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ReaxFF is an empirical interatomic potential capable of simulating reactions in complex chemical 

processes and thus determine the dynamical evolution of the molecular systems. A drawback of 

this method is the necessity of a significant development stage to adapt it to a chemical system of 

interest. One of these stages is the optimization of force field parameters that are used to tune 
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interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The 

optimization of these parameters is a very complex high dimensional problem. Here, we propose 

an INitial-DEsign Enhanced Deep learning-based OPTimization (INDEEDopt) framework to 

accelerate and improve the quality of the ReaxFF parameterization. The procedure starts with a 

Latin Hypercube Design (LHD) algorithm that is used to explore the parameter landscape 

extensively. The LHD passes the information about explored regions to a deep learning model for 

training. The deep learning model finds the minimum discrepancy regions and eliminates 

unfeasible regions, which originate from the unphysical atomistic interactions, and constructs a 

more comprehensive understanding of a physically meaningful parameter space. We demonstrate 

the procedure here for the parameterization of a nickel-chromium binary force field and a tungsten-

sulfide-carbon-hydrogen quaternary force field. We demonstrate that INDEEDopt produces 

improved accuracies in shorter development time compared to the conventional linear optimization 

method. 

 

INTRODUCTION 

Atomistic-scale insights have been critical to understanding the dynamical evolution of chemically 

reactive systems and therefore have created a demand for the development of computational 

chemistry techniques. Quantum mechanics (QM)-based atomistic simulation methods have been 

commonly used to study the molecular dynamics (MD) because these methods provide accurate 

energies, charges, and reaction pathways. However, simulation times and sizes are highly 

constrained by computational cost, and these limitations are some of the motivations behind the 

development of empirical potentials. The empirical potentials provide fast access to forces; and, 

in turn, the dynamical evolution of much larger chemical systems for longer simulation times in 
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various conditions (e.g., temperature, pressure). However, due to fixed connectivity between 

atoms, traditional empirical potentials have limited capability of modeling the evolution of systems 

during reactive events. In order to bridge the gap between QM and empirical potential-based 

methods, several reactive force field-based atomistic simulation techniques have been developed 

1-4. ReaxFF is one of the widely used reactive interatomic potential in this category due to its 

reliability and transferability between chemical systems. Initially, ReaxFF interatomic potential 

has been formulized to model hydrocarbons, and then extended through silica, nitramine-based 

materials to several aqueous and combustion systems 5. Currently, the ReaxFF method covers over 

50 elements; and is applicable to a wide range of chemical systems that are of interest to materials 

science community (i.e., 2D materials 6-13, electrochemistry 14, 15, thin films 16, 17, nanotubes 18, 19, 

catalysts 20, 21).  

ReaxFF uses bond-order and charge-dependent functionals to define intra- and interatomic 

interactions. The simplest form of the total energy equation used in ReaxFF can be given as below, 

and a detailed and most up-to-date form can be found in Ref 22: 

𝐸!"!#$% = 𝐸&'() + 𝐸*(+,$ + 𝐸#'-! + 𝐸.'/,'%& + 𝐸0)1 + 𝐸'0$-   Equation 1 

 

where Ebond, Eangle, Etors are energy terms related to bond formation, three-body valence angle strain 

and four-body torsional angle strain, respectively. The energy term, Eover, is used to prevent the 

over coordination of atoms. The energy terms, ECoulomb and EvdW, are associated with electrostatic 

and dispersive contributions, respectively. Each separate energy term in Equation 1 contributes to 

the total energy of the system, which in turn, predicts the dynamical evolution. Each term is 

calculated by an equation involving several parameters to be optimized to adapt the calculation to 
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a form specific to a chemical system of interest.  A typical ReaxFF force field consists of 

approximately 100 of these parameters per element type depending on the element. Because the 

intra- and interatomic interactions are tuned by these parameters, they are optimized to reproduce 

reference values with reasonable accuracy before moving to production simulations. These 

reference values form a force field training (FF-training) set, which is composed of, but not limited 

to, molecular properties (e.g. bond lengths, bond angles, charges and energies etc.), and/or 

chemical reactions from as simple as bond breaking/formation to more complex such as vacancy 

dynamics, ion diffusion of reference systems. The reference values, which hereafter will be 

referred to as “reference properties”, are obtained using QM-based methods if experimental values 

are not present.  

