

We examine here stoichiometric mechanisms lead-1524

ing to Eq. (39). Let us consider amphiphiles A and1525

B, which can be in the micelle or reservoir, labelled1526

I and II (see Fig. S6). To catalyze incorporation of1527

the other, a complex is formed with a reservoir species,1528

and subsequent dissociation takes place in the micelle1529

AI + BII −−⇀↽−− [AB]I −−⇀↽−− AI + BI, (40)
BI + AII −−⇀↽−− [BA]I −−⇀↽−− AI + BI. (41)

This network corresponds exactly to the network dis-1530

cussed in Fig. S6a, where the products of two allocat-1531

alytic cycles serve as a catalyst for each other, a Type1532

II core in our stoichiometric formalism.1533

More generally, labelling amphiphiles as Ak (k ∈1534

{1, 2, .., s}, the entry βij encodes the contribution for1535

the allocatalytic cycle1536

AII
i + AI

j
ccc∗−−⇀↽−−−
−ccc∗

AI
i + AI

j (42)

where ccc∗ denotes a reaction vector for the catalytic1537

cycle, for any description that verifies nonambiguity.1538

When i = j, this is a type I autocatalytic cycle (Fig.1539

S6c). When i 6= j (cross-incorporation), type II auto-1540

catalytic cycles are obtained, which are built up from n1541

sequential allocatalytic incorporation steps and which1542

end in the incorporation of the original amphiphile.1543

Fig. S6 shows examples for n = 2 and n = 3. The1544

importance of the allocatalysis step (42) is graded by1545

the entry βij . For a given n-step autocatalytic motif1546

to exist, we require1547

n∏
k=1

βsk+1sk
> 0, s1 6= s2 6= .. 6= sn. (43)

In practice, all βij > 0, so all motifs exist in principle.1548

The starting point of GARD is Eq. (39), i.e. a1549

coarse-grained description in which allocatalysis can1550

be described as a single step and a single allocatalyst.1551

From Fig. S6, we see that we can obtain networks in1552

GARD that would be RAF-sets in the RAF-framework1553

by coarse-graining an incorporation cycle to convert it1554

to catalysis in the RAF sense. The illustrated proce-1555

dure extends to all autocatalysis in GARD, which is1556

fully characterized by the continuation of the structures1557

in Fig. S6 to their n-step type II analogues. Eq. (43)1558

guarantees that each reaction in GARD is catalyzed.1559

It follows that all autocatalysis in the GARD model1560

can formally be treated as a RAF-set.1561

Interestingly, the RAF-set formalism treats catal-1562

ysis as pertaining to chemistry in single phases, with1563

the environment supplying food locally through rapid1564

exchange. In GARD, we instead have phase-transfer1565

catalysis between a bulk medium (II) and an interface1566

(I). A species in the bulk then serves as the food. Once1567

the exact same species enters the interface, however, it1568

may cease to be abundant or have a fixed concentration1569

due to rapid exchange. It may thus no longer have1570

the properties ascribed to the food set in the bulk and1571

should ipso facto be treated as a different species as1572

described in the final section of the main text.1573
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V. THE EXTINCTION PROBLEM AND FIXATION1574

In this section, we show that the extinction prob-1575

lem (finding the extinction probability at long times,1576

Pex) can be solved by a mapping to a branching process.1577

We will first derive how ( context) in a system initially1578

at steady-state perturbed with dilute autocatalysts,1579

key statistical properties emerge: autocatalytic species1580

can be treated as independent, and their environment1581

as fixed. Extinction becomes exponentially less likely1582

as the population size continues to grow, which means1583

Pex can be determined in the dilute limit.1584

We then proceed by applying the framework to a1585

variety of networks.1586

A. Context1587

We consider a reaction network, in a macroscopic1588

system (Letting N denote the amount of chemical1589

species, let us say N > 1023, or similarly, let the system1590

volume V be large) in a steady-state. For simplicity, let1591

us first consider a CSTR (single phase, ideally mixed),1592

with a residence time τ , corresonding to a uniform1593

degradation rate kd.1594

Now, we perturb the steady-state with a handful1595

(O(1)) of new (not yet present in the system) autocata-1596

lysts {Xk} = {X1,X2, ...,Xs} that are part of the same1597

autocatalytic core.1598

We consider that the population can grow due to1599

catalysis by autocatalysts, and the population decays1600

by degradation reactions and effective degradation. For1601

example, outflow out of a CSTR is considered as a first-1602

order degradation process:1603

Xk → ∅ (44)

The problem we wish to solve is the extinc-1604

tion problem: For an initial population of autocat-1605

alysts {NXk
} = {NX1

, .., NXs
} what is the probability1606

Pex({NXk
}), that, after a long time, the autocatalyst1607

population goes extinct (∀k NXk
= 0)?1608

B. Large system limit1609

Let us first note that we (deliberately) consider1610

the initial stochastic kinetics in a large system, with1611

a small number of autocatalysts, such that reactions1612

among autocatalysts of the kind1613

Xk + Xj −−→ ”Product(s)” (45)

are exceedingly rare and slow (the probability that a1614

given Xk molecule encounters another Xj in a given1615

time-frame scales with NXj
/N), where NXj

is initially1616

of the order 1. It follows survival of autocatalytic1617

cycles requiring such reactions in the forward sens is1618

hampered in large systems.1619

Reactions that are first order in terms of autocat-1620

alysts are not hampered1621

Xk −−⇀↽−− ”Product(s)” (46)
Xk + Yj −−⇀↽−− ”Product(s)” (47)

