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Abstract 

The new type of coronavirus, SARS-CoV-2 has affected more than 1,2 million people 

worldwide. Since the first day the virus has been spotted in Wuhan, China, there are 

numerous drug design studies conducted all over the globe. Most of these studies 

target the receptor-binding domain of spike protein of SASR-CoV-2, which is known 

to bind human ACE2 receptor and SARS-CoV-2 main protease, vital for the virus’ 

replication. However, there might be a third target, human furin protease, which 

cleaves the virus’ S1-S2 domains taking active role in its entry into the host cell. In 

this study we docked five clinically used drug molecules, favipiravir, 

hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three target proteins, 

receptor binding domain of SARS-CoV-2 spike protein, SARS-CoV-2 main protease, 

and human furin protease. Computational results clearly showed that all ligands 

provided higher binding affinities towards furin protease, except hydroxychloroquine 

and ritonavir yielding the highest binding affinity. This proves that furin protease 

might be targeted for drug design studies and must be further explored in vitro and in 

vivo.  
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Introduction 

Coronaviruses are a type of single-stranded RNA viruses that infect mammals and 

birds. In humans, they cause respiratory diseases ranging from common cold to 

severe/fatal illnesses.1 Three types of human-infecting coronaviruses were 

associated with deadly phenomenia since the early period of 2000s; severe acute 

respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome 

coronavirus (MERS-CoV) and Severe acute respiratory syndrome coronavirus 2 

(SARS-CoV2). In November 2002, SARS-CoV affected 8,098 people and causing 

774 deaths in China until the June 2003. In June 2012, MERS-CoV appeared in 

Middle East, over 2,000 cases and reported by 2017 with about 600 deaths.2-3 

Lastly, SARS-CoV-2, discovered in China, has affected over 1,276,302 people and 

killed 69,527 in more than 199 countries as of April 4, 2020. On 11 February 2020. 

The World Health Organization (WHO) announced “COVID-19” as the name of new 

disease caused by SARS-CoV-2.3-4 The ongoing SARS-CoV-2 threat that emerged 

in China has rapidly spread to other countries and continuing to spread. Thus, many 

efforts have been directed to the investigation of suitable preventive and control 

strategies in a few months as neither vaccines nor direct-acting antiviral drugs are 

available for the treatment of human SARS-CoV-2. 

Most of the therapeutic options for COVID-19 were based on anti-viral agents, which 

are used for treating previous Zika, Ebola, and Nipah viruses, SARS-, and MERS-

CoVs.5 This is due to fact that the time required for drug discovery programs to 

develop, evaluate, and obtain appropriate new therapeutic agents might take more 

than 10 years. Thus, researchers are focused on therapeutics, which have proven 

efficacy against viruses similar to COVID-19 instead of a new potent anti-COVID-19 

agent. These available therapeutic agents against SARS-CoV-2 could be either 

virus-based, involving small molecules targeting viral S protein, viral protease 

inhibitors and RBD–ACE2 blockers or host cell-based including host cell protease 

inhibitors and host cell endocytosis inhibitors.5 

Spike protein directly mediates viral entry with S1 domain, which is responsible for 

host cell surface binding through ACE2 receptors and S2 domain responsible for 

membrane fusion. The viral binding to host cell surface is following S1/S2 cleavage 
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by host proteases such as TMPRSS2, cathepsins B and L.	Previous studies have 

already demonstrated Furin, a kind of proprotein convertases, can mediate S1/S2 

cleavage unlike other coronaviruses and contribute to membrane fusion efficiency 

which explain current strong infectious capacity of SARS-CoV-2 2-3. Thus, SARS-

CoV-2RBD/ACE2 and Furin could be potential targets for COVID-19 to prevent viral 

entry. Furthermore, SARS-CoV-2 main protease known as 3CLpro which is essential 

in processing viral polyproteins and viral replication could be a non-toxic target for 

managing COVID-19 as humans do not have proteases with a similar cleavage 

specificity.1, 3, 6 

In vitro studies by Liu et al. had already demonstrated that two drugs, chloroquine 

(CQ) and hydrochloroquine (HCQ) efficiently inhibited SARS-CoV-2 infection in vitro 

and these findings were supported by preliminary clinical studies as well.7-10 Several 

other drugs such as, remdesivir, and favipiravir are currently undergoing clinical 

studies to test their efficacy and safety in the treatment of COVID-19 in China and 

other European countries such as Turkey and some promising results have been 

achieved so far.11-15 In addition, lopinavir, and ritonavir are widely used as HIV 

protease inhibitors, and previous in vitro and in vivo studies have also shown their 

potential activity against other coronaviruses; SARS-, and MERS-CoVs.16-19 

In the present study, we investigated binding of five active molecules, currently 

applied as the first line of treatment, favipiravir, hydroxychloroquine, remdesivir, 

lopinavir, and ritonavir onto three different possible target proteins, receptor binding 

domain of SARS-CoV-2 spike protein (SARS-CoV-2RBD), SARS-CoV-2 main 

protease(SARS-CoV-2 Mpro), and human furin (hFUR) protease by molecular 

docking simulations. Our aim was to shed light on the target selection for future drug 

design studies.  