The quality of the production simulations is strictly affected by the quality of the developed force 

field; therefore, the force field parametrization is one of the most critical parts of the MD studies. 

ReaxFF uses fixed functions for all chemical systems; hence, application to different chemical 

systems and/or different applications of similar chemical systems require adaptation of ReaxFF 

through optimization of the force field parameters. The optimization process requires a 

comprehensive exploration of the force field parameter landscape. However, optimization of such 

a large number of parameters, especially for multicomponent chemical systems, is challenging to 

achieve. A typical force field for a multi-component system contains several hundreds of 

parameters, a significant part of which can be transferred from previously optimized force fields; 

however, depending on the complexity of the molecular system, a few tens of parameters should 

be optimized to reproduce reference properties in a given FF-training set. A parameter space that 

is composed of tens of parameters can be considered as high-dimensional and can have a complex 

geometry with many local minima. 
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Each local minimum in ReaxFF parameter space yields acceptable molecular property values and 

therefore can be reliably used by researchers for the application of the developed force field in the 

production stage. However, being stuck in a local minimum may be troublesome from the 

parametrization perspective. For example, it is a very common practice to update FF-training sets 

to extend the applications, and this update requires reparameterization of the force field because 

the previously found local minimum corresponding to an ideal parameter set may no longer be 

appropriate for newly added reference properties. Another issue that may arise during force field 

development is due to diversity in the FF-training set.  A typical ReaxFF training set is composed 

of molecular and condensed phase parts, which are also separated into groups such as the equation 

of states, the heat of formations, etc. It is very likely for a force field parameter set to get stuck in 

a local minimum that precisely reproduce reference properties corresponding to a specific part of 

the force field while poorly fitting to the remaining.  

The ability to have the information of several local minima in parameter space and so making 

transitions between these minima is significantly beneficial to detect low discrepancy regions that 

are capable of precisely fitting to the whole FF-training set, including all sections. The 

conventional optimization method that is widely used by the force field developers is a sequential 

one parameter parabolic extrapolation method 23, 24, which is not capable of switching between local 

minima to detect lowest error regions in parameter space. In contrast, this method is susceptible to 

being stuck in a local minimum due to its sequentiality, which also prevents parallelization of the 

optimization algorithm. Due to these limitations in the conventional method, considerable effort 

has been directed toward finding a solution to this optimization problem using heuristic methods 

25-30. Iype et al. have used a Monte Carlo (MC) algorithm combined with simulated annealing (SA) 

procedure to find global optimum values for ReaxFF parameters of magnesium-salt hydrates 25. 
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The application of SA method varies depending on the system; therefore, it cannot offer a common 

solution to the force field optimization problem. Several studies have used single and multi-

objective genetic algorithm (GA) methods to optimize ReaxFF force field parameters 26-30. All 

these studies have implemented existing global optimization methods to parameterize ReaxFF 

force fields and despite how useful these methods have become; the optimization problem has not 

yet been completely solved. However, we believe that the ReaxFF optimization system should not 

be viewed as “just another” global optimization problem, because there may be several parameter 

combinations that may be “almost equally good” or” equally desirable’’.  

Here we present an INitial-DEsign Enhanced Deep learning-based OPTimization (INDEEDopt) 

framework that will not only accelerate the force field development for simple chemical systems 

(e.g., ternary, quaternary or quinary component), but also, enable the development for multi-

component ones (e.g., senary or larger), which have become crucial with the advances in materials 

discovery (e.g., high entropy alloys, inorganic-organic interfaces, etc.). The framework uses 

machine learning (ML) due to its capability of modeling highly correlated high dimensional data 

and adapts an initial design algorithm to explore the high-dimensional parameter space 

comprehensively. Thus, INDEEDopt is capable of finding several local minima in parameter space 

and produces optimized force fields to be used in the production stage of simulations. Most of the 

optimization methods developed to date require an assignation of initial values to parameters of 

interest; however, there is no certain rule to assign these values. INDEEDopt does not require the 

assignation; in fact, it can be used as a method to generate the initial values that can be further 

optimized by combining with other optimization methods. The procedure that INDEEDopt 

framework uses is fully parallelizable and can be used with any ReaxFF-MD software without 
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modifications to the code. INDEEDopt as a concept can be adapted to the parametrization of 

classical and other reactive force fields in the future if desired. 

