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ABSTRACT 

The COVID-19 pandemic ravages the globe causing unprecedented health and economic 

challenges. As the world prospects for a cure, scientists are looking critically at strategic protein 

targets within the SARS-CoV-2 that have therapeutic significance. One of such targets is the 

Helicase which is an enzyme that affects all aspects of SARS-CoV-2 RNA metabolism. The aim 

of this study is to identify small molecules from natural products that have strong binding 

affinity with and inhibitory activity against an allosteric site (Pocket 26) of SARS-CoV-2 

Helicase. Pyrx was used for the in silico molecular docking simulations of SARS-CoV-2 

Helicase (QHD43415-12.pdb) against a library of small molecules obtained from edible African 
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plants. Triphenylmethane which had a docking score of -7.4 kcal/mol was chosen as a reference 

molecule. Virtual screening for oral bioavailability was done based on the molecular descriptors 

of the compounds as provided by Pubchem. SwissADME, pkCSM, and Molinspiration were 

used for further screening for molar refractivity, saturation, promiscuity, pharmacokinetic 

properties, and bioactivity respectively. The Galaxy webserver which uses the GROMACS 

software was used for the molecular dynamic simulation and analyses. The lead compounds are 

Gibberellin A12, A20 and A51 obtained from Green peas and the Okra plant. Gibberellin A20 

and A51 performed better than the standard. Gibberellin A51 is predicted to show the greatest 

inhibitory activity against SARS-CoV-2 Helicase. It is recommended that the inhibitory activities 

of the lead compounds be further investigated. 

KEYWORDS: COVID-19; SARS-CoV-2; Helicase; Gibberellin; Molecular Dynamic 

Simulation. 
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INTRODUCTION 

The Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global public health 

challenge which currently affects 213 countries and territories around the world. As of April 15, 

2020, the World Health Organization (WHO) has reported about 2,000,000 global cases of 

COVID-19 with 128,886 deaths (1).  COVID-19 is an infectious disease caused a 2019-novel 

coronavirus (nCoV, SARS-CoV-2) which spreads through droplets of saliva or discharge from 

the nose when an infected person coughs or sneezes.  The symptoms are non-specific. The 

disease can be asymptomatic but can present a range of symptoms such as fever, dry cough, 

fatigue, body pains, sore throat, diarrhea, headache and loss of smell or taste. In severe cases, 

patients suffer pneumonia, severe acute respiratory syndrome, multi-organ and death (2). 

The WHO is yet to approve any vaccine or antiviral drug for the prevention or treatment of 

coronavirus infections. However, some existing broad-spectrum antiviral drugs have been 

adopted for the treatment of CoV-associated pathologies. Most treatment strategies focus on 

symptomatic management and supportive therapy only (3, 4).  

Before gaining public health importance in 2002, Coronaviruses (CoVs) have been known to 

infect a wide variety of mammals and birds causing respiratory and enteric diseases. They are 

classified in four different genera namely the alpha-, beta-, gamma- and delta-CoVs. The CoV 

genome is susceptible to frequent mutations and recombination which can give rise to new 

strains of varying virulence (5). There are seven strains of human CoVs, which include 229E, 

NL63, OC43, HKU1, Middle East respiratory syndrome (MERS)-CoV, severe acute respiratory 

syndrome (SARS)-CoV, and 2019-novel coronavirus (nCoV). Their major predilection site is the 

upper and lower respiratory tract causing symptoms such as common cold, pneumonia, 

bronchiolitis, rhinitis, pharyngitis, and sinusitis (6, 7). CoVs were known to cause milder disease 
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but the previous epidemics of high-morbidity caused by the SARS-CoV in 2003 and MERS-CoV 

in 2012, highlighted their adaptive potential to the changing environmental conditions and as 

such they are now classified as “emerging viruses” (8). 

CoVs are enveloped, positive-sense, single-stranded RNA (+ ssRNA) viruses with genome 

size with a genome size ranging between 26.2 and 31.7 kb (9). They are named after their crown-

like appearance in electron micrographs, which is caused by the club-shaped peplomers that 

radiate outwards from the viral envelope (10, 11). 

SARS-CoV-2 belongs to the β genus and contains Structural and Non-Structural Proteins 

(NSPs). The structural proteins include the Spike (S), Envelop (E), Membrane (M) and 

Nucleocapsid (N) proteins (12). The spike surface glycoprotein promotes host attachment, and 

virus-cell membrane fusion during virus infection. It is a major target of neutralizing antibodies 

(13, 14).  

One of the NSPs which is the Helicase enzyme is a motor protein that utilizes the energy 

derived from nucleotide hydrolysis to unwind double-stranded nucleic acids into two single-

stranded nucleic acids along the 5’ – 3’ direction (15, 16, 17). Helicases are not only involved in 

the unwinding of nucleic acids during recombination, replication, and repair. Recent studies have 

shown that helicases are also involved in other biological processes such as transcription, mRNA 

splicing, mRNA export, translation, RNA stability, packaging of nucleic acids into virions and 

mitochondrial gene expression (18, 19, 20, 21,10).  Their validity as antiviral drug targets were 

recently confirmed when compounds that inhibit a helicase encoded by Herpes Simplex Virus 

(HSV) were shown to block viral replication and disease progression in animal models (9, 22). 

