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ABSTRACT:  The ability to predict material properties without the need of resource consuming experimental efforts can immensely 
accelerate material and drug discovery. Although ab initio methods can be reliable and accurate in making such predictions, they are 
computationally too expensive at a large scale. The recent advancements in artificial intelligence and machine learning as well as 
availability of large quantum mechanics derived datasets enable us to train models on these datasets as benchmark and to make fast 
predictions on much larger datasets. The success of these machine learning models highly depends on the machine-readable finger-
prints of the molecules that capture their chemical properties as well as topological information. In this work we propose a common 
deep learning based framework to combine different types of molecular fingerprints to enhance prediction accuracy. Graph Neural 
Network (GNN), Many Body Tensor Representation (MBTR) and a set of simple Molecular Descriptors (MD) were used to predict 
the total energies, Highest Occupied Molecular Orbital (HOMO) energies and Lowest Unoccupied Molecular Orbital (LUMO) ener-
gies of a dataset containing ~62k large organic molecules with complex aromatic rings and remarkably diverse functional groups.  
The results demonstrate that a combination of best performing molecular fingerprints can produce better results than the individual 
ones.  The simple and flexible deep learning framework developed in this work can be easily adapted to incorporate other types of 
molecular fingerprints.

INTRODUCTION 
 
Quantum mechanical calculations, especially Density 
Functional Theory (DFT) is a well-established tool to ac-
curately calculate molecular energies and properties. How-
ever, these ab initio calculations are computationally rig-
orous and performing these calculations for large mole-
cules become inhibitively expensive. Relatively inexpen-
sive force field based methods can be used for this purpose 
and they are widely used for both inorganic systems as well 
as organic and biological molecules. However, these meth-
ods do not take electrons into account and fail to accurately 
reproduce the complex interactions in molecules.1 There-
fore, the search for a fast but accurate method for describ-
ing molecular properties is still ongoing. 
Machine learning algorithms are shown to be capable of 
accurately predicting molecular properties in a test set by 
learning complex relationships between different molecu-
lar features in the training set. Once trained, they are orders 
of magnitude faster than DFT methods but can still pro-
duce DFT level accuracies. Recently some studies used 
machine learning methods to predict molecular properties 
at an accuracy comparable to the chemical accuracy.2-4 
Deep learning, a neural network based subset of machine 
learning method, demonstrated remarkable accuracy in 
natural language processing,5 computer vision,6 speech 

recognition7 and many other fields.8 It is also finding ap-
plications in an increasing number of computational chem-
istry fields including drug discovery9, 10 and materials prop-
erty prediction.11, 12 However, compared to its wide spread 
application in other areas, it is still in its infancy in the field 
of chemistry, materials science and biology. It is the best 
time to develop this field further and consequently discover 
new horizons in science and novel applications. 
Graph neural network, a neural network that operates on 
graphs, is a natural choice for molecules. Recently some 
studies demonstrated that graph neural network consist-
ently outperformed other machine learning methods in pre-
dicting molecular properties derived using DFT.2-4, 13, 14 
The success of a machine learning method highly depends 
on the features of the training set, in this context molecular 
descriptors or fingerprints. In order to provide a molecule 
as an input to a machine learning model, it needs to be de-
scribed by a number of features, typically represented by a 
fixed length vector. The descriptor should ideally capture 
as much information about the chemical environment of 
the atoms as possible. It should be sensitive to the local 
environment of the atoms as well as atomic positions. The 
descriptors should be rotationally and translationally invar-
iant.15 Many types of molecular descriptors are proposed, 
with their own strengths and limitations, producing differ-
ent levels of accuracies. For example, Coulomb Matrix 



