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ABSTRACT: 

COVID-19 has caused lockdowns all over the world in early 2020, as a global pandemic. Both 

theoretical and experimental efforts are seeking to find an effective treatment to suppress the virus. 

In silico drug design can play a vital role in identifying promising drug candidates against COVID-

19. Herein, we focused on the main protease of SARS-CoV-2 that plays crucial biological 

functions in the virus. We performed a ligand-based virtual screening followed by a docking 

screening for testing approved drugs and bioactive compounds listed in the DrugBank and 

ChEMBL databases. The top 8 docking results were advanced to all-atom MD simulations to study 

the relative stability of the protein-ligand interactions. MD simulations support that the catalytic 

residue, His41, has a neutral side chain with a protonated delta position. An absolute binding 

energy (∆𝐺) of – 42 kJ mol-1 for the protein−ligand (Mpro−N3) complex has been calculated using 

the potential-of-mean-force (geometrical) approach. Furthermore, the relative binding energies 

were computed for the top docking results. Our results suggest several promising approved and 

bioactive inhibitors of SARS-CoV-2 Mpro as follows: a bioactive compound, ChEMBL275592, 

which has the best MM/GBSA binding energy; the second-best compound, montelukast, is an 

approved drug used in the treatment of asthma and allergic rhinitis; the third-best compound, 

ChEMBL288347, is a bioactive compound. Bromocriptine and saquinavir, are other approved 

drugs that also demonstrate stability in the active site of Mpro, albeit their relative binding energies 

are low compared to the N3 inhibitor. This study provides useful insights into de novo protein 

design and novel inhibitor development, which could reduce the cost and time required for the 

discovery of a potent drug to combat SARS-CoV-2. 

 



1. INTRODUCTION: 

Coronaviruses can provoke infectious diseases in humans and animals. Coronavirus disease 2019 

(COVID-19) is caused by a novel severe acute respiratory syndrome, SARS-CoV-2, which has 

spread as a worldwide pandemic. Patients infected with this disease present major symptoms 

including, high fever, rhinorrhea, cough, sore throat, pneumonia and ultimately, death in severe 

cases.1,2 Globally, according to the world health organization (WHO), there have been 8,061,550 

confirmed cases of COVID-19, including 440,290 deaths as of June 17, 2020. Most of these cases 

and deaths are from Europe and the Americas. 

Coronaviruses were named due to their protein spikes that have a crown-like shape.3 The 

coronavirus genome encodes several proteins, such as the spike, Mpro (also known as 3-

chymotrypsin-like cysteine protease, 3CLpro), and RNA-dependent RNA polymerase (RdRp).4 

Different approaches are being investigated for the development of useful drugs to fight against 

SARS-CoV-2. Developing inhibitors of viral Mpro is one of the promising approaches. Mpro is 

essential for viral replication by facilitating the cleavage of viral peptides into smaller functional 

units.5 Consequently, drugs that target the Mpro would cease the replication process and prevent 

viral infection. More recently, 15 drugs are being tested to cure COVID-19 including virus 

protease inhibitors.6 However, albeit the preliminary results are promising, there were issues in the 

design of the study. According to WHO, there is no specific medicine to treat COVID-19 yet. 

In silico drug design has been playing a vital role in modern drug therapies against infectious 

diseases.7–9 Currently, enormous efforts and approaches are being pursued for the discovery of 

inhibitors against SARS-CoV-2 Mpro by employing high performance computational resources. 

Nutho et al studied two HIV-1 protease inhibitors specifically, lopinavir and ritonavir, by MD 

simulations and relative binding energy calculations.10 MD simulations, molecular docking, and 

structure-activity relationship were used for the discovery of new hydroxyethylamine analogs 



against the Mpro.11 Docking screening of approved drugs and drug candidates in clinical trials,12 

and medicinal plants13 were also conducted along with MD simulations. Molecular docking, fast 

pulling of ligand, and free energy perturbation calculations were also performed to investigate 

potential inhibitors of SARS-CoV-2 Mpro.14 Moreover, both MD simulations and molecular 

docking were employed to explore the Mpro inhibitory of 19 marketed drugs,15 and to repurpose 

protease inhibitor compounds.16  

In this work, we will focus on the newly released protein crystal structure of the SARS-CoV-2 

Mpro.17 This protein is a dimer that includes two protomers; each protomer has three domains. 