where Yj is a feedstock compound that was already1622

(abundantly) present in the system at a fixed molar1623

fraction xYj
. The probability for one Xk molecule to1624

encounter a Yj does not change with N , as xYj
remains1625

fixed (and macroscopic).1626

Note furthermore that, when autocatalysts are1627

rare, reactions producing more autocatalysts are ’irre-1628

versible’1629

Xk + Yj −−→ Xl + Xm (48)

in the sense that the reverse reaction is exceedingly1630

more rare than the forward reaction.1631

C. Constant composition, constant transition rates1632

The effect of rare autocatalysts on the steady-state1633

composition (maintained by influx and degradation in1634

a CSTR) is initially small: every reaction introduces1635

changes in molar fraction of the order 1/N (or in con-1636

centration terms, 1/V ∝ 1/N). For large N , the al-1637

terations of the composition will be vanishingly small1638

while the autocatalysts are rare.1639

Consequently, we can approximate the reactor1640

composition in which an autocatalyst is placed, as1641

the steady-state composition before perturbation. We1642

then assume that the molar fractions of species Yk1643

consumed by autocatalysts are sufficiently abundant1644

i.e. xYk
� 1/N , which was also required for (47).1645

For sufficient N , deviations from this approximation1646

become vanishingly small.1647

A given Xk will therefore have a fixed transition1648

rate w+
k = kxYj

to perform (47). Similarly, for (46)1649

and CSTR degradation, a fixed transition rate w = k1650

is found, depending only on a rate constant.1651

D. Independence1652

In the rare-autocatalyst regime, all reaction steps1653

we consider for autocatalysts are first-order, and they1654

occur at fixed rates. It follows that autocatalysts do1655

not influence each other, and they can each be treated1656

independently. Thus, we can treat each autocatalyst1657

type separately:1658

Pex({NXk
}) = Pex(NX1

)Pex(NX2
)..Pex(NXs

). (49)
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Also each individiual autocatalyst can be treated as1659

such:1660

Pex(NXk
) = Pex(Xk)NXk (50)

Where Pex(Xk) denotes the extinction probability of a1661

population initially composed of a single Xk species.1662

We thus need a method for finding Pex(Xk). This1663

will be obtained by mapping the problem to a branching1664

process.1665

E. A branching process1666

An attractive method we propose for finding1667

Pex(Xk) (from here on simplified to Pex), is by con-1668

sidering the distribution of ’descendants’ Xk a species1669

Xk will generate. From this, we construct a Branch-1670

ing Process, represented chemically as a single parent1671

molecule Xs yielding k descendants:1672

Xs
Pk−−→ kXs, (51)

with Pk a distribution of the number of descendants1673

which depends on the network topology.1674

KnowingPk suffices to find Pex, since the probabil-1675

ity to go extinct is the probability that all descendants1676

independently (Eq. (50)) go extinct:1677

Pex = P0 + P1Pex + P2P
2
ex + ... =

∞∑
k=0

PkP
k
ex, (52)

We will now highlight some possible choices for Branch-1678

ing Processes and their associated Pk.1679

F. A Birth-Death Process for the Type I cycle1680

Consider a simple type-I cycle such as in Fig S7a.1681

Here, simple refers to there being a direct path of1682

(effective) unimolecular steps between the starting com-1683

pound (B1) and final compound (B2), followed by a1684

single fragmentation step producing two B1 from one1685

B21686

B2 −−→ 2B1. (53)

Starting from the marked node (B1), let P2 = pc be1687

the probability of successfully forming 2B1, i.e.1688

B1
pc−−→ 2B1, (54)

where pc contains the contribution of all possible tra-1689

jectories (here: going back and forth between B1 and1690

B2) that precede the irreversible fragmentation step,1691

i.e.1692

B1
Π+

1−−→ B2
Π−2−−→ B1...

Π+
1−−→ B2

Π+
2−−→ 2B1 (55)

Where Π+
1 , Π−2 and Π+

2 are success probabilities for1693

the single reaction steps. These transitions compete1694

with irreversible degradation processes1695

B1
Π∅1−−→ ∅, B2

Π∅2−−→ ∅. (56)

Where Π∅1, Π∅2 are success probabilities for the degra-1696

dation reaction. Due to total probability conservation,1697

we have1698

Π∅1 + Π+
1 = 1, (57)

Π∅2 + Π−2 + Π+
2 = 1 (58)

Ultimately, a B1 species will either be replaced by 21699

new ones (2B1), or none (∅):1700

∅ 1−pc←−−− B1
pc−−→ 2B1, (59)

which is a chemical representation of the simplest type1701

of branching process: a birth-death process. In Eq.1702

(52), the only nonzero terms will come from 0 descen-1703

dants (P0) and 2 descendants (P2):1704

Pex = P0 + P2P
2
ex = 1− pc + pcP

2
ex. (60)

Solving the quadratic equation yields two solutions1705

P±ex = 1± (1− 2pc)
2pc

. (61)

For our problem, the ’physical’ solution is P+
ex while1706

pc ≥ 1/2. Beyond that point, P+
ex > 1, while we require1707

0 ≤ Pex ≤ 1, so P−ex = 1 becomes the only physical1708

solution.1709

Pex =
{ 1

pc
− 1, pc ≥ 1

2 ,

1, pc <
1
2 ,

(62)

The average number of descendants is 2pc, which means1710

that below pc = 1/2 (the decay threshold) B1 is on aver-1711

age replaced by less then one B1 species and extinction1712

is guaranteed.1713

G. A Branching Process for the same type I cycle1714

To illustrate that there is a variety of choices for1715

the stochastic process under study, we will here consider1716

an alternative choice for the simple type-I cycle, which1717

is more generally applicable. Noting that a single1718

cycle is successful with probability pc, we now consider1719

the number of successful cycles a single B1 provides,1720

knowing that at some point degradation intervenes with1721

probability 1− pc. A succession of k cycles preceding1722
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a failure will thus lead to k successors1723