The SARS-CoV-2 Helicase has 596 amino acids and adopts a triangular pyramid shape 

comprising of 5 domains, just like SARS-CoV and MERS Helicases (23, 24). The domains 
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include two RecA-like domains (1A and 2A) at the C-terminal Helicase core, the beta-barrel 

domain (1B), the N-terminal Zinc Binding Domain (ZBD) and the Stalk domain which connects 

the ZBD and 1B. (23, 24, 25).  

The active site of SARS-CoV-2 Helicase has 6 key residues (Lys288, Ser289, Asp374, 

Glu375, Gln404 and Arg567) which are involved in NTP hydrolysis (23, 24). These residues are 

found in the cleft at the base between the 1A and 2A domains (24). Thus, small-molecules 

capable of inhibiting NTPase activity by disrupting ATP binding are ideal strategy to develop 

helicase inhibitors (23). 

However, the SARS-CoV-2 Helicase is an allosteric enzyme suggesting that it can be inhibited 

through competitive and non-competitive agents at several binding pockets (26). As predicted by 

Fpocket this project focuses on an allosteric site on pocket 26 in which the hydrocarbon, 

Triphenylmethane a basic structural component of synthetic dyes is known to be an inhibitor 

(27). Pocket 26 contains the residues VAL6, ARG21, ARG22, PRO23, PHE24, ARG129, 

LEU132, PHE133, GLU136, PRO234 and LEU235. However, other allosteric sites abound, one 

of which is pocket 25 which the antiviral drug, Darunavir inhibits (28). 

Several small molecules have been shown or predicted to be helicase inhibitors. They include 

natural products especially flavonoids such as hesperidin, rutin, quercetagetin, xanthones, 

triptexanthoside D and phyllaemblinol (29). The flavonoids, scutellarein and myricetin are potent 

inhibitors of the SARS-CoV helicase in vitro. They do this by affecting the ATPase activity and 

not the unwinding activity (30). Other natural products which include Bananin, eubananin, 

iodobananin, and vanillinbananin, have been shown to be effective inhibitors of the ATPase 

activity of the SARS-CoV Helicase (31). 
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Synthetic chemical inhibitors of the enzymatic activities of SARS Helicase include (E)-3-

(furan-2-yl)-N-(4-sulfamoylphenyl) acrylamide, 7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1H-

purine-2,6-dione and SSYA10-001, a 1,2,4 triazole (32, 33, 34). In terms of drug repurposing, 

anti-HIV-1 (saquinavir), anti-bacterials (lymecycline, cefsulodine and rolitetracycline), anti-

fungal (itraconazole), diuretic (canrenoic) and anti-coagulant (dabigatran) have been predicted to 

be helicase inhibitors with strong binding affinities (29). 

Currently, there are no antiviral drugs specific for SARS-CoV-2 infection (29). Computational 

drug discovery provides a fast approach for discovery, design and development of therapeutic 

small-molecule inhibitors against important viral proteins (35, 23). SARS-CoV-2 Helicase 

(nsp13), similar to that of SARS-CoV, is one of the most important targets for the development 

of small-molecule inhibitors due to its distinct biological function, active site and highly 

conserved sequences among coronaviruses (23, 24, 29). 

 

MATERIALS AND METHODS 

Preparation, analysis and validation of target protein structure 

The 3D structure of SARS-CoV-2 helicase in Protein Data Bank (pdb) format (ID: 

QHD43415_12.pdb) was obtained from I-TASSER online server with an estimated Template 

Modelling (TM) score of 0.99. This webserver is used for prediction of protein structure and 

function (36). The architecture of the target protein was revealed by the Volume, Area, Dihedral 

Angle Reporter (VADAR 1.8) webserver. The target was analysed using the Ramanchandran 

plot obtained from the MolProbity web server (37). 

 

Ligand preparation 
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1,048 compounds obtained from natural products such as spices, edible fruits and vegetables 

were downloaded from PubChem (38). All compounds in the library were pre-screened with the 

Lipinski’s Rule of Five and Veber’s Rule, i.e. molecular weight ≤ 500, hydrogen bond donor 

(HBD) ≤ 5, hydrogen bond acceptor (HBA) ≤ 10, logP ≤ 5, polar surface area (PSA) ≤ 140, and 

rotatable bonds ≤ 10 (39). Their 3D structures and that of the reference compound, 

Triphenylmethane (PubChem CID 10614) were downloaded from PubChem in sdf format (38). 

 

Molecular docking and virtual screening 

1,048 Lipinski and Veber rule-compliant compounds and the reference compound were 

uploaded to the virtual screening software, PyRx (Python Prescription) 0.8 using the Open Babel 

plug-in tool (40).  The ligands were subjected to energy minimization and then transformed from 

structure-data file (sdf) to Protein Data Bank, Partial Charge, & Atom Type (pdbqt) format in 

preparation for molecular docking. All ligands and the reference molecule were docked against 

the target protein, SARS-CoV-2 Helicase using AutoDock Vina plug-in tool in Pyrx (41). The 

grid parameters for docking with the target protein were set at: Centre X = 79.7763, Y = 

79.8336, Z = 79.8336 and Dimensions (Angstrom): X = 89.9405, Y = 65.6233, Z = 77.6795. For 

stable conformation, Universal Force Field (UFF) and the conjugate gradient descent was used as 

the energy minimization parameter and optimization algorithm respectively. 