Domains I and II, residues 8-184, have an antiparallel β-barrel structure. Domain III, residues 201-

303, has five α-helices. The extended loop, residues 185-200, connects Domains II and III. 

Furthermore, this protein has a catalytic dyad, His41 and Cys145, and the substrate binding site is 

in a cleft between Domains I and II.  In this paper, we performed an integrated computational 

protocol including ligand-based and structure-based molecular screening, molecular dynamics 

simulations, and binding energy calculations to facilitate the identification of promising candidate 

drugs to treat COVID-19.  

2. METHODS AND COMPUTATIONAL DETAILS 

The initial coordinates of one protomer of the SARS-CoV-2 Mpro was retrieved from the RCSB 

[Protein Data Bank (PDB) entry 6LU7] determined at 2.16 Å resolution with no missing residues.17 

The cocrystalized ligand (named N3) of SARS-CoV-2 Mpro was used to conduct the ligand-based 

virtual screening. The N3 ligand is a potent inhibitor and it was also found as a complex with 

earlier coronaviruses Mpro such as IBV,18 HCoV-HKU1,19 SARS-CoV,20 HCoV-NL63,21 FIPV,22 

and PEDV.23    

2.1. Hierarchical Virtual Screening and Docking. 



In the PDB crystal structure, the N3 ligand was covalently bonded to Cys145. We constructed the 

free ligand by breaking the covalent bond and making an α,β-unsaturated ketone using the 

molecular structure editor (maestro)24. We minimized the N3 ligand using the MMFF94s force 

field.25 We then screened the data sets from both the DrugBank26 and ChEMBL27 libraries based 

on the preprocessed N3 ligand. For ligand-based screening, a novel fully flexible high-throughput 

3D molecular similarity approach (Screen3D algorithm)28 was performed as implemented in the 

BRUSELAS server.29 

The top 200 compounds (the top 100 from each library) that are structurally similar to the N3 

ligand were advanced to the next hierarchical filter, docking screening. OpenBabel software30 was 

used to generate and minimize conformations from the top 200 screened compounds. These 

compounds were docked into a preprocessed protein pocket by utilizing the AutoDock Vina 

package.31 It has been shown that AutoDock Vina has an effective scoring function in terms of 

accuracy and performance.32 The grid cell of 18.0 Å, 21.3 Å, and 24.3 Å in the x, y, and z 

directions, respectively, was built for docking calculations. This grid cell is located around the 

active site of the Mpro, centroid to residues His41, Met49, Phe140, Leu141, Asn142, Gly143, 

Cys145, His164, Met165, Glu166, Leu167, Pro168, His172, Gln189, and Thr190.   

2.2. Molecular Dynamics (MD) simulations. 

The top 8 docking results were advanced to all-atom MD simulations to study the relative stability 

of the protein-ligand interactions, and to screen a set of compounds for further binding energy 

calculations. All the simulations were done using the NAMD 2.13 package33,34 and the 

CHARMM36 force field.35 The parameters for the N3 ligand and the top 8 docking compounds 

were generated using the CHARMM general force field (CGenFF).36 A protomer of the Mpro  has 

a total of 306 residues.17 The protonation state of the titratable residues were assigned at pH 7.4 



exploiting the H++ web server.37 It should be pointed out that the catalytic residue His41 can adopt 

three different protonation states: neutral HSD (δ-nitrogen protonated), neutral HSE (ε-nitrogen 

protonated), and protonated HSP (both δ- and ε-nitrogens protonated). Therefore, three MD 

simulations were run to explore the effect of the protonation states of His41 on the stability of the 

active site. The TIP3P explicit solvation model was used, and the periodic boundary conditions 

were set with dimensions of 115.2 Å3. Afterward, the system was neutralized using four sodium 

(Na+) ions. The MD protocols involved minimization, annealing, equilibration, and production. 