METHODS 

INDEEDopt Force Field Optimization Framework  

INDEEDopt framework involves three stages, and a schematic representation of the framework 

can be seen in Figure 1. In the first stage, the high dimensional parameter space is sampled by 

means of an initial design algorithm called Orthogonal-maximin Latin Hypercube Design 

(OMLHD). The OMLHD algorithm can generate parameter combinations within ranges specific 

to each parameter that are multidimensionally uniformly distributed by reducing the pairwise 

correlation and maximizing the distance between parameters 31. The parameter combinations are 

given to the ReaxFF-MD code for energy minimization calculations, which returns target property 

values correspond to each reference property in FF- training set. The parameter combinations and 

corresponding property values produce a training set for the second stage of the framework, which 

is the ML model training stage, and hereafter as this training set will be referred to as ML-training 

set. 

The strong correlations of ReaxFF force field parameters create very complex parameter-property 

relationships because these correlations do not only come from analytical expressions but are also 

correlated due to the many-body character of atomic interactions specific to the system.  In order 

to handle these complex correlative relationships, we adapted deep learning (DL) as the ML 

method in the framework, because DL is a promising approach in extracting high-level features 

from less featured input data 32. The DL involves a type of artificial neural network with multiple 

hierarchical hidden layers. Using these multi-layered network structures, DL models are capable 

of nonlinearly mapping the relationships between a given set of inputs and corresponding outputs. 
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This capability makes DL an appropriate method to obtain features from a large data set. In 

addition, DL models can be easily parallelized on CPU or GPU architectures, which is one of the 

goals of this study since this provides significant acceleration in the FF development. 

 

Figure 1. Schematic representation of the DL-based optimization procedure. (Left) Representation 

of the sampling using the initial design algorithm; (Middle) Deep neural network structure, red 

circles are input nodes, and yellow circles are output nodes, grey circles are hidden layer nodes; 

(Right) Representation of the parameter-discrepancy correlation in parameter space. 

 

In the DL model, the ReaxFF parameters (N) are given as an input to a deep neural network (DNN), 

which is trained to return target molecular property values (P) (Figure 1 (middle)). The DNN used 

in this study is a fully connected feed-forward type, which transfers data from the input to the 

output layer through hidden layers. Each layer is composed of several nodes that are connected to 

each of the other nodes in the previous and next layers. Nonlinear mapping is implemented into 

neural networks using activation functions. For all layers except the last layer, rectified linear unit 

(ReLu), which has been proven to accelerate the training process 33, is employed as an activation 
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function, and we use a linear activation function for the last layer. The shape of a neural network 

used in DL model affects prediction accuracy 34; therefore, to understand the complexity of the 

neural network used in INDEEDopt, we analyzed the effect of the network shape to the final 

prediction. The accuracy of prediction was measured according to the mean absolute error (MAE) 

between the model prediction and test data. According to our analysis, MAE decreases until the 

number of layers is increased over ten. After ten, the model tends to overfit to the data, thus results 

in a reduction in accuracy (Figure 2).  We used two hidden layers in our model because the 

accuracy difference between ten and two layers is not significant enough to negatively affect the 

optimization procedure. The effect of the number of nodes per hidden layer was analyzed by 

changing the node amount in each layer by multiples of the number of reference property values 

in the FF-training set. As can be seen from Figure 2, the increase in the number of nodes results in 

a decrease in MAE, and the network with 900 nodes per layer fits best to the test data. However, 

the improvement in accuracy is not significant, while the increase in node number is inefficient in 

terms of computational time. In the light of these analyses, two hidden layers containing a constant 

number of nodes, which was selected as the size of the FF-training set, is considered as the most 