The docking results were exported in comma-separated values (csv) format to Microsoft Excel 

for filtering. Only ligands that had binding affinity scores less than that of the reference 

compound, Triphenylmethane (-7.4 kcal/mol) were selected. The prediction of pharmacokinetic 

properties, molar refractivity and bioactivity of all ligands were performed using pkCSM, 

SwissADME and Molinspiration, respectively (42, 43, 44). 
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Analysis of the binding site 

Docked poses of all the front-runner compounds were superimposed with the target protein 

using the Pymol software (45). The resultant structures were evaluated using the Protein-Ligand 

Interaction Profiler webserver. (46). All binding pockets of SARS-CoV-2 Helicase were 

analysed with Fpocket online server (47). The three-dimensional depictions of the best docked 

complexes were analysed using hydrogen bonds, salt bridges and other protein-ligand 

interactions (46). 

 

Molecular Dynamics Simulations (MDS) and Analyses 

The Galaxy (versions 2019.1 and 2019.1.4) supercomputing server which uses the GROMACS 

software was used to perform the MDS of The Apo and Holo structures of SARS-CoV-2 

Helicase (48). The LigParGen server was used for the ligand parameterization of the lead 

compounds with OPLS-AA/1.14*CM1A as force field parameter (49). A 2-nanoseconds MDS 

was carried out for all the Apo and Holo structures with 1,000,000 steps after solvation, energy 

minimization and equilibration (NVT and NPT). MDS analyses of trajectory parameters such as 

the Root Mean Square Deviation of atomic positions (RMSD), per residue Root Mean Square 

Fluctuation (RMSF) of protein backbone, Principal Component Analysis (PCA) and Dynamical 

Cross-Correlation Matrix (DCCM), were determined using the BIO3D tool on the Galaxy super-

computing platform (50). 

 

RESULTS AND DISCUSSION 

Structural analysis, validation and preparation of SARS-CoV-2 Helicase (QHD43415_12.pdb) 
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The Apo structure of SARS-CoV-2 Helicase (QHD43415_12.pdb) has 601 amino acids with 

the following constituent secondary structures: α helix 27%; beta sheets 31%; Coil 41%; and 

Turns 15%. (Figure 1).  

 

 

 A 

 

 

 B 

Figure 1. (A) Cartoon model of the crystal structure of SARS-CoV-2 Helicase 

(QHD43415_12.pdb). Beta sheets (magentas), Alpha helix (cyan) and Loops (pink). (B) Surface 

representations. 

 

The Total Accessible Solvent Area (ASA) is 26083.1 (Å) ². The geometry of SARS-CoV-2 

Helicase (QHD43415_12.pdb) reveals 6.88% poor rotamers, 82.79% favored rotamers, 4.67% 

Ramachandran outliers, 85.48% Ramachandran favored, 3.34% Carbon Beta deviations >0.25Å, 

0.00% bad bonds and 0.81% bad angles (Figure 2). 
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Figure 2. Ramachandran plot for SARS-CoV-2 Helicase (QHD43415_12.pdb). 

 

The Peptide omegas of SARS-CoV-2 Helicase (QHD43415_12.pdb) include 0.00% Cis 

Prolines and 2.83% Twisted Peptides. The low-resolution criteria include 6.70% CaBLAM 

outliers and 0.34% CA Geometry outliers. 

 

Chemoinformatic profile of ligands 

The application of high-throughput computer-assisted approaches to predict the relationship 

between the chemical properties, structure and the biological activity of a compound is indeed a 

valuable tool in the field of drug design and discovery (51, 52, 53). 

These drug-like properties of compounds would impart largely on their bioavailability and 

increase cellular uptake of biomolecules within the body.  The molecular descriptors of such 

compounds are well described by the Lipinski (RO5), Veber, and Ghose rules.  Put together, 

these rules state that hydrogen bond acceptors should be ≤ 10, hydrogen bond donors should be ≤ 

5; Log P should be ≤ 5, molecular weight should be ≤ 500g/mol; the polar surface area should 
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be ≤ 140A²; molar refractivity should be between 40-130 cm³ and the number of rotatable bonds 

should be < 10 (54, 55, 56). 

Our results prove that GA12, GA20 and GA51 had no violation of the Lipinski (RO5), Ghose 

and Veber rules suggesting that they possess good drug permeability (Figure 3, Table 1). 

 

 

 

A 

 

 

B 

 

 

C 

 

 

D 

Figure 3. The 3D chemical structures (stick model) of standard and lead compound. (A) 

Triphenylmethane, (B) GA12, (C) GA20 and (D) GA51. 