The atoms of the protein backbone were restrained in the minimization and annealing simulations, 

while the Cα atoms of the protein were restrained in the 1 ns equilibration simulation. However, 

no atoms were restrained in the 100 ns MD production simulation. The isothermal−isobaric (NPT) 

ensemble and a 2 fs time step of integration was chosen for all MD simulations. Through the 100 

ns of MD production, the pressure was set at 1 atm using the Nosé-Hoover Langevin piston 

barostat38,39 with the Langevin piston decay of 0.2 ps and a period of 0.4 ps. The temperature was 

set at 298.15 K using the Langevin thermostat40 with a damping frequency of 1 ps−1. A distance 

cutoff of 10.0 Å was applied to short-range nonbonded interactions with a pair list distance of 12 

Å, and Lennard Jones interactions were smoothly truncated at 8.0 Å. Long-range electrostatic 

interactions were treated using the particle-mesh Ewald (PME) method,41,42 where a grid spacing 

of 1.0 Å was used for all simulation cells. All covalent bonds involving hydrogen atoms were 

constrained using the SHAKE algorithm.43 For consistency, we have applied the same protocol for 

all MD simulations. 

2.3. Binding Energy Calculations. 

Starting from the equilibrated protein−ligand (Mpro−N3) complex, we calculated the absolute 

binding energy of the Mpro−N3 complex using the geometrical energy approach. It has been shown 



that the geometrical approach accurately predicts protein−ligand binding energies.44,45 We used 

the default set up of the binding free energy estimator as described by Chipot and coworkers.46 

More details on theoretical background of the geometrical (i.e., potential-of-mean-force) free 

energy calculations can be obtained elsewhere.47 In addition, we collected a total of 1000 snapshots 

extracted consistently from the 100 ns of MD production to calculate the relative protein−ligand 

binding energy of the top docking results. 

The one-average molecular mechanics generalized Born surface area (MM/GBSA) approach48,49 

was used for the relative binding energy calculations, in which the ligand (L) binds to the protein 

receptor (R) to form the complex (RL), 

∆Gbind = 𝐺𝑅𝐿 − 𝐺𝑅 − 𝐺𝐿 

which can be represented by contributions of different interactions, 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆 = ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆 

where the changes in the gas phase molecular mechanics (∆𝐸𝑀𝑀), solvation Gibbs energy (∆𝐺𝑠𝑜𝑙), 

and conformational entropy (−𝑇∆𝑆) are determined as follows: ∆E𝑀𝑀 is the sum of the changes 

in the electrostatic energies ∆𝐸𝑒𝑙𝑒, the van der Waals energies ∆E𝑣𝑑𝑊, and the internal energies 

∆𝐸𝑖𝑛𝑡 (bonded interactions); ∆G𝑠𝑜𝑙 is the total of both the polar solvation (calculated by generalized 

Born model) and the nonpolar solvation (calculated using the solvent-accessible surface area); 

−𝑇∆𝑆 is calculated by the normal mode analysis. The solvent dielectric constant of 78.5 and the 

surface tension constant of 0.021 kJ mol−1 Å−2 were used for MM/GBSA calculations. 

3. RESULTS AND DISCUSSION: 

We performed a ligand-based virtual screening of approved drugs and bioactive compounds from 

both the DrugBank and ChEMBL databases. The top 100 screened compounds from each library 



are advanced to flexible molecular docking using AutoDock Vina. Nine conformations from each 

compound were generated through a flexible docking. Docking score was chosen as the measure 

of the binding affinity to rank the poses of the 200 compounds. Our selection of the top 8 

compounds were based on compounds that have at least five conformations with a docking score 

of ≤ – 33 kJ mol-1 (– 8 kcal mol-1). Docking results of the top 8 compounds for SARS-COV-2 Mpro 

are listed in Table 1. The structures of the top 8 compounds are shown in Figure 1. 