B1
Pk−−→ kB1. (63)

The probability to spawn k descendants, Pk, is the1724

probability of k successful Bernoulli trials followed by1725

failure, and follows a geometric distribution1726

Pk = pkc (1− pc). (64)

Injecting this distribution in Eq. (52), we find a geo-1727

metric series1728

Pex =
∞∑
k=0

(1− pc)(pcPex)k = 1− pc
1− pcPex

. (65)

Multiplying both sides by 1 − pcPex then yields the1729

quadratic equation (60) previously found for the Birth-1730

Death process. This is necessary, since we are calcu-1731

lating the same quantity Pex for the same network. It1732

highlights that we may construct a variety of branching1733

processes to find Pex.1734

H. A microscopic view on pc1735

We can construct pc from microscopic details. In1736

terms of transition probabilities, we find pc by summing1737

over all trajectories in Eq.(55):1738

pc =
∞∑
k=0

Π+
1 (Π−2 Π+

1 )kΠ+
2 = Π+

1 Π+
2

1−Π−2 Π+
1

(66)

A more detailed description is possible when our de-1739

scription is Markovian (i.e. reactions are sufficiently1740

elementary). Let w+
k denote a forward transition rate,1741

to go from Xk to Xk+1. Let w−k denote a backward tran-1742

sition rate from Xk to Xk−1 and w∅k the degradation1743

rate for Xk. We may then write1744

Π+
1 = w+

1

w+
1 + w∅1

, Π−2 = w−1
w−1 + w∅2 + w+

2
, (67)

Π+
2 = w+

2

w−1 + w∅2 + w+
2
. (68)

I. The irreversible reaction limit1745

Simple type-I cycles have been studied on sev-1746

eral occasions, in the limit where all reactions proceed1747

irreversibly21,23,45 (∀k w−k → 0). In this limit back-1748

ward reactions are ignored (Π−2 = 0), which for our1749

example leads to1750

pc = Π+
1 Π+

2 = w+
1

w+
1 + w∅1

w+
2

w+
2 + w∅2

. (69)

In this limit, there is only one trajectory that con-1751

tributes to pc, and each step involves a competition1752

between the forward reaction and degradation only.1753

In studies using simple type-I cycles, the fraction1754

ζk =
w+
k

w+
k + w∅k

, (70)

has been referred to as the specificity of reaction1755

step23,44,45,58 k, which for irreversible reactions coin-1756

cides with the transition probability Π+
k1757

lim
w−

k−1→0
Π+
k = lim

w−
k−1→0

w+
k

w−k−1 + w+
k + w∅1

= ζk (71)

For simple type-I networks with n reaction steps1758

(n distinct edges), the irreversible limit (Eq. (69))1759

generalizes to44,581760

pc =
n∏
k=1

Π+
k =

n∏
k=1

w+
k

w+
k + w∅k

, (72)

which we will show more formally in the next section.1761

J. The simple type I cycle with n steps1762

To expand our discussion on simple type I cycles,1763

we will now derive a general expression for pc, when1764

there are n steps, of which the first n− 1 are treated1765

as reversible. The problem is illustrated in Fig. S7c.1766

Let us denote PXk→Xj
the probability to reach1767

Xj, starting from Xk. For PX1→X2
, there is only one1768

trajectory:1769

X1
Π+

1−−→ X2, (73)

and hence PX1→X2
= Π+

1 . For PX2→X3
, we need to1770

consider that we can go back and forth between X21771

and X1:1772

X1
Π+

1−−→ X2
Π−2−−→ X1, (74)

X2
Π+

2−−→ X3. (75)

We can absorb the contribution of hopping back-and-1773

forth in the factor Γ2:1774

PX2→X3
= Π+

2 Γ2 (76)

Γ2 =
∞∑
k=0

(Π−2 Π+
1 )k = 1

1−Π−2 Π+
1

(77)

Now, for PX3→X4
, we need to consider that we can go1775

back and forth between X3 and X2, and that at X2 we1776

can go back and forth between X2 and X1. We absorb1777
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this in the factor Γ3:1778

PX3→X4
= Π+

3 Γ3 (78)
Γ3 =

∑∞
k=0(Π−3 Γ2Π+

2 )k = 1
1−Π−3 Γ2Π+

2
(79)

We can repeat this argument any number of times, to1779

find that, for k ≥ 11780

PXk→Xk+1
= Π+

k Γk (80)

Γk+1 =
∑∞
s=0(Π−k+1ΓkΠ+

k )s = 1
1−Π−

k+1ΓkΠ+
k

. (81)

where Γ2 imposes that Γ1 = 1.1781

The total probability pc to reach Xn from X1 and1782

then perform the final irreversible fragmentation reac-1783

tion rn, is then1784

pc =
(
n−1∏
k=1

PXk→Xk+1

)
Π+
nΓn =

n∏
k=1

Π+
k Γk, (82)

When backward transitions become negligible1785

(∀k Π−k → 0), we have ∀k ≥ 1 Γk = 1, and pc then1786

acquires its well-known limit expression described by1787

Eq. (72).1788

K. A Branching Process for a Type II cycle1789

As an example of a simple type-II cycle, we con-1790

sider the network in Fig. S7c, starting with the species1791

C1. Our approach will be reminiscent of our branching1792

process in Sec. VG, but with a repeated branching1793

step.1794

With a probability pC, C1 will successfully perform1795

the allocatalytic cycle r1 + r2 + r3 (with some possible1796

back-and-forths), yielding overall1797

C1
pC−−→ C1 + D1. (83)