 

Table 1. Chemoinformatic properties of standard and lead compounds 

 Triphenylmethane GA12 GA20 GA51 

Molecular Formula C19H16 C20H28O4 C19H24O5 C19H24O5 

Molecular Weight (g/mol) 244.3 332.4 332.4 332.4 

Log P 5.3 3.9 1.2 1.7 

Hydrogen Bond Acceptors 0 4 5 5 

Hydrogen Bond Donors 0 2 2 2 

# heavy atoms 19 24 24 24 

# rotatable bonds 3 2 1 1 

TPSA (Aᵃ) 0 74.6 83.8 83.8 
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Molar Refractivity 80.38 0.8 0.79 0.79 

Saturation (fraction cspᶾ) 0.05 90.52 86.18 86.14 

PAIN Alert 0 0 0 0 

GCPR ligand -0.21 0.32 0.22 0.17 

Ion channel modulator -0.17 0.14 0.23 0.21 

Kinase Inhibitor -0.57 -0.44 -0.21 -0.31 

Nuclear receptor ligand -0.15 0.8 0.49 0.67 

Protease inhibitor -0.40 0.12 0.09 0.16 

Enzyme inhibitor -0.03 0.36 0.30 0.38 

 

Specifically, the standard has a Log P value that violates the Lipinski rule. It is more lipophilic 

than all the lead compounds suggesting that it has the greatest absorbability across lipid 

membranes. The standard and the lead compounds can penetrate the Blood Brain Barrier because 

their TPSA values are less than 90 angstroms squared (57).  

Measured by saturation, the molecular complexity of organic molecules is an important 

property in computational drug discovery. The lead compounds have their fraction of carbons in 

the sp3 hybridization more than 0.25 while that of the standard is lower. This suggests the 

standard has the lowest saturation and hence the least molecular stability (58). 

In biological assays, certain compounds (PAINS: pan assay interference) yield false positive 

response because they have problematic structural moieties. These compounds are considered 

promiscuous as they are frequent hitters. From Table 1, the standard and all the lead compounds 

have no PAIN alerts (59). The bioactivity scores of the standard and the lead compounds showed 

moderate to good activity against ion channel, GCPR, nuclear receptor, kinase, proteases and 

other enzyme targets. The greatest enzyme inhibiting activity is seen in GA51 (60). 

 



 13 

Pharmacokinetic properties of ligands 

Traditional drug discovery process has bottlenecks. However, the application of in silico 

ADMET properties prediction to evaluate potential leads at early stages of drug development is 

important in order to eliminate candidates which would have been chemically synthesized and 

biologically tested (61). Multi-parametric optimization strategies such as absorption, distribution, 

metabolism, excretion/elimination and toxicity are applied in making and screening compounds 

in drug discovery (62). 

The absorption parameters that ensure drugs get to their molecular targets include human 

intestinal absorption (poor: <30%), caco2 permeability (high: > 0.9), water solubility (insoluble: 

-4.0 Log mol/L), and skin permeability (low: LogKp >−2.5). Triphenylmethane is insoluble in 

water and therefore is a poor drug candidate (Table 2). All predicted absorption values for the 

lead compounds are within pharmacological range (57). 

 

Table 2. Pharmacokinetic properties of front-runner compounds 

 Triphenylmethane GA12 GA20 GA51 

Water solubility (log mol/L) -6.884 -2.89 -2.636 -2.728 

Caco2 permeability (log Papp in 10-6 cm/s) 1.536 1.052 1.186 1.136 

Human Intestinal absorption (% Absorbed) 98.553 100 98.911 100 

Skin Permeability (log Kp) -2.707 -2.735 -2.735 -2.735 

P-glycoprotein substrate (Yes/No) Yes No No No 

P-glycoprotein I inhibitor (Yes/No) No No No No 

P-glycoprotein II inhibitor (Yes/No) No No No` No 

VDss (human) (log L/kg) 0.259 -1.324 -0.829 -0.969 

Fraction unbound (human) (Fu) 0.157 0.22 0.418 0.286 



 14 

BBB permeability (log BB) 0.854 0.074 -0.209 -0.091 

CNS permeability (log PS) -1.113 -2.08 -0.2998 -2.411 

CYP2D6 substrate (Yes/No) No No No No 

CYP3A4 substrate (Yes/No) Yes Yes Yes Yes 

CYP1A2 inhibitor (Yes/No) Yes No No No 

CYP2C19 inhibitor (Yes/No) Yes No No No 

CYP2C9 inhibitor (Yes/No) No No No No 

CYP2D6 inhibitor (Yes/No) No No No No 

CYP3A4 inhibitor (Yes/No) No No No No 

Total Clearance (log ml/min/kg) 0.201 0.4626 0.417 0.416 

Renal OCT2 substrate (Yes/No) No No No No 

AMES toxicity (Yes/No) No No No No 

Max. Tolerated dose (human) (log mg/kg/day) 0.673 0.42 0.371 -0.135 

hERG I inhibitor (Yes/No) No No No No 

hERG II inhibitor (Yes/No) Yes No No No 

Oral Rat Acute Toxicity (LD50) (mol/kg) 2.032 2.464 2.051 2.101 

Oral Rat Chronic Toxicity (log 

mg/kg_bw/day) 

0.822 2.074 2.135 2.364 

Hepatotoxicity (Yes/No) Yes Yes No Yes 

Skin Sensitization (Yes/No) Yes No No No 

T. Pyriformis toxicity (log ug/L) 0.428 0.285 0.285 0.285 

Minnow toxicity   (log mM) 0.063 0.306 1.958 1.159 

 

The pharmacokinetic indicators for distribution such as Fraction unbound, Volume of 

distribution steady state (Low: Log VDss <- 0.15; High: Log VDss > 0.45), BBB permeability 

(permeable: Log BBB > 0.3; poor <: Log BBB <-1), and CNS permeability (permeable Log PS > 
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-2; poor Log PS < -3) for standard and all lead compounds are within acceptable range (Table 2) 

(42, 63). 