Insert Table 1 

Insert Figure 1 

Next, the top 8 docking results were advanced for MD simulations. Many studies have validated 

the role of MD simulations for the improvement of docking results.50,51 Before launching MD 

simulations on the top docking results, three MD simulations of SARS-COV-2 Mpro complexed 

with the N3 ligand were carried out to explore the plausible protonation states of the catalytic 

His41, as illustrated earlier in the methods section. His41 is a well-preserved residue amongst 

various viruses including hepatitis C virus (HCV), MERS-CoV, SARS-CoV, and SARS-CoV-2.12 

The three MD simulations were labeled as follows: neutral HSD (Model 1), neutral HSE (Model 

2), and protonated HSP (Model 3). Control of the structure stability of the three models was 

achieved by the root-mean-square deviation (RMSD) over protein backbone atoms, and by the 

root-mean-square fluctuation (RMSF). In addition, the Mpro−N3 hydrogen bond interactions were 

also analyzed during the 100 ns NPT ensemble. Figure 2 shows the RMSD, RMSF, and hydrogen 

bond analyses of the protein−ligand complex for the three models. 

Insert Figure 2 



Unambiguously, amongst the three models, Model 1 shows a modest structural stability in terms 

of the RMSD of both the Mpro and N3 ligand, and the RMSF analysis. Moreover, the intermolecular 

interaction of the Mpro−N3 complex has an average of five hydrogen bonds (see the top histogram 

in Figure 1). The stability of the Mpro−N3 complex is mainly due to the hydrogen bonds between 

the N3 ligand and residues His41, Gly143, Glu166, and Gln189 of the Mpro, besides the 

hydrophobic interactions. These results are in concert with a recent experimental study.17 Figure 3 

represents the pose of the N3 ligand inside the pocket of the Mpro. 

 Insert Figure 3 

The RMSD and the RMSF of the protein backbone of Model 2 is comparable with Model 1, 

however, the N3 ligand in Model 2 was less strongly bound inside the Mpro pocket than Model 1 

(see Figure 2). Model 2 has an average of three hydrogen bonds between the N3 ligand and the 

Mpro. In Model 3, the N3 ligand has left the binding pocket of the Mpro during the MD simulations 

(see the green line of the RMSD analysis at the bottom of Figure 1). Thus, Model 1 is considered 

as a starting point for MD simulations for the top docking results. In other words, His41 is set as 

a neutral form with a protonated delta position (HSD type of CHARMM format), and this model 

agrees with the common reaction mechanism of cysteine protease.52 The optimal binding pose of 

the Mpro−N3 complex of Model 1 was further assessed by absolute binding energy calculations 

using the geometrical approach. It should be mentioned that the N3 is a Michael acceptor inhibitor, 

which means that the inhibitor forms a reversible complex (Mpro–N3) under the equilibrium 

binding constant Keq. It then undergoes a nucleophilic attack by Cys145 of the Mpro active site, 

forming a stable covalent bond. The later step is controlled by the inactivation rate constant, which 

is beyond the scope of this paper. To calculate Keq, the different contributions arising from the 

geometrical restraints were computed, either in the bound state, or in the unbound state.46,47 The 



final absolute binding energy, ∆𝐺 = −1/𝛽 ln𝐾𝑒𝑞  , has a value of – 42 kJ mol-1. Yet, no 

experimental binding energy was reported for the SARS-CoV-2 Mpro. Nevertheless, our results are 

comparable to experimental binding energies of similar protease–inhibitor systems. Based on the 

experimental inhibitory constant (Ki), HCoV-NL6321, SARS-CoV53, and HCoV-229E53 have the 

Mpro–N3 binding energies of – 28, – 29, and –33 kJ mol-1, respectively. Therefore, our predicted 

results conclude that the SARS-CoV-2 Mpro has relatively a higher binding affinity to the N3 

inhibitor than the other Coronaviruses.  