 2 

(CM),16 bag of bonds (BoB),17 Many Body Tensor Repre-
sentation (MBTR),18 Bonds Angles Machine Learning 
(BAML),19 Extended Connectivity Fingerprint (ECFP4)20.  
Although, there are numerous molecular fingerprinting 
strategies available in the literature, there is a lack of com-
parative studies for their performances in predicting prop-
erties. It is also known that the performances of different 
molecular fingerprints can vary depending on the target. 
There are no systematic guides available for selecting a 
particular type of fingerprinting strategy for a particular 
target. One way to overcome this problem is to combine 
different fingerprinting types. Such a stacking strategy has 
shown to improve on the performance for ligand-based vir-
tual screening.21  
Due to significant advancements in some key technologies, 
there has been an upsurge in the availability of high level 
and large-scale quantum mechanical data.22-24 Most tradi-
tional approaches are unable to use these large datasets in 
an effective and transferable manner. Therefore, powerful 
and robust machine learning methods that can learn from 
these datasets and predict properties for a much larger da-
taset are highly sought after. This will eventually make the 
arduous search problem in drug discovery and novel mate-
rials design a reality.  
In recent times, organic molecules are routinely used in 
many electronic devices like organic light emitting di-
odes,25 organic solar cells26 and organic field effect transis-
tors.27 The ability to accurately predict energies, especially 
molecular orbital energies of organic molecules can be 
highly beneficial for characterizing optoelectronic proper-
ties. This can in turn accelerate the rational design of novel 
materials for organic devices.  
A few deep neural network based studies2-4, 13 predicted the 
highest occupied molecular orbital (HOMO) and lowest 
unoccupied molecular orbital (LUMO) energies of ~134k 
organic molecules in the well known QM9 dataset.22 To the 
best of our knowledge, the best results were produced by 
Chen et al. with a mean average error (MAE) of 0.038 eV 
for HOMO and 0.031 eV for LUMO. However, the QM9 
dataset consists only of small organic molecules and it re-
mains uncertain how a model trained on this dataset will 
perform on a new dataset, especially one that consists of 
larger organic molecules with complex and diverse func-
tional groups and aromatic backbones.  
Recently, Stuke et al. published a diverse benchmark spec-
troscopy dataset consisting of ~62k large organic mole-
cules with diverse functional groups (OE62 dataset).23 This 
is a significantly more challenging dataset than QM9 da-
taset for the prediction of HOMO and LUMO energies. 
In this work, we used a set of different molecular de-
scriptors, Many Body Tensor Representation (MBTR), 
graph neural network and a combination of them using a 
deep learning framework to predict total energies and 
HOMO/LUMO energies of the molecules in the OE62 da-
taset. We assess the individual performances of different 
types of descriptors for predicting different targets. We 
demonstrate that a selected combination of different de-
scriptors can outperform a particular descriptor. This is an 
indication that more accuracy can be achieved by such 
combination strategy. 

The models trained in this work are capable of making fast 
predictions of total and molecular orbital energies of large 
organic molecules that are not included in the dataset. This 
can be useful in screening novel molecules with desirable 
properties for optoelectronic applications. 
The manuscript is organized in the following order: The 
METHODS section introduces the dataset followed by ex-
planations of different strategies of descriptor generation 
followed by a summary of our deep learning architecture 
and training parameters. The RESULTS AND 
DISCUSSIONS section reports the major findings of the 
work in terms of the performances of different descriptors 
and their combinations in predicting total energies and 
HOMO/LUMO energies. 
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METHODS 
 

Description of the dataset. With a goal to facilitate the 
design of organic semiconductors with high charge carrier 
mobility, Schober et al. constructed a diverse dataset of 
~64k large organic molecules (referred as OE database).24 
They extracted these molecules from single-molecule crys-
tal structures in the Cambridge Structural Database.28 
However this dataset is not yet publicly available. As a di-
verse benchmark spectroscopy dataset, Stuke et al. con-
structed a subset of this dataset (with ~62k molecules) 
which is publicly available (referred at OE62 dataset).23 
We used this OE62 database for fitting our models. 
The OE62 dataset is significantly more challenging than 
the existing databases for predicting properties of organic 
molecules, for example QM9 dataset.22 For example, the 
size distribution of the molecules in the OE62 dataset is 
considerably broader than that of QM9 dataset (Figure 1a). 
OE62 dataset is also chemically more diverse than the 
QM9 dataset. It contains 16 different element types, H, Li, 
B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te and I whereas 
QM9 dataset contains only five element types, H, C, N, O 
and F (Figure 1b).  
The electronic structures of the molecules in the OE62 da-
tabase are remarkably complex with large number of dif-
ferent scaffolds with large conjugated systems and unusual 
functional groups. Thus, predicting the properties of the 
molecules in OE62 dataset is quite challenging and there-
fore a good benchmark for developing predictive models. 
a) 

 
b)

 

Figure 1. QM9 vs OE62, comparison of diversity of molecules. a) 
Size distribution of the molecules including hydrogen atoms. The 
largest molecules in both the datasets are shown. The largest mol-
ecule in OE62 has 174 atoms which falls outside the window de-
picted here for clarity. b) Element distribution of the molecules.   