appropriate neural network configuration to be used in INDEEDopt framework. For a more 

complex FF-training set that is composed of thousands of reference property values there may be 

a need to assign more hidden layers and more nodes per layer; however, our configuration 

produced sufficient accuracy for both of our parametrization test cases and should be sufficient for 

most of the parametrizations conducted in current ReaxFF literature. The INDEEDopt code is 

capable of detecting GPU architecture in the computer system and automatically run on it, so it is 

advisable to use a larger number of nodes and layers if GPU is accessible to force field developer.  
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Figure 2. The effect of neural network shape on the accuracy of the DL model. All model training 

was run until the mean absolute error (MAE) is converged. The change in MAE with respect to 

the number of hidden layers (up) and the effect of number of nodes per layer to MEA of the trained 

model (down). The error bars were calculated training each model on the same data with ten 

repetitions. 

 

The DL training loss function is optimized using Adaptive Moment Estimation (Adam) method, 

which is computationally efficient and suitable for high-dimensionality due to its adaptive learning 

rate 35. Once the DL model is trained, the accuracy of the model is evaluated using a test set, which 

is obtained by randomly selecting a part of the ML-training set as a test set with a split ratio of 0.2.  

The DL model has an early stopping algorithm, which ensures that the overfitting is avoided by 

stopping the training at the point where the prediction accuracy is maximum. The maximum fail 

parameter is set to 100 epochs, while the total number of epochs is selected as 10000. The quality 

of the DL model predictions is calculated using MAE. The first two stages of INDEEDopt are 
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iterative and repeat until the DL model converges to an acceptable accuracy. The third stage of the 

framework, which is the optimization stage, starts once the accuracy is converged. The 

computational flow diagram of INDEEDopt framework is depicted in Figure 3. We should note 

that the convergence of DL model is critical, and the third stage does not start until the convergence 

in second stage is achieved. There may be several reasons for a failure/delay in convergence. One 

of them is the limited sampling of the parameter space, which is very likely a result of a too wide 

parameter range selection. Another reason may be high uncertainty in parameter-property 

correlation, which is likely due to the limited representation of the effects of these parameters in 

FF-training set. The increase in uncertainty is caused by inconsistent response in target property 

values to alteration of parameters in the first stage. This issue can be addressed by expanding FF-

training set by adding reference property values that are correlated with the parameters of interest 

and less sensitive to change in parameter values. This expansion stabilizes the response to 

parameter alterations and reduces the uncertainty in target properties in ML-training set. Such high 

uncertainty is not only a problem for INDEEDopt, it may also affect the force field quality during 

production, because when the force field is trained specifically for very unstable reference 

properties, transferability of the force field to new environments that can be faced during 

production simulations is limited. 
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Figure 3. Flow diagram of INDEEDopt framework. Red boxes represent the three main stages of 

the framework: sampling with initial design algorithms, deep learning model training, and 

optimization using brute-force method. Blue diamonds represent the conditional transition points 

in the algorithm. Dark blue dashed boxes represent input files and settings given by the FF 

developer. The input files that are used in INDEEDopt are same as the ones used in conventional 

method. Dark blue box represents output files, which are the optimized force field parameters. 

 

The third stage of INDEEDopt is when the parameter optimization is performed by minimizing 

the Equation 2.  

 

𝑦 = 	∑ %!!,#$"!!,%&'
#!

&
$%

&'(         Equation 2 
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where 𝑥2,45 and 𝑥2,678 are the target property obtained by trained DL model, and reference 

property values in FF-training set, respectively, and 𝑤2 is the weight factor, which can be used to 

adjust the importance of property values during parametrization. Production of target property 

values using ReaxFF-MD code takes a significant amount of time during optimization, especially 

when the reference data set is extensive. This time issue limits the optimization quality as most of 

the developed algorithms tend to limit their parameter space sampling. To address this issue, 

INDEEDopt framework calculates the target properties using the trained DL model predictions 

instead of calling ReaxFF-MD code in the optimization stage. A well-trained DL model is capable 

of predicting target properties with reasonable accuracy in 3 milliseconds, which is at least three 

orders of magnitude faster than using ReaxFF-MD code. Therefore, INDEEDopt is capable of 

exploring a wider parameter space more thoroughly. In addition, the ML-training set, which is 

generated to train DL model, has information about whole parameter space (in other words, it has 

the information for several local minima), and therefore can be used to train several parameters 

sets in parallel by targeting the best local minima in a smaller parameter range similar to Ref 28.  