 

Methods 

Preparation of the protein and target molecules 

The crystal structure of the proprotein convertase furin (PDB: 1P8J, 2.6 Å), COVID-

19 main protease in complex with an inhibitor N3 (PDB: 6LU7, 2.16 Å) and 

coronavirus spike receptor-binding domain complexed with its receptor ACE2 (PDB: 

6LZG, 2.5 Å) were obtained from the Research Collaboratory for Structural 
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Bioinformatics Protein Data Bank (RCSB PDB).20-21 Small molecules were removed 

from crystal structures by using BIOVA Discovery Studio software.22 Polar hydrogens 

and Kollman charges were added to the protein and a pdbqt format file was 

generated by using AutoDockTools 1.5.6 software.23  

The canonical SMILES of Lopinavir, Remdesivir, Hydrochloroquine, Favipiravir and 

Ritonavir were obtained from PubChem database. Their structures were built, and 

structural optimization was carried out with USCF Chimera software.24 Afterwards, 

the structures were converted into pdbqt format by using AutoDockTools 1.5.6 

software, in use for docking calculations with Vina. 

Docking  
Autodock Vina 1.1.2 software25 was used for docking calculations and 

exhaustiveness parameter was selected as 8, and 10 modes were generated for 

each ligand. Windows 7 Ultimate operating system (64-bit) installed on a home-built 

computer, equipped with Intel Core i3-3110M 2.40GHz processor and 8GB memory, 

was utilized for all computational work. Results were analysed using BIOVA 

Discovery Studio software and VMD-Visual Molecular Dynamics software.26 

 

Results and Discussion 

To test inhibition capability of five clinically used molecules disrupting SARS-CoV-

2RBD/ACE2 interaction, we designed docking simulations with grid box covering only 

SARS-CoV-2RBD-ACE2 interface. Binding of five molecules onto SARS-CoV-2RBD 

yielded binding affinities ranging from -4.2 kcal/mol to -6.9 kcal/mol (Table 1 and 

Figure 1). These affinities clearly proved among these active molecules only 

lopinavir and ritonavir had high affinity towards this target. Lopinavir and ritonavir 

yielded binding affinity of -6.9 kcal/mol and -6.4 kcal/mol, respectively. Favipiravir, 

hydroxychloroquine, and remdesivir were not good binders of the protein. Relatively 

small sizes of favipiravir and hydroxychloroquine must be the reason for these small 

binding affinities. Molecular interactions were provided in Figure 2. These binding 

affinities suggest lopinavir and ritonavir may have potential activity against COVID-

19 through SARS-CoV-2RBD/ACE2 inhibition.  

Secondly, we set out docking simulations to examine the structural roles of these 

drugs on SARS-CoV-2 Mpro activity during viral infection. Docking analysis onto 
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SARS-CoV-2 Mpro didn’t yield significantly higher binding affinities, they were 

between from -5.2 kcal/mol to -6.6 kcal/mol. Lopinavir was bound with the highest 

binding affinity of -6.6 kcal/mol (Table 1 and Figure 1). All the binding sites for all 5 

molecules were outside the active site of the protease. Therefore, we repeated 

simulations with smaller simulations box and this time targeting only the active site, 

SARS-CoV-2 Mpro-ac, comprised of amino acid residues Thr 26, His 41, Met 49, Leu 

141, Asn 142, Gly 143, Gly 143, Ser 144, Met 165, Glu 166, and Gln 189. Molecular 

interactions at this site were provided in Figure 3. This time binding affinities 

increased for all ligands except for favipiravir. Specifically, for lopinavir and 

remdesivir binding affinities increased by 0.9 kcal/mol and 2.0 kcal/mol, respectively. 

Both active molecules produced binding affinities of -7.5 kcal/mol. This binding site 

was also revealed in x-ray structure (PDB ID: 6LUV),21 for a peptide derivative 

inhibitor N3 and was also predicted to be lopinavir binding site in a computational 

study by Liu et.al.27 (Figure SI-1). Moreover, binding affinity of lopinavir onto SARS-

CoV-2 Mpro-ac yielded the highest binging affinity, equal with the active site of human 

furin protease (hFURac). Hydroxychloroquine provided the highest binding affinity 

among all three targets on this active site. However, it is noteworthy that when 

ligands were docked onto the whole protein, the molecules did not reach the active 

site. Although binding to active site yielded higher binding affinities, molecules 

reached to the active site only with a small grid box with only active site coverage. 