Feature generations. Fingerprinting molecules is an essential 
step for property prediction since machine learning typically re-
quires some machine-readable features as input. Recently many 
innovative strategies are developed to engineer features from 

molecules. We selected three methods of fingerprinting the or-
ganic molecules based on their success and ease of calculation. 
1. Graph neural network (GNN): During the last few years, 

graph neural network has emerged as a suitable, robust and 
powerful machine learning model for representing mole-
cules and to predict material properties.2-4, 14 Graph net-
works are natural choices for molecules since it can repre-
sent any molecule with any arbitrary connectivity.  
Gilmer et al. demonstrated that the variety of graph neural 
networks available in the literature can be unified with a 
common framework of message passing neural network.4 
The atoms in a molecule can be considered as the nodes of 
a graph G while the bonds between the atoms function like 
the edges. Neural networks can be used to model the data 
flow between the atoms. The inputs to these neural net-
works can be some atomic attributes like atomic number, 
type of hybridization, coordination number etc. as node 
features, 𝑥! and some bond attributes like bond order, bond 
length etc. as edge features, 𝑒!". The messages 𝑚!

#$% col-
lected by each atom at a time step can be summed up by 
adding the messages of the neural nets corresponding to all 
the bonds that the atom is connected to: 
 

 𝑚!
"#$ = ∑ 𝑀"(ℎ!" , ℎ%" , 𝑒!%)%Î&(!)              (1)  

 
where 𝑁(𝑣) are the neighbors of 𝑣 and ℎ!#  are the hidden 
states. The hidden state of a node stores the messages col-
lected through all the edges by which it is connected to its 
immediate neighbors. Then the messages of each atom are 
updated using an update function 𝑈#: 
 

						ℎ!"#$ = 𝑈"(ℎ!" , 𝑚!
"#$)                     (2)  

 
Finally, the readout function 𝑅	computes a feature vector 
for the whole graph at T time steps: 
 

𝑦- = 𝑅({ℎ!) 	|	𝑣Î	𝐺)                        (3)  

 
The output of the whole graph/molecule can predict a mo-
lecular or material property. The parameters of the model 
can be optimized using a training set.  
The graph networks also satisfy the requirements of trans-
lational, rotational and permutational invariances. Faber et 
al. benchmarked many machine learning models on ~131k 
organic molecules from the QM9 data set and demon-
strated that the graph based deep learning models consist-
ently outperformed the classical machine learning models.3 
They also showed that the error in predicting the molecular 
properties by the best performing machine learning models 
were comparable to the DFT error at B3LYP level almost 
reaching chemical accuracy.  
As compared to the molecular systems, the crystal struc-
tures impose an additional problem since they have arbi-
trary sizes but most machine learning methods require 
fixed-length vectors as features. Xie and Grossman con-
structed convolutional neural networks on top of crystal 
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graphs representing crystal structures to accurately predict 
a broad range of material properties like absolute energy, 
band gap, Fermi energy and elastic properties.14 Some ma-
chine learing models were also developed that can handle 
both molecular systems and crystals.13 Very recently Chen 
et al. constructed a universal MatErials Graph Network 
(MEGNet) model by augmenting the attribute space with 
some state attributes like temperature, pressure and entropy 
in addition to the typical atomic and bond attributes.2 They 
demonstrated that their model outperformed the previous 
graph networks in predicting various materials properties 
both for molecules and crystals. 
In this work, we attributed several atomic and bond fea-
tures to construct graph neural networks (GNN) for the or-
ganic molecules in the OE62 dataset. Table 1 provides the 
details of the features. 

Table 1. Atomic and bond attributes uses to construct graph 
neural networks 

type attribute name description 
atom atomic number number of protons (inte-

ger) 
 total valence total valence (explicit + 

implicit) of the atom 
(integer) 

 aromaticity if the atom is a part of an 
aromatic ring (binary) 

 number of Hydrogens integer 
 donor donates electron (bi-

nary) 
 acceptor accepts electron (bi-

nary) 
 hybridization sp, sp2 or sp3 (one hot) 
 atomic type H, C, N, O etc (one hot) 
bond bond type non bonded, single, aro-

matic, double or triple 
bond (one- hot) 

 expanded distance bond distance r	 ex-
panded on Gaussian ba-
sis exp(−(𝑟 − 𝑟&)'/
s'), where 𝑟&  is as-
signed at 10 regular in-
tervals between 0 and 4, 
and σ	= 0.5  
 

 Coulomb interaction (𝑍( ∗	𝑍))/𝑅() where 𝑍( 
and 𝑍) 	are atomic num-
bers and 𝑅() is the bond 
distance 

  
The attributes were calculated using Rdkit (www.rdkit.org) 
for each molecule. We note that the GNNs were con-
structed solely from the SMILES code provided in the da-
taset. The spatial information was generated by embedding 

the molecules using ETKDG method as implemented in 
Rdkit. 