 

We performed optimization using two different approaches, namely brute force method and 

Minimum Energy Design method, and compared the performances in Results section. The brute 

force optimization assigns randomly generated values to all parameters at once and calculates the 

discrepancy (y) between the target and reference property values. This process repeats until 

stopped by the force field developer when the discrepancy value is satisfactory. Even though the 

brute-force optimization is advantageous in terms of transitioning between local minima, it is not 
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computationally efficient to be used in high dimensional problems; therefore, we implemented the 

MED method, which can detect local minima faster as also demonstrated in Ref 36. 

 

The minimum energy design (MED) is a smart active learning strategy that can be used to 

efficiently and adaptively explore the parameter space and identify combinations with low 

discrepancy between the target and reference property values. Proposed and developed by Joseph 

et al.37, it is typically used to explore large, complex spaces, quickly carving out “bad” (with large 

total discrepancies in our case), and producing more and more “good” combinations. A completely 

automated version of the algorithm based on Ref 38 is implemented in the R package mined. It 

requires the user to select a set of initial parameter combinations, and a computer code (in our case 

the DL model) that calculates the total discrepancy between the target and reference property 

values for any given parameter combination. A more detailed description of the implementation 

of MED algorithm can be found in Ref 36. 

 

RESULTS AND DISCUSSION 

The INDEEDopt framework was tested for two different force field development cases, namely, a 

Ni-Cr binary system for alloy applications and a W-S-C-H quaternary system for 2D materials 

applications. The Ni-Cr system is relatively simple, due to the absence of angular and dihedral 

terms, which in turn requires optimization of a small number of parameters. The W-S-C-H system 

is more complex due to several reasons: (1) it has angular and dihedral interactions involved in the 

training set; (2) the number of parameters to be optimized and the size of the FF-training set is 

larger than the Ni-Cr one; (3) the force field training set includes both condensed and molecular 

phases together; therefore, W-S-C-H training was selected as a secondary test case to evaluate the 
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performance of INDEEDopt framework. The same force fields were also parametrized using 

conventional method, which is the most commonly used method in the ReaxFF literature 24. All 

the settings related to energy minimization, molecular geometries in the FF-training set, and 

weights factors for discrepancy calculations were kept the same for the optimization using 

INDEEDopt and the conventional force field development method. 

 

 

Ni-Cr force field optimization 

The ReaxFF training set of the Ni-Cr alloy system is composed of 90 different reference property 

values including equations of state and heat of formation energies for different Ni-Cr compositions 

in fcc and bcc phases. A total of 16 parameters were optimized, which involve bond order terms, 

bond energy terms, over coordination terms, charge polarization terms and Coulombic interaction 

terms. A detailed full list of parameters is given in Table S1.  

Using OMLHD algorithm, a total of 79636 samples were created to be used as the ML-training 

set. Each parameter has a corresponding anticipated value range, mostly coming from the chemical 

nature of the element; however, some parameter ranges are determined by experience. The ranges 

used for each parameter (in other words, upper and lower limits of parameter search) are given in 

Table S1. The determination of the ranges is important because wider ranges require more 

sampling, which is computationally inefficient, may also delay the optimization depending on the 

complexity of the problem. While exploring the parameter space, some parameter combinations 

produce meaningless inter or intra-atomic interactions, and if the ranges are large, a significant 

amount of the sampling is conducted unnecessarily. For example, the Ni-Cr training set uses a very 

wide range for parameter-1, which is the bond energy term between Ni and Cr. Our analysis of the 
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correlation between parameter-1 and remaining parameters (Figure S3) shows that a significant 

part (~80%) of the parameter range produces a large discrepancy meaning that the interatomic 

interactions are not usable for production simulations. We use the term “infeasible” to refer to 

these large discrepancy regions and remaining will be referred to as “feasible”.  In order to avoid 

sampling the infeasible parts of the parameter space, INDEEDopt only focuses on regions that 

produce feasible results after a first complete scan of the parameter space.   