The probability PD
k that k successful cycles occur before1798

the first failure (i.e. degradation Ck → ∅) is1799

PD
k = (1− pC)pkC. (84)

Corresponding effectively to the overal reaction1800

C1
PD

k−−→ kD1. (85)

Now, let pD be the probability that D1 succesfully1801

completes a cycle r4 + r2 + r3 (including back-and-1802

forths):1803

D1
pD−−→ C1 + D1. (86)

The probability of k successful cycles before failure1804

becomes1805

PC
k = (1− pD)pkD. (87)

Combined, a single C1 has been then replaced according1806

to1807

C1 −−→ sD1 −−→ (n1 + n2 + ...+ ns)C1. (88)

Let us denote k =
∑s
l=1 nl as the number of descen-1808

dants. The distribution of the number of descendants1809

Pk then becomes1810

Pk =
∞∑
s=0
PP
s

∞∑
n1,..,ns

s∏
r=0
PDCU
nr

δkn1+...+ns
, (89)

which simplifies to1811

P0 = 1− β α

1− α, Pk = βαk, k ≥ 1 (90)

where1812

α = pD

1− pC(1− pD) , β = pC(1− pD)(1− pC)
1− pC(1− pD) .

(91)
From Eq. (52), we then find Pex. By rewriting the1813

geometric series due to (91), we have1814

Pex = 1− β α

1− α − β
αPex

1− αPex
, (92)

which admits the solutions Pex = 1 and1815

Pex = β

α− 1 + 1
α

= 1− pC

pD
. (93)

L. Microscopic expressions for pC and pD1816

Let us first consider how pC can be constructed1817

from smaller reaction steps. To do so, we observe that1818

the first step must be1819

C1
Π+

1−−→ C2, (94)

with Π+
1 the probability of success, competing with1820

degradation1821

C1
Π∅1−−→ ∅, (95)

for which Π∅1 = 1−Π+
1 .1822

Arrived at C2, going back-and forth reversibly1823
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becomes possible for neighboring nodes C1, C3 and D1:1824

C1
Π+

1−−→ C2, C2
Π−2−−→ C1 (96)

C2
Π+

2−−→ C3, C3
Π−3−−→ C2 (97)

C2
Θ−1−−→ D1, D1

Θ+
1−−→ C1 (98)

Where Π+
k ,Π

−
k ,Θ

−
k ,Θ

+
k all denote success probabilities.1825

Starting at C1, a succesful trajectory necessarily starts1826

with reaction r1 (Π+
1 ) and ends with r2 + r3 (Π+

2 Π+
3 ),1827

all in the forward sense. In between, we can go back-1828

and-forth (Π−2 Π+
1 + Θ−2 Θ+

1 + Π+
2 Π−3 ) any number of1829

times. Summing over all possible trajectories, pC then1830

becomes1831

pC =
∞∑
k=0

Π+
1 (Π−2 Π+

1 + Θ−2 Θ+
1 + Π+

2 Π−3 )kΠ+
2 Π+

3 (99)

which sums to1832

pC = Π+
1 Π+

2 Π+
3

1− (Π−2 Π+
1 + Θ−2 Θ+

1 + Π+
2 Π−3 )

(100)

Starting at D1, a succesful trajectory necessarily starts1833

with r4 (Θ+
1 ) in the forward sense, to form C2. From1834

there on, a successful trajectory follows the previous1835

calculation, i.e. pD =
(
Θ+

1 /Π
+
1
)
pC:1836

pD = Θ+
1 Π+

2 Π+
3

1− (Π−2 Π+
1 + Θ−2 Θ+

1 + Π+
2 Π−3 )

(101)

In the limit where all reactions proceed irreversibly1837

forward (Sec. V I), pC and pD only have a contributing1838

from a single straight trajectory1839

pC = Π+
1 Π+

2 Π+
3 , pD = Θ+

1 Π+
2 Π+

3 . (102)

M. Type III cycles with one fragmentation step1840

Let us now consider a type III network composed1841

of n species {X1, ..,Xn} and reaction steps {r1, .., rn},1842

where the final fragmentation step rn produces1843

Xn −−→ X1 + Xs, 1 < s < n, (103)

as shown in Fig. S7e1844

We may then introduce the success rates for the1845

allocatalytic cycles for X1 and Xs1846

X1
p1−−→ X1 + Xs, (104)

Xs
ps−−→ X1 + Xs. (105)

Which was exactly our starting point in Sec. VK.1847

Starting at Xs, we may thus directly use Pex, upon1848

replacing pC with ps and pD with p1, thus finding1849

Pex = 1− ps
p1

. (106)

We now turn to the problem of finding expressions for1850

ps and p1.1851

By structural analogy to simple type I cycles (apart1852

from the fragmentation step), we may again write1853

PXk→Xk+1
= Π+

k Γk (107)

Γk+1 =
∑∞
s=0(Π−k ΓkΠ+

k )s = 1
1−Π−

k+1ΓkΠ+
k

. (108)

with Γ1 = 1.1854

Since ps =
(∏n−1

k=s PXk→Xk+1

)
Π+
nΓn we find1855

ps =
(

n∏
k=s

Π+
k Γk

)
(109)

N. Symmetric motifs1856

When the network motif is symmetric in struc-1857

ture, and if the transitions preserve this symmetry,1858

this can be exploited to simplify calculations and gain1859

insight in topological aspects of autocatalysis and ro-1860

bustness. Experimentally, this symmetry rarely applies1861

for the transitions, but it can be made applicable for1862

the purpose of our analysis, e.g. by setting transi-1863

tion probabilities to values that reflect the structural1864

symmetry.1865

Consider a series of m linked allocatalytic cycles1866

(Fig. S8b), all consisting of n nodes and n edges which1867

are structurally equivalent:1868

Xkn+1
Π+

kn+1−−−−→ ..
Π+

(k+1)n−−−−−→ Xkn+1 + X(k+1)n+1, (110)

which loops back at the mth cycle:1869

Xm−n+1
Π+

m−n+1−−−−−→ ..
Π+

mn−−−→ X1 + Xm−n+1, (111)