2. Many body tensor representation (MBTR): Based on Cou-
lomb Matrix (CM)16 and bag of bonds (BoB)17, H. Huo and 
M. Rupp proposed a many body tensor representation of 
molecules and crystals.18 It is an effective way to encode 
local chemical environment from three-dimensional geo-
metric information to suitable features for machine learn-
ing.  
The one-body terms represent the atom types in the mole-
cule. The two-body terms encode all the atom-pairs in the 
molecule, both bonded and non-bonded. The three-body 
terms capture the angular distributions of all possible atom 
triplets. The distributions are broadened into continuous 
Gaussian distributions. The broadening parameters: r1, r2 
and r3, that control the smearing of the atom type distribu-
tions are the hyperparameters of the representation and 
they can be fine-tuned to improve the performance of the 
machine learning model that uses MBTR as feature.  
Stuke et al. used MBTR to successfully reproduce the mo-
lecular orbital energies of OE dataset.29 They observed that 
including the one-body term did not improve the perfor-
mance but increased the computational time. We observed 
the same in our calculation. Therefore, we also included 
ony the two-body and three-body terms. We used DScribe 
package to generate the MBTR.30 

3. Molecular descriptors (MD): Rdkit provides a convenient 
way to generate many molecular descriptors from the mol 
object, which can be generated from the SMILES code rep-
resenting a molecule. Some of these descriptors can be 
good predictors of total energies or orbital energies. There-
fore, as the third component of features, we constructed a 
set of 49 such descriptors, such as, molecular weight, num-
ber of valence electrons, number of hydrogen bond accep-
tors, number of hydrogen bond donors, number of hydro-
phobe, number of rotatable bonds etc. A full list of the de-
scriptors can be found in Table S1 in supporting infor-
mation. 

Deep learning architecture. We used python31 and PyTorch32 
programming languages to construct the deep learning frame-
work. Figure 2 demonstrates the architecture we used to com-
bine the different features (GNN, MBTR and MD) for deep 
learning the targets. 
GNNs were built using the message passing neural network4 
(NNConv) as implemented in PyTorch. The number of convo-
lution layers in GNN is hyperparameter of the model. However, 
we limited this to 3 in order to reduce the number of hyperpa-
rameters and thus complexity of the model. Gated Recurrent 
Unit (GRU)33 was used as the update function for GNN. 
Similarly, both the number of neurons and number of hidden 
layers processing MBTR and MD features, as well as the final 
features are hyper parameters of the model. In order to reduce 
the total number of hyperparameters, we fixed the number of 
hidden layers to 2. However, the number of neurons in the layer 
is kept as a hyperparameter. The number of neurons was grad-
ually reduced in the more advanced layers, constructing a fun-
nel like structure. 
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Figure 2. Deep learning architecture for hybridizing GNN, MBTR and MD.  

Table 2. MAE of different targets in the OE62 dataset 

Target Units GNN MBTR MD Combination 
Total energy eV 1.028 1.035 1.016 1.005 (GNN + MD) 
HOMO energy eV 0.150 0.193 0.262 0.138 (GNN + MBTR) 
LUMO energy eV 0.158 0.215 0.318 0.136 (GNN + MBTR) 

A batch size of 64 was used to balance between efficiency and 
accuracy. AdamW with amsgrad turned on was used as the op-
timizer. Applying a slight weight decay (=0.005) was useful in 
achieving regularization and preventing overfitting. The learn-
ing rate was kept as a hyperparameter of the model. A scheduler 
was used to modify the learning rate during the training. The 
training of the model was performed using GPU.  
The OE62 dataset was randomly split into 70%, 15% and 15% 
for training, validation and test, respectively. The number of 
epochs required to achieve satisfactory accuracy was dependent 
on the type of the target. 
 