A comparison of total discrepancy obtained by INDEEDopt and conventional method for different 

sections of the training set is given in Figure 4. A detailed comparison of each FF-training set 

element can be seen in Figure S1. Most of the target properties in the training set are improved 

using INDEEDopt except some equation of states values Ni3Cr and Ni2Cr in FCC and BCC phases, 

respectively. A significant improvement is observed in the heat of formation energetics, and the 

lowest total error sum obtained using the conventional method was calculated as 5614.2569, which 

was reduced to 2804.0238 using INDEEDopt with brute force and 2316.1710 using INDEEDopt 

with MED algorithm. During the optimization using the conventional method, the heat of 

formation and equations of state parts of the force field were inversely correlated; therefore, each 

part was optimized by compromising the accuracy of the other, and both parts were not able to be 

optimized at the same time. The reason why INDEEDopt succeeded is due to finding another local 

minimum in parameter space that can satisfy both parts of the force field. The significant 

differences between some of the final parameter values obtained by INDEEDopt and conventional 

method also show that the optimum parameter sets are detected in different regions of the 

parameter space (Figure 5). The final parameter values obtained by both methods are found in 

Table S1. Some of the parameters were optimized to similar values by both optimization methods, 

which may be due to a narrow parameter search range for these specific parameters assigned by 
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the force field developer. INDEEDopt outperformed the conventional method in terms of timings 

by producing an optimized parameter set in around two days compared to two weeks by an 

experienced force field developer. However, we should note that the conventional method was run 

on a single core while INDEEDopt was run on a hundred cores.  

 

 

Figure 4. The total error values corresponding to different parts of the nickel-chromium force field 

training set calculated by INDEEDopt with brute force and conventional methods. 

 

Figure 5. The stacked bar graph representation of the difference between the parameter values in 

the nickel-chromium training set optimized using INDEEDopt with brute force and conventional 
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method. The red represents the conventional, and yellow represents INDEEDopt version of the 

same parameter. The difference between the percentage values corresponds to the difference 

between predicted values by each method. The value 50% corresponds to a situation when both 

methods predict the same values. If the predicted parameter values are negative, then the 

percentage value is given as negative. 

 

 

W-S-C-H force field optimization 

The parametrization of the W-S-C-H quartenary system is more complex than the binary alloy 

case because the FF-training set involves both molecular and condensed phase parts. The presence 

of a condensed phase brings extra challenges to the optimization problem. One of the challenges 

is that the molecular and condensed phase may be best optimized separately in different local 

minima in the parameter space, meaning that a well-optimized molecular part does not necessarily 

produce low discrepancy for condensed phase part as well. In addition, the condensed phase part 

requires the usage of large molecular configurations to represent a crystalline phase. For example, 

the W-S-C-H training set has several geometries that are composed of hundreds of atoms, which 

makes these properties more sensitive to alteration in parameter values, and therefore brings 

considerable uncertainty to the parameter-property correlations. An additional complexity to the 

optimization problem comes from the size of the FF-training set. There are 289 reference 

properties in FF-training set, which is significantly higher than most data sets used in literature to 

test newly developed optimization procedures. The FF-training set includes heat of formation 

values for both molecular and condensed phase, defect and ad-atom energetics, some application-

specific reaction energetics, strain energetics, and bond and angle energies. The total number of 

parameters to be optimized is 68, which include bond, angle, and off-diagonal terms. A detailed 

list of optimized parameters is given in Table S2. 
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INDEEDopt produced a total of 43700 samples until the DL model is trained to mimic ReaxFF-