The standard and all lead compounds are not P-glycoprotein I & II inhibitors suggesting that 

these ATP-dependent cell membrane proteins would continue to pump foreign substances out of 

cells unhindered (Table 2). Triphenylmethane is a P-glycoprotein substrate which suggests it 

would be pumped out of the cell if it is not administered with a P-glycoprotein inhibitor (42, 64). 

The inhibition of the major isoforms of cytochrome P450 enzyme makes for the toxic 

accumulation of their substrates. The predicted metabolic behavior of all the lead compounds 

shows no inhibition of CYP3A4, CYP1A2, CYP2C9, CYP2C19, and CYP2D6 enzymes. 

However, the standard shows inhibition of CYP1A2 and CYP2C19 enzymes (Table 2). The 

standard and lead compounds are substrates of CYP3A4 which means that their doses would be 

affected either by induction or the inhibition of CYP3A4 (65). 

From Table 2, the predicted excretion values for Total Clearance for the standard and lead 

compounds are within pharmacological range (66). All of the lead compounds and the standard 

are not substrates of Renal Organic Cation Transporter 2 (OCT2) which implies that they will 

not be eliminated by the protein from the blood into the proximal tubular cell (67). 

The dose to be administered in the phase 1 of clinical trials is determined by the predicted 

maximum recommended tolerated dose. From Table 2, the standard has a high value (more than 

0.477 log mg/kg/day) while the lead compounds have low maximum recommended tolerated 

dose (less than 0.477 log mg/kg/day) (42). 

Two important parameters in drug discovery are the Tetrahymena pyriformis and Minnow 

toxicities which are the dose required to inhibit 50% of the growth of T.pyriformis (IGC50), 

protozoan bacteria and the minnow fish respectively. For T.pyriformis, when the pIGC50 value is 
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greater than -0.5 log Ug/L, a compound is considered toxic. Therefore, the standard and all the 

leads show antibacterial properties but might not be toxic to human cells (42). Similarly, log 

LC50 is the log of a compound to cause death of 50% of flathead Minnows. A value less than 0.3 

log mM signifies high acute toxicity. From the results, the standard is toxic to Minnows while 

the lead compounds are not (42). 

The cardiotoxic and genotoxic properties of compounds is revealed by the HerG inhibition and 

AMES predictions respectively. While all the compounds (standard and leads) showed no AMES 

toxicity, only the standard showed hERG II inhibition properties.  This make it a potentially 

dangerous drug candidate. The standard also showed dermatotoxic properties (42). 

 

Molecular docking analyses of ligands against SARS-CoV-2 Helicase 

In modern drug design and discovery, binding affinity determination is very crucial in order to 

find a high affinity ligand that would bind to the target protein to inhibit its disease-associated 

function, catalytic activity or interaction with other molecules (68). This procedure typically 

begins with screening an initial library of compounds to computationally identify binders of the 

target protein before continuing with the experimental screening (69). Successful hits are 

characterized and further developed. 

From Figure 4 and Table 3, all lead compounds have stronger binding affinity than the 

standard and hence showed greater potency as drug candidates. GA A51 has the strongest 

binding affinity of -8.6 Kcal/mol. 
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Figure 4. Binding site of SARS-CoV-2 Helicase interacting with standard and lead compounds. 

(A) Helicase-Triphenylmethane complex, (B) Helicase-GA12 complex, (C) Helicase-GA20 

complex and (D) Helicase-GA51 complex. 

 

Table 3. Molecular docking scores of ligands against SARS-CoV-2 Helicase 

Ligand Binding (Kcal/mol) affinity 

Triphenylmethane -7.4 

Gibberellin A12 -8.0 

Gibberellin A20 -8.4 

Gibberellin A51 -8.6 

 

Binding Site analyses 

Hydrogen bonds have ubiquitous influence in nature and play an important role in protein 

folding, protein-ligand interactions and catalysis (70, 71, 72). By displacing protein-bound water 

molecules into the solvent, H-bonds also enhances ligand binding affinity (73). The length and 

orientation of the hydrogen bond are two key factors that determine the specificity and direction 

of ligand binding (74). 
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Figure 5 and Table 4 reveal that while the standard has no hydrogen bond, GA12, GA20 and 

GA51 all have hydrogen bonds with residues that fall within Pocket 26. GA12 forms 3 hydrogen 

bonds within one residue (LEU235) while GA20 and GA51 form two hydrogen bonds within 

two residues (PHE24 & PHE133) signifying greater stability. 