RESULTS AND DISCUSSIONS 
The OE62 dataset provides the total energies, HOMO energies 
and LUMO energies of all the molecules at both Perdew-
Burker-Ernzerhof (PBE)34 level including Tkatchenko-
Scheffler van def Waals (TS-vdW) correction35 and PBE hybrid 
(PBE0)36 level of Density Functional Theory (DFT). In this 
work we selected the energies at the PBE0 level of theory for 
training our models. 
Table 2 Summarizes the performances of different descriptors, 
when applied individually and when applied in combination 
with other descriptors for different targets in the dataset. 
Prediction of total energy. Accurate prediction of total energy 
of a molecule by machine learning can be useful since it can 
bypass the need of expensive calculation at the DFT level.37, 38 

Ideally the three dimensional geometrical structures of the mol-
ecules should not be used as the input feature in the machine 
learning model because this information is something that is 
generated after the expensive DFT calculation. Is it possible to 
predict the DFT total energies of these molecules taking only 
the SMILES code into consideration? 
We explored this question in this work using GNN and MD 
since these two strategies take only SMILES code as input. The 
OE62 dataset was used to train the deep learning architecture 
depicted in Figure 2. 
The total energy was scaled by a logarithm to reduce its wide 
range. Figure 3 shows the performances of the fitted models us-
ing MD, GNN and GNN + MD on the out of bag test set. The 
performance of MD alone is decent with MAE of 1.016 eV. One 
the other hand, GNN performs slightly worse with MAE of 
1.028 eV. It is interesting to note that a simple set of molecular 
descriptors performs better than much more complicated GNN. 
This could be due to the fact that the total energy is strongly 
correlated to the size of the molecule and the simple descriptor 
that counts the number of atoms in the molecule is capable of 
making a good prediction. This, in combination with other mo-
lecular descriptors are capable of at least predicting the relative 
energies of the molecules quite accurately. 
When GNN is combined with MD, it produced a slightly better 
result than the individual ones with MAE of 1.005 eV.  
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Figure 3. Prediction of total energy by MD, GNN and GNN + MD.  The total energy was scaled by a logarithm before training the model 
and the results are also shown in the logarithm scale. The energy unit is eV. 

There are a few studies that reported the performance of ma-
chine learning models for predicting total energies of organic 
molecules calculated by quantum mechanics.39-41 However, the 
datasets considered by these studies consisted of only small or-
ganic molecules with a few different types of atomic elements. 
Therefore, the results of our work are not directly comparable 
with theirs.   
Prediction of HOMO energy. GNN, MD and MBTR were in-
dividually applied to predict the HOMO energies. The perfor-
mance of MD was significantly inferior compared to the other 
two. Therefore, we dropped MD from any further analysis. Fig-
ure 4 shows the performances of MBTR, GNN and GNN + 
MBTR for the prediction of HOMO energies.  

MBTR alone can predict the HOMO energies with a MAE of 
0.193 eV. GNN alone produced a MAE of 0.15 eV. When they 
were combined the MAE went down to 0.138 eV. Although, 
this reduction of error seems small, it is important to note that 
the reduction of error at a high accuracy level is always difficult. 
Ensemble strategies involving different machine learning mod-
els usually adds a marginal improvement. However, this mar-
ginal improvement can sometimes be significant and very diffi-
cult to achieve. The take home lesson here is that the reduction 
of MAE demonstrates that higher accuracy can be achieved by 
combining these two different types of strategies to describe the 
molecules, namely GNN and MBTR.  
To the best of our knowledge, these results are not directly com-
parable to any other work in the literature. The closest is the 
work by Stuke at al.29 They applied Kernel Ridge Regression 
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(KRR) method to predict HOMO energies of molecules in three 
datasets – QM9, OE62 and AA42 using two typed of descriptors, 
namely Coulomb Matrix (CM) 16 and MBTR. According to 
their report the prediction of HOMO energies for OE62 dataset 
was significantly more difficult than the other two. This is due 

to the high diversity, structural complexity and larger sizes of 
the molecules in the OE62 dataset compared to the other two. 
They also observed that the performance of MBTR was signif-
icantly better than CM for the QM9 and OE62 datasets. Inspired 
by this work, we selected MBTR as one of our descriptors.

 

 
Figure 4. Prediction of HOMO energy by MBTR, GNN and GNN + MBTR.  The energy unit is eV. 