MD with reasonable accuracy. The total discrepancy sum for different parts in the FF-training set 

is given in Figure 6 and compared with the ones calculated using the conventional method. A more 

detailed comparison is also given in Figure S2. The difference between the final optimized 

parameter values obtained by both methods can be seen in Figure 7. As can be seen from the bar 

graphs, INDEEDopt produced a lower total error than the conventional method for angle scan, 

bond scan, and defect/ad atom parts of the force field. The lowest total error sum obtained using 

the conventional method was calculated as 5314.4381, which was reduced to as low as 5250.3082 

using INDEEDopt with brute force and 5705.5113 using INDEEDopt with MED algorithm. The 

amount of time spent on optimization was approximately two months with the conventional 

method and was five days with INDEEDopt with brute force algorithm. In addition, the usage of 

MED instead of the brute force algorithm reduced this time to four days. Even though the MED 

algorithm was not able to produce the lowest error, the produced value is acceptable to be used in 

production simulations. We should note that the brute force optimization criterion in this study 

was to do better than the conventional method; therefore, the optimization was stopped after the 

discrepancy value was below the one produced by the conventional method. However, the 

parameter set was very well developed by experienced FF developers using the conventional 

method; therefore, it was a challenging test. INDEEDopt spent approximately one day, around 

thirty million calculations, at the optimization stage to predict a lower discrepancy point than the 

conventionally obtained one. Therefore, it may not be guaranteed to predict a better point by 

running the optimization longer because: (1) INDEEDopt predicted a local minimum that is very 

different from the conventionally obtained one, which can be seen in Figure 7, and there may not 

be a better point accessible by our optimization method in this specific low discrepancy region; 
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(2) The DL model may not be able to make predictions as sensitive as ReaxFF-MD, which prevents 

revealing a better point. It may be possible to further improve the parametrization by assigning 

INDEEDopt predicted parameters as a starting point to the conventional method by assigning a 

narrow parameter search range.  

 

Figure 6.  The total error values corresponding to different parts of the tungsten-sulfide-carbon-

hydrogen FF-training set calculated by INDEEDopt with brute force and conventional methods. 
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Figure 7. The stacked bar graph representation of the difference between the parameter values in 

the tungsten-sulfide-carbon-hydrogen training set optimized using INDEEDopt with brute force 

and conventional method. The red represents the conventional, and yellow represents INDEEDopt 

version of the same parameter. The difference between the percentage values corresponds to the 

difference between predicted values by each method. The value 50% corresponds to a situation 

when both methods predict the same values. If the predicted parameter values are negative, then 

the percentage value is given as negative. 

 

CONCLUSION 

An initial design enhanced deep learning-based optimization framework has been developed to 

parametrize ReaxFF force fields. The INDEEDopt framework was tested on two different training 

sets, and the performance was examined comparing with the conventional method. The tests were 

conducted on Ni-Cr and W-S-C-H training sets, of which lateral is the most challenging due to a 

large number of properties and diversity in the training set. The framework could produce a lower 

total discrepancy between ReaxFF values and reference property values compared to the 

conventional method. The time required for optimization calculations is also lower using 

INDEEDopt due to its ability to run on multiple processors. Another advantage of INDEEDopt 

framework is its ability to be used as an initial parameter generator that can be combined with 

other optimization methods, which can be valuable in avoiding local minima stucking problem in 

some other optimization methods and also to fine-tune force fields. Additionally, INDEEDopt can 

be used by any software that can run ReaxFF-MD energy minimization simulations, which makes 

it open to a wider user population. 
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This version of INDEEDopt is fully capable of providing a time-efficient tool for optimizing 

ReaxFF force fields with sufficient quality. However, there are some challenges that can be 

addressed to improve the framework further in future versions. The sampling scheme (first stage 

of the framework) used in INDEEDopt is computationally the most demanding part due to the high 

dimensionality of the problem, which can be addressed by developing problem-specific initial 

design methods. With the implementation of design of experiments-based optimization procedure 

for neural network hyperparameter tuning, desired accuracies from the DL model can be achieved 

in shorter periods of time. The future versions of INDEEDopt will also include subroutines that 

conduct statistical analysis to give feedback about the FF-training set, which will be very valuable 

to further improve FF quality. We believe that our framework provides major progress towards 

the process of ReaxFF parameterization. A Python 3 implementation of INDEEDopt framework 

is available at https://github.com/mertyigit/INDEEDopt for public use. 
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