 

 

A 

 

 

B 

 

 

C 

 

 

D 

 

 

 

Figure 5. Protein-Ligand interactions of SARS-CoV-2 Helicase with standard and lead 

compound. (A) Helicase-Triphenylmethane complex, (B) Helicase-GA12 complex, (C) 

Helicase-GA20 complex and (D) Helicase-GA51 complex. 
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Table 4. Hydrogen bond analysis 

Complex Number of 

bonds 

Residues Distance (H-

A) 

Distance (D-

A) 

Bond 

angle 

Hel- 

Triphenylmethane 

0     

Hel-GA12 3 LEU235 3.22 4.01 134.88 

  LEU235 2.24 3.09 145.5 

  LEU235 2.76 3.16 105.78 

Hel-GA20 2 PHE24 2.22 3.18 159.23 

  PHE133 2.64 3.03 102.66 

Hel-GA51 2 PHE24 2.09 3.06 159.85 

  PHE133 2.83 3.31 109.57 

 

In terms of angle formed by hydrogen bonds, GA12 forms two strong (greater than 130°) and 

one weak (less than 130°) hydrogen bonds with the target protein. GA20 and GA51 form one 

weak and one strong hydrogen bond each. (75). In terms of the donor to acceptor distance, GA12 

forms two moderate (2.5-3.2 Å) and one weak (3.2-4.0 Å) hydrogen bonds with the target 

protein. GA20 forms two moderate hydrogen bonds while GA51 forms one moderate and one 

weak hydrogen bond (75). 

The strength and stability of the protein-ligand complexes is enhanced by the presence of 

hydrophobic interactions and salt bridges (76). From Table 5, the standard forms 4 hydrophobic 

interactions and one strong salt bond (77).   

 

Table 5. Other Protein-ligand interactions 
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 Hydrophobic Int. Salt bridge p-Stacking 

Complex Residue Distance Residue Distance Residue Distance 

Hel-Triphenylmethane VAL6 3.45   PHE24 4.86 

 PRO23 3.90     

 PHE24 3.98     

 PHE133 3.63     

Hel-GA12 ARG129 3.60     

 PRO234 3.60     

Hel-GA20 PRO23 3.50     

 ARG129 3.86     

 PRO234 3.94     

Hel-GA51 PRO23 3.67     

 ARG129 3.99     

 

GA12 and GA51 forms 2 hydrophobic interactions and no salt bridge. GA20 forms 2 

hydrophobic interactions and no salt bridge. These suggest that for the other protein-ligand 

interactions, the standard have a slightly more atom-efficient binding than the lead compounds 

(78, 79). 

Put together, the lead compounds show a stronger interaction with SARS-CoV-2 Helicase as 

revealed by the hydrogen bonds and binding affinity scores. 

 

Molecular Dynamics Simulation Analyses 

Structures 
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As seen in Figures 1 and 6, comparing the crystal structure with the simulated apo and holo 

structures suggests that there is an unfolding of the alpha helix at residues 64, 65 and 66 during 

the molecular dynamic simulation (80). 
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E 

Figure 6. Cartoon model of the crystal structure of SARS-CoV-2 Helicase Apo and Holo 

structures (without water and ions) after molecular dynamics simulation. Beta sheets (magenta), 

Alpha helix (cyan) and Loops (pink). (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) 

Helicase-GA12 complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex 

 

Root Mean Square Deviation of Atomic Positions (RMSD) 

RMSD is the measure of similarity between a reference and a target structure. It measures the 

variations in the distances between atoms in two superimposed protein structures. In protein 

structure prediction, RMSD is used for analysing protein stability and conformational changes. It 

describes the similarity of conformers (81, 82). 

Figure 7 and Table 6 suggest that there was a gradual increase in the RMSD of the simulated 

Apo protein relative to the crystal as the production time increased. It peaked at Frame 9 (2.42 

Å) and thereafter stabilized.  
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Figure 7.  RMSD for Apo and Holo structures. (A) Helicase, (B) Helicase-Triphenylmethane 

complex, (C) Helicase-GA12 complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 

complex. 

 

Table 6. Summary of data from Molecular Dynamics Simulations of Apo and Holo Structures 

MDS Parameters Helicase Helicase-

Triphenylmethane 

Helicase-

GA12 

Helicase-

GA20 

Helicase-

GA51 

RMSD      

Total RMSD 41.05 42.84 36.06 44.06 51.06 

Average RMSD 1.95 2.04 1.72 2.10 2.46 

Lowest RMSD 0.00 0.00 0.00 0.00 0.00 

Highest RMSD 2.42 2.87 2.25 2.61 3.32 

Time Frame of Highest 

RMSD 

1 1 1 1 1 

Time Frame of Lowest 

RMSD 

9 21 21 21 15 
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RMSD Peak Distribution      

0.00 - 0.49A 1 1 1 1 1 

0.50 – 0.99A 0 0 0 0 0 

1.00 – 1.49A 1 0 2 1 0 

1.50 – 1.99A 5 6 13 1 3 

2.00 – 2.49A 14 12 5 16 6 

2.50 – 2.99A 0 2 0 2 6 

3.00 – 3.49A 0 0 0 0 5 

      

RMSF      

Total Global RMSF 598.93 639.76 610.30 622.78 724.06 

Average Global RMSF 1.00 1.06 1.02 1.04 1.20 

Total Regional (Pocket 26) 

RMSF 

8.33 8.20 7.21 8.25 8.57 

Average Regional (Pocket 

26) RMSF 

0.76 0.75 0.66 0.75 0.78 

Least Fluctuation 0.45 0.44 0.45 0.40 0.39 

Highest Fluctuation 3.48 3.52 2.83 4.06 4.37 

Range of RMSF 3.03 3.08 2.38 3.66 3.98 

      

PCA      

Total global motions (mean 

of PC1, PC2 & PC3) 

20.57 19.20 20.3 20.7 20.9 

Average global motions 

(mean of PC1, PC2 & 

PC3) 

0.03 0.03 0.03 0.03 0.03 

Total Regional (Pocket 26) 