As before, Π+
k denotes a forward transition probability,1870

and we also introduce reverse reactions and degradation1871

in the usual sense:1872

Xk
Π−

k−−→ Xk−1, (112)

Xk
Π∅k−−→ ∅. (113)

Now, let us choose transition probabilities such that1873

they are equivalent among the equistructural allocat-1874

alytic cycles, i.e. periodic in n: Π+
k = Π+

k+n and idem1875

for reverse steps (Π−k = Π−k+n) and by extension, degra-1876

dation (Π∅k = Π∅k+n), since Π+
k + Π−k + Π∅k = 1.1877
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Then, finding Pex(Xk) is no different59 from find-1878

ing Pex(Xk+n), which is seen readily in Fig. S8a by1879

rotating the networks and interchanging the labels. Ap-1880

plying this symmetry to Fig.S8a for the six-membered1881

cycle (n = 2,m = 3), we can thus write1882

Pex(X1) = Pex(X3) = Pex(X5). (114)
Pex(X2) = Pex(X4) = Pex(X6).

We characterize the success of each equivalent allocat-1883

alytic cycle (n steps) by the same probability pc. We1884

can then express the extinction probability in terms of1885

the reaction products of one allocatalytic cycle:1886

Pex(X1) = 1− pc + pcPex(X1)Pex(X3) (115)
= 1− pc + pcPex(X1)2, (116)

where we have used the symmetry (115), which yields1887

the exact second order equation we obtained for a1888

simple type-I cycle of n steps. We can thus resolve the1889

general problem using our previously derived solutions.1890

VI. EXPRESSIONS FOR FIG 3, A SURVEY OF Pex1891

FOR VARIOUS STRUCTURES1892

In Fig. 3 in the main text, the behavior of Pex is1893

compared for a number of networks (N1 to N5), in the1894

limit where all reaction steps proceed irreversibly (Sec.1895

V I), and where all reaction steps do so with a common1896

success probability ζ (also known in the literature as1897

specificity). Of course, this is an abstraction that is1898

hard to realize experimentally, and its purpose is the1899

following: by controlling for kinetics, we can systemat-1900

ically investigate and compare how survival is affected1901

by network topology. In this section, we will derive the1902

functional dependence of Pex on ζ for the structures1903

discussed in the main text.1904

1. N1: a 6-membered type I cycle1905

In Sec. V J, we derived the general solution for1906

n-membered type I cycles in terms of the probability1907

pc to reach Xn and perform rn. Starting from X1, we1908

can now recover the solution for n = 61909

For n = 6, pc becomes1910

pc =
( 5∏
k=1

PXk→Xk+1

)
Π+

6 Γ6 =
6∏
k=1

Π+
k Γk (117)

Moving to the irreversible reaction limit, and control-1911

ling the reaction specifity (∀k ≥ 1 Π+
k = ζ, Γk = 1),1912

we obtain pc = ζ6. Upon injection in the solution1913

Pex = (1 − pc)/pc (for pc ≥ 1/2) (Eq. (9)), we then1914

find1915

Pex = 1− ζ6

ζ6 (118)

2. N2: a 6-membered asymmetric type III cycle1916

In Sec. VM, the general solution for n-membered1917

type III cycles with one fragmentation reaction was de-1918

rived. For a 6-membered cycle with the fragmentation1919

reaction1920

X6 −−→ X1 + X4, (119)

which corresponds to network N2 in the main text.1921

Having X4 as the starting species, we can express1922

Pex(X4) in terms of Eq. (109)1923

Pex = 1− p4

p1
. (120)

In the irreversible reaction limit with fixed specificity1924

(∀k ≥ 1 Π+
k = ζ, Γk = 1), Pex becomes1925

Pex = 1− ζ3

ζ6 (121)

A. N3: 6-membered type II network with RAF1926

representation1927

The network N3 consists of two nonoverlapping1928

allocatalytic cycles, which produce each other’s allocat-1929

alyst:1930

A1
Π+

1−−⇀↽−− A2
Π+

2−−⇀↽−− A3
Π+

3−−→ A1 + B1, (122)

B1
Θ+

1−−⇀↽−− B2
Θ+

2−−⇀↽−− B3
Θ+

3−−→ A1 + B1. (123)

Choosing our transition probabilities Π+
k = Θ+

k , we1931

can exploit the network symmetry as outlined in Sec.1932

VN and Pex(A1) = Pex(B1). Let pc be the probability1933

that either A1 or B1 succesfully finishes an allocatalytic1934

cycle. We may then write1935

Pex(A1) = 1− pc + pcPex(A1)Pex(B1) (124)
= 1− pc + pcPex(A1)2. (125)

The success rate pc can be expressed in the familiar1936

way1937

pc = Π+
1 Π+

2 Π+
3 Γ1Γ2Γ3. (126)
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In the irreversible limit (∀k ≥ 1,Γk = 1) with fixed1938

specificity ζ, pc = ζ3, and thus we find for pc ≥ 1/21939

Pex = 1− ζ3

ζ3 . (127)

B. N4: 6-membered symmetric type III network1940

The network N4 consists of two nonoverlapping1941

allocatalytic cycles, which produce a precursor (A0,B0)1942

for each other’s allocatalyst:1943

A0
Π+

0−−⇀↽−− A1
Π+

1−−⇀↽−− A2
Π+

2−−→ A1 + B0, (128)