Overall, our results demonstrated that both lopinavir and remdesivir might have 

potential activity on preclinical COVID-19 researches as SARS-CoV-2 Mpro inhibitors. 

The last target protein investigated was hFUR and binding affinities were in the 

range of -5.6 kcal/mol to -7.5 kcal/mol. All three relatively larger molecules, 

remdesivir, lopinavir, and ritonavir provided similar binding affinities, -7.5 kcal/mol, -

7.1 kcal/mol, and -7.3 kcal/mol, respectively (Table 1 and Figure 1). Remdesivir 

provided the highest binding affinity with -7.5 kcal/mol among all active molecules. 

On the other hand, favipiravir was bound to this target with the highest binding 

affinity among all other targets with -6.2 kcal/mol binding affinity. We again repeated 

docking simulations with a smaller grid box covering only active site of human furin 

(hFURac), comprised of amino acid residues Asp 153, Arg193, His 194, Arg 197, Leu 

227, Val 231, Ser 253, Asp 258, and Asn 295. Molecular interactions were provided 

in Figure 4. Binding affinity for remdesivir increased by 0.3 kcal/mol, for lopinavir 
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increased by 0.4 kcal/mol. The sharpest increase was observed for binding affinity of 

ritonavir, by 1.5 kcal/mol, which was calculated to be -8.8 kcal/mol. This binding 

affinity was the highest calculated for the molecules in the study, followed by binding 

affinity for remdesivir at the same location. Furthermore, binding affinities of 

remdesivir and ritonavir were strikingly higher than binding affinities at other targets. 

This might suggest that hFUR could be the main target for remdesivir and ritonavir. 

We should also mention that when all molecules were docked onto the whole hFUR, 

three molecules, favipiravir, hydroxychloroquine, and lopinavir hit active site of the 

protease. This suggested that active site of hFUR was more accessible for these 

molecules than active site of SARS-CoV-2 Mpro and could be used as a potential 

therapeutic target more specifically than SARS-CoV-2 Mpro.  

Conclusions 

In this study we investigated binding of readily prescribed drug molecules favipiravir, 

hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three proteins, which 

should be targeted for COVID-19 treatment. Among all targets, receptor binding 

domain of SARS-Cov2 spike protein (SARS-CoV-2RBD), SARS-CoV-2 main protease 

(SARS-CoV-2 Mpro), and human furin (hFUR) protease, binding affinities for all drug 

molecule were calculated to be the highest for active site of human furin protease, 

hFURac. Moreover, ritonavir and remdesivir produced very high binding affinities, -8.8 

kcal/mol and -7.8 kcal/mol in this active site. Reason for these high affinities must be 

hydroxyethylene scaffold that mimics the peptide linkage for ritonavir and the 

adenosine triphosphate moiety of remdesivir, making strong hydrophobic and polar 

interactions in the active site, respectively. As reported in our study, clinically used 

drug molecules have higher binding affinities hFUR than other therapeutic targets in 

silico. This should be major reason for potential activity of these drugs against 

COVID-19 in the preclinical studies. Overall, molecular docking calculations 

performed in the present study, which needs further in vitro and in vivo experimental 

proof, clearly highlighted that hFUR might be the novel target for future drug 

molecule design studies against SARS-CoV-2. 
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Tables: 

Table 1. Binding affinities in kcal/mol of five molecules on three different target 
proteins. 
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Figures: 

 

	

Figure 1. Graphical representation of binding affinities for five molecules on 
three proteins including the active site of proteases SARS-CoV-2-Mpro and 
hFUR.  
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Figure 2. Molecular interactions for five molecules at the SARS-CoV-2RBD site. 
Legend for interactions was provided in the middle and interacting amino acid 
residues were provided in the table.  
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Figure 3. Molecular interactions for five molecules at the SARS-CoV-2 Mpro-ac 
site. Legend for interactions was provided in the middle and interacting amino 
acid residues were provided in the table.  
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Figure 4. Molecular interactions for five molecules at the hFURac site. Legend 
for interactions was provided in the middle and interacting amino acid 
residues were provided in the table.  
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Supporting Information Figure: 

 

 

Figure SI-1. Comparison of N3 binding from crystal structure, PDB ID: 6LUV, 
and Lopinavir binding from the current study at SARS-CoV-2 Mpro-ac. Same 
interacting amino acid residues were shown in red rectangular boxes.   

 

 