Motion (mean of PC1, PC2 

& PC3) 

0.27 0.23 0.24 0.24 0.25 
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Average Regional (Pocket 

26) Motion (mean of PC1, 

PC2 & PC3) 

0.02 0.02 0.02 0.02 0.02 

Best global Conformation PC3 PC1 PC2 PC3 PC3 

Best regional 

Conformation (Pocket 26) 

PC3 PC3 PC1 PC1 PC3 

PC1 Eigenvalue 19.90% 30.70% 31.70% 30.70% 50.20% 

PC2 Eigenvalue 15.70% 0.16 14.50% 20.50% 10.50% 

PC3 Eigenvalue 13.30% 0.13 9.20% 9.30% 8.50% 

Total 48.90% 59.80% 55.40% 60.50% 69.20% 

PC1 cosine content 0.87 0.86 0.82 0.87 0.87 

PC2 cosine content 0.23 0.32 0.71 0.76 0.87 

PC3 cosine content 0.13 0.34 0.70 0.53 0.68 

 

Throughout the trajectory, the total RMSD for the Apo structure is 41.05 Å while the average 

is 1.95 Å. While the RMSD values of the Apo protein appear to have stabilized with the 

simulation time, data suggests that with more simulation time, the RMSD values for all the holo 

structures would increase. Of all the holo structures, the Helicase-GA51 complex has the greatest 

deviation from the reference structure. This is seen in the highest values of the total and average 

RMSD. Helicase-GA12 and Helicase-Triphenylmethane complexes have lower total and average 

RMSD values than the Helicase-GA20. The Helicase-GA51 complex showed the greatest 

deviation to the right (most peaks within 2.00 - 2.49A).  The Helicase-GA20 complex also 

showed greater deviation to the right than the Helicase-GA12 complex which in turn was greater 

than the Helicase-Triphenylmethane complex (Figure 8 and Table 6). 
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Figure 8. RMSD histogram for Apo and Holo structures. (A) Helicase, (B) Helicase-

Triphenylmethane complex, (C) Helicase-GA12 complex, (D) Helicase-GA20 complex and (E) 

Helicase-GA51 complex. 

 

Put together, ligand binding with GA51 and GA20 appear to cause greater deviation from the 

reference structure than Triphenylmethane. The least deviation was induced by GA12. The 

results predict GA51 to cause the greatest structural deviation of all the holo structures.  

 

Root Mean Square Fluctuations (RMSF) 

Proteins undergo structural fluctuations as a result of movements of the alpha carbon of their 

residues around their equilibrium conformations (83). From Figure 9 and Table 6, the total and 

average global RMSF is greater in the Helicase-GA51 complex than all the other holo structures. 

While the total and average global RMSF values of the Helicase-Triphenylmethane complex is 

greater than those of the Helicase-GA12 and Helicase-GA20 complexes. 
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Figure 9.  Per-residue RMSF for Apo and Holo structures. (A) Helicase, (B) Helicase-

Triphenylmethane complex, (C) Helicase-GA12 complex, (D) Helicase-GA20 complex and (E) 

Helicase-GA51 complex. 

 

The total and average regional RMSF values at Pocket 26 remained highest for the Helicase-

GA51 complex. The values for Helicase-GA20 complex was higher than those of the Helicase-

Triphenylmethane complex. The Helicase-GA12 complex has the lowest values. Similarly, the 

range of RMSF followed the same order with Helicase-GA51 and Helicase-GA20 complexes 

having the highest values. 

Put together, ligand binding with GA51 induced the greatest instability as seen in the global, 

regional RMSF values and the range of RMSF. Ligand binding with GA20 also induced more 

instability of the SARS-CoV-2 Helicase than the standard. 

 

Principal components Analysis 
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During the MDS of a protein, new conformations are been generated during the trajectory. 

Principal component analysis (PCA) is used to determine the statistical significance and 

relationships of these conformations (84). 

Of all the holo structures, the Total global motions (average of PC1, PC2 and PC3) was 

highest in Helicase-GA51 complex. Also, Helicase-GA20 and Helicase-GA12 complexes 

showed greater global motion than the Helicase-Triphenylmethane complex (Figure 10 and 

Table 6). 
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Figure 10. Dynamic cross correlation map Apo and Holo structures of SARS-CoV-2 Helicase. 

Purple represents anti-correlated, dark cyan represents fully correlated while white and cyan 

represents moderately and uncorrelated respectively. 1.0= correlated; 0 is non-correlated; and 1 

is anti-correlated. (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) Helicase-GA12 

complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex. 

 

In a similar manner, the Total regional motions (average of PC1, PC2 & PC3) was highest in 

Helicase-GA51 complex making it the most unstable at Pocket 26 of all the holo structures.  

Based on the greatest motions, the best global conformations are PC3 of the Apo protein, PC1 

of Helicase-Triphenylmethane complex, PC2 of Helicase-GA12 complex, PC3 of the Helicase-

GA20 complex and PC3 of the Helicase-GA51 complex. Similarly, the best conformations that 

produced the greatest motions at Pocket 26, are PC3, PC3, PC1, PC1 and PC3 of the Apo 
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protein, Helicase-Triphenylmethane, Helicase-GA12, Helicase-GA20 and Helicase-GA51 

complexes respectively. 