B0
Θ+

0−−⇀↽−− B1
Θ+

1−−⇀↽−− B2
Θ+

2−−→ A0 + B1. (129)

Choosing our transition probabilities to follow the sym-1944

metry of the network, we can write Π+
k = Θ+

k , and1945

Pex(Ak) = Pex(Bk). Finally, we note that B0 can ei-1946

ther i) degrade with probability Θ∅0 = 1 − Θ+
0 , or ii)1947

form B1 with probability Θ+
0 = Π+

0 , such that1948

Pex(B0) = 1−Π+
0 +Π+

0 Pex(B1) = 1−Π+
0 +Π+

0 Pex(A1).
(130)

Denoting pc the probability that A1 performs a succes-1949

ful allocatalytic cycle (yielding A1 + B0), we can write1950

the extinction probability as1951

Pex(A1) = 1− pc + pcPex(A1)Pex(B0), (131)

which upon injecting (130) yields the following expres-1952

sion for Pex(A1)1953

Pex = 1− pc + pc(1−Π+
0 )Pex + pcΠ+

0 P
2
ex. (132)

Solving the quadratic equation (132), we find1954

Pex(A1) =
1− pc(1−Π+

0 )±
√

(pc(1 + Π+
0 )− 1)2

2pcΠ+
0

(133)
which yields Pex = 1 and1955

Pex = 1− pc
pcΠ+

0
. (134)

We can write pc in terms of back-and-forths starting1956

at A1, terminating with an irreversible fragmentation1957

pc =
∑∞
k=0(Π−1 Π+

0 + Π+
1 Π−2 )kΠ+

1 Π+
2 (135)

= Π+
1 Π+

2
1−Π−1 Π+

0 +Π+
1 Π−2

, (136)

so that in the irreversible limit with fixed specificity1958

(∀k ≥ 1 Πk+ = ζ, Πk− = 0), we obtain1959

Pex = 1− ζ2

ζ3 . (137)

An alternative way of seeing this is that, by symmetry,1960

Pex is the same as that for a 3-membered type III cycle1961

with one fragmentation step (forming X2), for which1962

we can directly use the solution derived in Sec. VM.1963

C. A trio of symmetric analogues1964

As derived in Sec. VN, the interlinked allocat-1965

alytic cycles of size n behave, due to symmetry, as1966

an n-membered simple type-I cycle. Reproducing the1967

solution for the 2-membered cycles (see Sec. VF) in1968

the irreversible limit with ∀k ≥ 1 Π+
k = ζ, Π−k = 0, we1969

thus find1970

Pex = 1− ζ2

ζ2 (138)

D. N5: a type V core1971

In N5 we have the reactions1972

A1 −−⇀↽−− A2 −−→ B1 + C1, (139)
B1 −−⇀↽−− B2 −−→ A1 + C1, (140)
C1 −−⇀↽−− C2 −−→ A1 + B1. (141)

If our transitions follow the symmetry of the network,1973

we have Pex(Ak) = Pex(Bk) = Pex(Ck). Denoting pc1974

the success probability of the allocatalytic cycle, we1975

can write Pex in terms of Eq. (139)1976

Pex(A1) = 1− pc + pcPex(B1)Pex(C1) (142)
= 1− pc + pcPex(A1)2, (143)

which is the solution found for the 2-membered cycle.1977

Noting that1978

pc = Π+
1 Π+

2 Γ1Γ2 (144)

the irreversible limit with fixed specificity (∀k ≥1979

1 Π+
k = ζ, Γk = 1) yields, as in Sec. VF,1980

Pex = 1− ζ2

ζ2 (145)

VII. EXPRESSIONS FOR FIG 4D, A PHASE1981

DIAGRAM FOR MULTICOMPARTMENT1982

AUTOCATALYSIS1983

Fig. S9 represents a case of a type III core with1984

one fragmentation reaction (Sec.VM), consisting of 51985



26

members:1986

X1
Π+

1−−⇀↽−− X2
Π+

2−−⇀↽−− X3
Π+

3−−⇀↽−− X4
Π+

4−−⇀↽−− X5, (146)

X5
Π+

5−−→ X1 + X2, (147)

X5
Π−5−−⇀↽−− X4

Π−4−−⇀↽−− X3
Π−3−−⇀↽−− X2

Π−2−−⇀↽−− X1, (148)

which can also be seen in Fig. S9c. From Fig. S9a, we1987

furthermore infer that there are only two degradation1988

reactions (r6 and r7):1989

X3
Π∅3−−⇀↽−− ∅, X4

Π∅4−−⇀↽−− ∅. (149)

Denoting p1 the probability for X1 to succesfully1990

finish (with back-and-forths) the cycle r1 + r2 + r3 +1991

r4 + r5, and p2 the probability that X2 does so for r2 +1992

r3 + r4 + r5, we can directly substitute the expressions1993

derived in sec. V J1994

p1 =
5∏
k=1

Π+
k Γk, p2 =

5∏
k=2

Π+
k Γk. (150)

Since degradation reactions do not occur in compart-1995

ment I, we are guaranteed that, starting from X1 or1996

X2, eventually X3 will be formed with probability 1.1997

At that point, we can solve the problem for an effective1998

network without X1 and X2 starting at X3 (by the1999

same token, returns are inconsequential). In Fig. S9d2000

this effective network is given, for which we write2001

A1
Θ+

1−−⇀↽−− A2
Θ+

2−−⇀↽−− A3
Θ+

3−−→ 2A1, (151)

A3
Θ−3−−⇀↽−− A2

Θ−2−−⇀↽−− A1, (152)

A1
Θ∅1−−→ ∅, A2

Θ∅2−−→ ∅. (153)