Stuke et al. reported a MAE of 0.173 eV for the prediction of 
HOMO energies for the molecules in OE62 dataset. However, 
for the sake of consistency, they reoptimized the structures of 
all the molecules in all three datasets using DFT and Perdew-
Burke-Ernzerhof (PBE) functional including Tkatchenko-
Scheffler van der Waals corrections and recalculated the 
HOMO energies. Whereas, we worked with the original struc-
tures and HOMO energies at PBE hybrid (PBE0) level of DFT 
as reported in the original OE62 dataset. 
Prediction of LUMO energy. The results of LUMO energies 
followed similar trend as with HOMO energies. Figure 5 shows 
the results produced by MBTR, GNN and GNN + MBTR. 
MBTR alone produced a MAE of 0.215 eV whereas the MAE 
was 0.158 when GNN was applied alone. When both GNN and 
MBTR were applied, the MAE went down to 0.136 eV. The 

drop in the MAE was more pronounced for LUMO energies as 
compared to the HOMO energies. 
Significance of errors. The descriptors and their combination 
produced a MAE in the range of 1 eV for total energy predic-
tion. The errors reported in the literature are rather much 
smaller, in the range of kcal/mol.39-41 However, these datasets 
consist of much smaller molecules. It would be interesting to 
compare the performance of our machine learning methods with 
similarly fast force field methods. Folmsbee et al. compared 
force field, semi empirical, DFT, ab initio and machine learing 
methods for their abilities to predict relative single point ener-
gies of small molecules. We note that no DFT derived structures 
were used to predict the total energies using GNN + MD 
scheme. They were predicted solely from the SMILES code of 
the molecules. 



 8 

 
 

 
Figure 5. Prediction of LUMO energy by MBTR, GNN and GNN + MBTR.  The energy unit is eV. 

 

The error of theoretical prediction of HOMO/LUMO energies 
requires to be lower than 0.1 eV to be useful in spectroscopic 
applications. The MAEs for HOMO/LUMO energies obtained 
in this work, although not lower than this limit, are close. There 
are several opportunities to improve on these results. We hope 
that our work will inspire others to further develop methodolo-
gies following this direction.   
Possibilities of further improvements. In this work, a reason-
able accuracy is achieved for the prediction of total and molec-
ular orbital energies of large organic molecules. However, the 
limit to how accurate we can get is not reached yet. Several 

opportunities of improvements remain to be explored in future 
work, 

1. Hyperparameter tuning: Unlike other machine learn-
ing techniques, hyperparameter tuning for deep learn-
ing remains a bottleneck due to its long execution time 
and memory requirements. A simple grid search strat-
egy for hyperparameter tuning quickly becomes pro-
hibitively expensive with increasing number of hy-
perparameters. The inclusion of multiple types of de-
scriptors in our deep learning framework resulted into 
quite a few hyperparameters, as described in the 
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method section. Therefore, we adopted a random 
search technique for optimizing the hyperparameters.  
One of the drawbacks of both grid search and random 
search is that the trials are completely independent of 
each other. So, the search cannot be intelligently 
driven toward the desired direction. In some sense, 
they are both blind searches. A more sophisticated 
Bayesian optimization method learns from the previ-
ous trials using a surrogate model and makes new 
guesses with increasing confidence that it will drive 
the search toward better accuracy.43 This method can 
be applied to our deep learning framework to improve 
results. 

2. Modifying the architecture: The number of hidden 
layers for GNN, MBTR, MD as well as for the final 
features are all design parameters of the architecture. 
However, we kept these numbers fixed to some small 
integers in order to reduce the complexity and number 
of hyperparameters of the model. Higher accuracies 
can be achieved by modifying these numbers of hid-
den layers. To enable a deeper training of the model, 
residual netlike skip connections can be implemented 
between the nodes belonging to different descriptors.2, 

44 
For the GNN, we applied the message passing neural 
network4 (NNConv) with Gated Recurrent Unit 
(GRU).33 However, it has been shown that augment-
ing graph neural network with adaptive attention 
weights that capture the local chemical environment 
can improve results.45 Applying such attentional 
mechanism or implementing other types of GNN 
could possibly improve on the accuracy achieved in 
this work. 