The cosine contents of the principal components reveal the convergence of the MD simulation.  

Monitoring convergence is essential for sampling quality as results should be accurate and 

reproducible. Table 6 shows good quality cosine content data except a slight non-convergence at 

the PC3 of the Helicase- Triphenylmethane complex (85). 

Put together, while all lead compounds induced greater motions of the SARS-CoV-2 Helicase 

than the standard, GA51 induced the greatest motions. This implies that GA51 would induce the 

greatest structural distortion of the viral protein at global and regional (Pocket 26) levels.  

 

Dynamic Cross Correlation Map (DCCM) 

DCCM is a widely accepted tool used to analyze trajectories of molecular dynamics 

simulation. It is used to calculate the time-correlation atom motion of a system as it reveals the 

heat map of the cross correlation of residual fluctuations (86, 87). 

Figure 11 and Table 6, shows heat maps depicting a complex pattern of correlated, non-

correlated and anti-correlated motions in Apo and Holo structures. 
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Figure 11. Principle component analysis cluster plot of Apo and Holo structures. The 

projection of trajectory onto 1st three eigenvectors for: (A) Helicase, (B) Helicase-

Triphenylmethane complex, (C) Helicase-GA12 complex, (D) Helicase-GA20 complex and 

(E) Helicase-GA51 complex. 

 

 

Comparative results reveal that atomic motions in the Helicase- GA51 complex showed the 

most intense anti-correlated motions in the holo structures. The Helicase-Triphenylmethane 

complex has predominantly non-correlated motions in residues 1-300. On the contrary, the 

Helicase-GA51 complex has predominantly correlated motions between residues 1-100 and non-

correlated motions between residues 100-300. While the heat map of the Helicase-GA12 

complex closely resembles that of the Helicase-Triphenylmethane, that of the Helicase-GA20 

complex is less intense than that of the Helicase-GA51 complex with respect to anti-correlation 

motions. 
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Put together, the standard and all the lead compounds induced anti-correlation motions on 

SARS-CoV-2 Helicase. GA51 induced the greatest anti-correlation motions. 

 

CONCLUSION 

The standard and lead compound 

Triphenylmethane and its derivatives are a group of dyes which include bromocresol green, 

malachite green, methyl violet, Victoria blue, and Fuchsine.  Triphenylmethane derivatives have 

been shown to be toxic to different organisms which includes the Coronaviridae, Picornaviridae 

and Flaviviridae families of viruses (26, 27). 

Found abundantly in Pisum sativum (green peas) and Abelmoschus esculentus (okra), 

Gibberellins (GAs) are plant hormones that regulate its various physiological processes (88,89). 

Notably in cucumbers, the Mosaic virus infection is associated with a reduced concentration of 

endogenous gibberellins which culminates in stunted roots and reduced leaf and stem growth 

(90).  

During this study, the molecular docking simulations reveal that while GA29 binds at the 

active site, GA44, GA53, GA29 catabolite and GA27 bind at other pockets which are probable 

allosteric sites. This suggests that the in vitro antiviral activities of GAs should be investigated. 

GA29 and GA20 are also predicted to be good drug candidates and have a modulatory effect on 

killer cell immunoglobulin-like receptor 2DS2 of Natural Killer Cells (91). Similarly, GAs have 

been implicated as modulators of plant innate immunity (92). 

 

Summary of comparative analyses 
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A thorough evaluation of the chemoinformatic and pharmacokinetic profiles of the standard 

and lead compounds reveal the choice of ideal drug candidates against SARS-CoV-2 Helicase.  

With a slightly higher Log P value than the Lipinski rule range, the standard shows more 

lipophilicity than the lead compounds. Also, the standard is predicted to be insoluble in water 

(log mol/L= 6.884), a substrate of P-glycoprotein, toxic to flathead Minnow fish (log 

mM=0.063), inhibit cardiac ion channel protein, hERG II, causes skin sensitization and inhibits 

CYP1A2 and CYP2C19 enzymes. Though Triphenylmethane has been proven to be a viral 

Helicase inhibitor, it is a poor drug candidate and it is used as a synthetic dye (26, 27). 

On the contrary, the lead compounds are all good drug candidates. They are all substrates of 

the CYP3A4 and this suggests that they should be administered with an inhibitor of that enzyme. 

GA51 is predicted to have the highest enzyme inhibiting activity and also the strongest binding 

affinity (-8.6 Kcal/mol) for SARS-CoV-2 Helicase. The other lead compounds showed a greater 

binding affinity than the standard which had no hydrogen bond with the target protein. Studying 

the time-resolved motions of Apo and Holo macromolecules, GA51 and GA20 are predicted to 

have better pharmacodynamics than the standard. The standard proved to be better than GA12. 

Specifically, as a viral protein inhibitor, GA51 and GA20 show greater structural distortion to the 

SARS-CoV-2 Helicase as seen in the RMSD values, distribution of RMSD peaks, RMSF, and 

PCA (global and local motions) than the standard. Overall GA51 has been predicted to show the 

greatest SARS-CoV-2 Helicase inhibitory activity as further confirmed by the DCCM map. 

It is recommended that further investigation be carried out to evaluate the inhibitory activity of 

GA51 and GA20 against SARS-CoV-2 Helicase using in vivo and in vitro experiments. 
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