We readily find that this corresponds to a simple type-I2002

network with 3 members, with a success probability2003

for a cycle pc, such that2004

pc = Θ+
1 Θ+

2 Θ+
3 Φ1Φ2Φ3 (154)

Pex = 1− pc
pc

(155)

Where we have used Φk for calculating back-and-forth2005

trajectories, as derived in sec. V J:2006

PAk→Ak+1
= Θ+

k Φk (156)

Φk+1 =
∑∞
s=0(Θ−k ΦkΘ+

k )s = 1
1−Θ−

k+1ΦkΘ+
k

. (157)

with Φ1 = 1. Let us now give a microscopic inter-2007

pretation to the competing processes, by considering2008

sufficiently elementary transitions on the level of a2009

single species2010

• w+
3 = k+

3 xF, sequestration of F (see S9a), which2011

plays the role of a feedstock species in compart-2012

ment I when r3 proceeds forward. proceeds back-2013

ward.2014

• w∅3 = k∅3 degradation, r62015

• w−4 = k−4 release of F, when r32016

• w+
4 = kex4 exchange, from compartment II to I,2017

when r4 proceeds forward.2018

• w∅4 = k∅4 degradation, r72019

• w−5 = kex5 exchange, from compartment I to II,2020

when r4 proceeds backward.2021

• w+
5 = k+

5 release of F, which is an autocatalyst2022

in II, through locally irreversible reaction r5.2023

We then obtain2024

Θ+
1 = w+

3
w+

3 +w∅3
, Θ∅1 = w∅3

w+
3 +w∅3

, (158)

Θ+
2 = w+

4
w+

4 +w∅4 +w−4
, Θ∅2 = w∅4

w+
4 +w∅4 +w−4

, (159)

Θ−2 = w−4
w+

4 +w∅4 +w−4
, Θ+

3 = w+
5

w+
5 +w−5

, (160)

Θ−3 = w−5
w+

5 +w−5
. (161)

Noting that Φ1 = 1, the product Φ2Φ3 simplifies to2025

Φ2Φ3 = 1
1−Θ−2 Θ+

1 −Θ−3 Θ+
2
. (162)

This allows to fully express Pex in terms of 8 micro-2026

scopic coefficients. Reactions r1 and r2 would give2027

4 more rate constants and two more molar fractions2028

(for chemostatted species). However, their values do2029

not alter Pex as they wil always lead to return to A12030

(provided w+
1 , w

+
2 > 0, which we naturally assume to2031

be true).2032

For the purpose of illustration, we will consider2033

the competition between exchange, degradation, and2034

other transitions. To do so, we choose one rate for2035

exchange kex4 = kex5 = kex and one rate for degradation2036

kd3 = kd4 = kd. Furthermore, we let the sequestration-2037

release steps be equally probable in compartment II,2038

and match release in I w+
3 = w−4 = w+

5 = k. The2039

transition success probabilities can then be expressed2040

in terms of two ratios2041

∆ = kd/k, Ξ = kex/k (163)

which upon substitution yield2042

Θ+
1 = 1

1+∆ , Θd
1 = ∆

1+∆ , Θ+
2 = Ξ

1+∆+Ξ , (164)
Θd

2 = ∆
1+∆+Ξ , Θ−2 = 1

1+∆+Ξ , (165)
Θ+

3 = 1
1+Ξ , Θ−3 = Ξ

1+Ξ . (166)

This permits to construct the phase diagram for Pex2043

in Fig. 4D in terms of the variables ∆ and Ξ.2044
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A. Phase boundaries and limits2045

Let us first find an expression for the boundary be-2046

tween autocatalysis and deterministic extinction, which2047

occurs when Pex = 1 and Eq. (155) coincide, i.e. when2048

pc = 1/2, which upon substitution of Eq. (162) be-2049

comes:2050

Θ+
1 Θ+

2 Θ+
3 = 1

2(1−Θ−2 Θ+
1 −Θ−3 Θ+

2 ) (167)

In terms of Ξ and ∆, we have2051

2 1
1+∆

Ξ
1+∆+Ξ

1
1+Ξ (168)

= 1− 1
1+∆+Ξ

1
1+∆ −

Ξ
1+Ξ

Ξ
1+∆+Ξ

Which rearranges to a linear dependence in Ξ2052

∆2Ξ + ∆2 + 3∆Ξ + 2∆− Ξ = 0, (169)

from which we obtain for the phase boundary2053

Ξ = ∆(∆ + 2)
1− 3∆−∆2 . (170)

In the regime where reactions outpace degradation2054

(∆ � 1), extinction will be due to rate-limiting ex-2055

change (Ξ� 1). Taking Eq. (170), dividing by ∆ and2056

letting ∆→ 0, the ratio Ξ/∆ tends to2057

Ξ
∆ = 2, (171)

as also seen in the phase diagram. When exchange is2058

very rapid (Ξ→∞), it ceases to be rate-limiting, and2059

degradation will only compete with other reactions.2060

This occurs when we let the denominator of Eq. (170)2061

become 0, i.e.2062

1− 3∆−∆2 = 0, (172)

which has solutions2063

∆± = −3±
√

21
2 , (173)

of which ∆ = −3+
√

21
2 ≈ 0.79 is the physical solution,2064

as can also be seen in the phase diagram.2065

VIII. MULTICOMPARTMENT AUTOCATALYSIS2066

WITH THREE COMPARTMENTS2067

Let us consider a bimolecular reaction2068

A + B −−⇀↽−− C, (174)

which can occur in three different compartments labeled2069

α, β, γ, as shown in Fig. S9d. Let us couple these2070

compartments through the following exchanges2071

Aα −−⇀↽−− Aβ , Bβ −−⇀↽−− Bγ , (175)
Cα −−⇀↽−− Cβ −−⇀↽−− Cγ . (176)