3. Inclusion of other molecular descriptors: We consid-
ered GNN and MBTR for their abilities in predicting 
material properties with high accuracy and MD for the 
ease they can be extracted without the need of expen-
sive calculations. However, there are many other so-
phisticated molecular descriptors available that 
demonstrated high accuracy as well. Some of them 
could be promising candidates for including in our 
framework. The simplicity, flexibility and universal-
ity of the proposed deep learning framework allows 
for such experimentations and possibly further im-
prove the results. 

Novelty and originality. The motivation of this work is mainly 
to demonstrate that a combination of different types of features 
can produce better accuracy than the ones obtained by individ-
ual types. The works reporting top results in the prediction of 
molecular properties mostly used GNN. Although they com-
bined different types of molecular features, they all fall within 
the framework of GNN. In this work, we went beyond that to 
hybridize GNN with completely different types of molecular 
fingerprints, namely MD and MBTR. 
There are studies that adopted ensemble strategies based on 
stacking and blending of different machine learning models to 
outperform the individual models.46, 47 However, we did not 
adopt a simple stacking or blending strategy to improve on re-
sults. Rather we developed a deep learning framework that 
seamlessly assembles the engineered features from individual 
descriptors into a set of final features, allows them to blend with 
each other and make the final prediction. This allows for differ-
ent types of information embedded in different descriptors to 

mix and eventually create new information that can make better 
predictions. The flexibility in the deep neural network architec-
ture enables an automated way of learning the best combina-
tions of the final features instead of a manual way like stacking 
and blending.  
The success of combining different types of features in a ma-
chine learning model largely depends on the complementarity 
of the features. The less they are correlated to each other the 
higher increment of accuracy can be expected by combining 
them. The complementarity between GNN and MBTR is quite 
clear. MBTR captures the fingerprint of a molecule purely 
based on topological information, specifically the distributions 
of atomic pairs and angles. No information about the intercon-
nectivity between the atoms are captured. A model based on 
MBTR alone can possibly infer from the distance if there is a 
covalent bond between two particular atom types but it has no 
information about the whole network of atomic interactions. On 
the other hand, GNN intakes the information about the whole 
network of atoms and bonds with various attributes but it does 
not have a clear idea about the non-bonded interactions and an-
gular distributions. To make this point clear, we can take an ex-
ample of a small molecule A-B-C. MBTR will store the dis-
tances between A-B, B-C as well as A-C. In addition, it stores 
the angle ∠ABC. GNN will store the features of atoms A, B, C 
and bonds A-B and B-C. However, GNN does not have any in-
formation about the angle ∠ABC. Consequently, it cannot have 
any information about the A-C distance. Thus, MBTR and 
GNN capture different aspects of a molecule. Therefore, their 
combination can enrich the feature space and consequently im-
prove the results, as evident from this work. We note that, the 
capacity of GNN has been enhanced to include non-bonded in-
teractions by constructing virtual edges between any two atoms 
in the molecule that are within a cutoff of 4 Å. This significantly 
improves the performance of GNN. This enhancement enables 
GNN to capture long distance interactions. However, this ex-
tension is limited to a small cutoff. Increasing this cutoff to a 
higher value exorbitantly increases the number of edges in the 
network making the training time significantly longer, without 
gaining much accuracy. Although, some information about the 
long-distance pair interactions can be included in GNN using 
this strategy, the angular distributions still remain out of reach.   
 
CONCLUSIONS 
In this work we developed a deep learning framework to learn 
molecular properties by combining different types of de-
scriptors. We selected Many Body Tensor Representation 
(MBTR) for its ability to capture topological information of a 
molecule that can be used to accurately predict its molecular 
property. We applied Graph Neural Network (GNN) as it is a 
natural choice for molecules and has shown impressive accu-
racy in predicting molecular properties, outperforming other 
machine learning and deep learning models. In addition, we as-
sembled a set of easily derivable molecular descriptors (MD).  
We applied the deep learning model to predict total energies, 
Highest Occupied Molecular Orbital (HOMO) energies and 
Lowest Unoccupied Molecular Orbital (LUMO) energies of 
about 62k large and complex organic molecules with diverse 
functional groups (OE62 dataset). A combination of GNN and 
MD produced the best results for the prediction of total energies 
whereas a combination of GNN and MBTR produced the best 
results for HOMO/LUMO energies. In all cases, the combina-
tions of molecular descriptors produced better results than the 
individual ones.  



 

 

10 

As supported by the results, we propose our methodology as a 
universal framework for combining different types of molecu-
lar descriptors for the prediction of molecular properties.  
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