Removing Aγ , Cα then immediately yields the type III2072

autocatalytic core shown in Fig. S9e.2073
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Figure S1: a) Hypergraph paths and cycle examples. b) Examples of hyper-ears (left) and associated proto-ears (right)
obtained by removing green species. The syntax below graphs (see section IIC) describes the relationships between
non-P species and path P. Nodes ’u’ are products of r, nodes ’v’ are reactants of reactions producing x, ’-’ is any
series of reactions with a single reactant and product, ’*’ denotes the closure of C by the green path. c) Autocatalytic
cores. Edges are oriented consistently along cycles, so that reaction have a single reactant. Orange squares are chains
of arbitrary length made of reactions with a single reactant species and product species. Edge-to-node connections
are weighted by a stoichiometric coefficient, represented explicitly only for Type I by a fork (stoichiometry of 2). C,
C′ and C′ are cycles. In Type II, the dotted path may comprise multiple cycles similar to the green box. In main text
Fig. 2, only the case of a single green box is represented for simplicity. In Type I, detC 6= 0; in Type II, det(C) = 0
and det(C′) can be any value; in Types III-V, det(C) = det(C′) = det(C′′) = 0. d) Generic hyper-ear structure of cores.
e) Nested and entangled back-branches. f) Example of allocatalytic cycle.
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Figure S2: a) A decorated Toy Formose reaction given by the submatrix ννν∗, obtained by removing C1. The replication cy-
cle gggD3 is illustrated in blue. In this network, only species C2,C3 and C4 are autocatalysts. b) The minimal formose
reaction in its autocatalytic subnetwork, an example of an SFA. Arrows illustrate the replication cycle gggC2 .
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Figure S3: a) top: A product-enhanced cycle, Blackmond’s first type of autoinduction. bottom: Hypergraph, contain-
ing the type I autocatalytic core (yellow). External food and allocatalysts are marked in blue. b) top: A ligand-
accelerated cycle, Blackmond’s second type of autoinduction. bottom: Hypergraph, containing the type II autocat-
alytic core (yellow) and supporting external food (blue). Note that, in both cases, external allocatalytic cycles are not
part of the core. Allocatalysts are treated on equal footing with feedstock and waste in isolating a core.
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Figure S4: a) Autocatalysts in the Reverse Krebbs cycle, which yield a Type II core. b) Autocatalysts in the Calvin Cycle.
We find 3 cores of type I (2 equivalent, up to the choice of reaction to link 5 and 9), and 4 cores of type II.
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autocatalysts. b. type III autocatalytic core for the cavitand-amplification network.
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Figure S6: a. A type-II autocatalytic network with its feedstock compounds (or Food set), as encountered in GARD. Col-
ored nodes highlight two distinct allocatalytic cycles that yield an autocatalytic cycle when combined. b. The same
network, in a bipartite graph representation used in the RAF sets formalism. Specifying the mechanism in terms
of uncatalyzed reaction steps removes the RAF property. c. A coarse-grained representation, where allocatalysts in
the same allocatalytic cycle are represented by a single species, and each allocatalytic cycle has been replaced with a
dashed line, to indicate the net reaction being catalyzed. b. A catalytic incorporation mechanism: the red (telephone
shape) amphiphile forms a complex with the purple (square shape) amphiphile, which mediates its incorporation in a
micelle or vesicle. c. Autocatalytic networks of co-assembling amphiphiles. Amphiphiles in square nodes are reservoir
species, those in circular nodes represent amphiphiles in a micelle or membrane. Diagonal terms of the catalytic ma-
trix encode type I autocatalysis, i.e. direct self-incorporation. All other autocatalysis (cross-incorporation) is of type
II: sequences of nonoverlapping allocatalytic cycles.
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Figure S7: a. A type-I subnetwork. B1 and B2 reversibly interconvert, B2 can also irreversibly form two B1, marked by
the forked edge. b. State graph, Π+

k denotes the probability that, starting at Bk, the next transition will be a step
forward in the cycle, Π−k a step backward, and Π∅k a degradation. Fragmentation (yielding 2B1) and degradation (∅)
are absorbing states, attained with probabilities pc and 1 − pc respectively. c. Autocatalytic core for a type-I cycle
with n nodes. d. State graph for c e. schematic for an autocatalytic core for a type III cycle. f. State graph for e. g.
general schematic for an autocatalytic core for a type II cycle with a single fragmentation step. h. State graph for g.
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Figure S8: a) three motifs with the same Pex(Ak), when the transition network follows the same symmetry as the network
structure. b) A more general case: a multiple of allocatalytic cycles of size n. c) 6-membered type I cycle. d) a 6-
membered type II cycle. e) a 6-membered type III cycle. f) transition network for one of the two allocatalytic cycles.
g) a 6-membered type III cycle. The transition of a precursor to allocatalyst is not mediated by an allocatalytic cycle,
and hence this is not a RAF. h) Transition network. i) a trio of symmetric analogues. j) a type V autocatalytic core.
k) transition network for j.
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Figure S9: a) description in terms of Xk. Only the species in the purple circle undergo irreversible transitions towards
absorbing states: degradation of X3 (r6) and X4 (r7), fragmentation of X5 (r5). b) An effective network with the
same statistics for Pex as a), obtained by removing X1 and X2. c) Simulation using Gillespie’s Algorithm. Extinction
events are marked with black pin. d) three-compartment network with a single bimolecular chemical reaction. e)
autocatalytic core. The use of three compartment allows to construct the reactions to complete the cycle (the ears)
directly from the reproduction step.
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