Using the same protocol as Model 1, MD simulations were carried out for the top 8 docking 

compounds to investigate their stability inside the Mpro pocket. The RMSD analyses of the top 8 

docking compounds are provided in the Supporting Information (Figure S1). The RMSD values 

of ChEMBL275592, montelukast, ChEMBL288347, bromocriptine, and saquinavir systems 

increased at the beginning of the simulation then remained stable until the end of the simulation. 

These compounds have reliable MMGBSA binding energies relative to the known N3 inhibitor 

that has a value of -150 kJ mol-1 calculated at MMGBSA method. The rest of the docking 

compounds, zafirlukast, bosentan, and doismin, lack the stability inside the Mpro pocket, 

consequently, these compounds have poor binding energies relative to the known N3 inhibitor. 

Table 2 lists the MD results and the MMGBSA relative binding energies for the top docking 

compounds.  

Insert Table 2 

The averaged contact area analysis was calculated based on the surface area of a ligand that is 

exposed to residues of a protein.54 Table 3 summarizes the contact area analysis for compounds 

that have good stability inside the binding site of the Mpro through the 100 ns MD simulations. 

Snapshots of the last frame of simulated systems are depicted in Figure 4. Analyses of the time-



evolution of the contact area are also provided in the Supporting Information (Figure S2). We 

found that residues Thr25, His41, Ser46, Met49, Asn142, Cys145, Met165, Glu166, Pro168, and 

Gln189 have a good contact area with the top five compounds. Wang studied the common 

significant hot spot residues of the Mpro; these residues are His41, Met49, Asn142, His164, 

Met165, Glu166, and Gln189, which are in agreement with our results.12  

Insert Figure 4 

Insert Table 3 

CONCLUSION: 

In this study, the ligand-based screening, structure-based docking screening, MD simulations, and 

binding energy calculations were conducted based on the Mpro as a drug target. The Mpro−N3 

complex has an absolute binding energy of – 42 kJ mol-1. The predicted results suggest that 

montelukast, ChEMBL275592, and ChEMBL288347 (top 3 compounds) show good inhibitory 

efficiency on the focused Mpro target. Montelukast is an approved drug that is used to control and 

prevent breathing problems. ChEMBL275592 is a bioactive compound that shows the inhibitory 

activity of 2.8 nM against HIV-1 protease. ChEMBL288347 is also a bioactive compound that 

shows the inhibitory activity of 1.4 nM through in vitro inhibition of purified human renal renin. 

In addition, bromocriptine and saquinavir may also be candidates for Mpro inhibition. Our findings 

pave the way for further optimizations and designs of Mpro’s inhibitors.  

 

ASSOCIATED CONTENT 

Supporting Information Available: 

RMSD and the contact surface area analyses of the top docking compounds complexed 

individually with the Mpro are available free of charge via the Internet at http://pubs.acs.org. 



Notes 

The authors declare no competing financial interest.  

 

ACKNOWLEDGMENTS 

We gratefully acknowledge Compute Canada for computer time. We are also immensely grateful 

to Shahidul M. Islam for his comments on an earlier version of the manuscript. R.A.P. is grateful 

to the Natural Sciences and Engineering Council of Canada (NSERC) for financial support. A.A.A 

thanks Chen Graduate Scholarship and the School of Graduate Studies of the Memorial University 

of Newfoundland for funding. A.Y. thanks Science and Engineering Research Board, New Delhi 

for research grant number EMR/2016/000769. A.Y is also grateful to Shastri Indo Canadian 

Institute, New Delhi for Shastri Scholar Travel Subsidy Grant in the year 2016. 

References 

(1)  Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, 

Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel 

Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–

513. 

(2)  Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; 

et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, 

China. Lancet 2020, 395, 497–506. 

(3)  Stadler, K.; Masignani, V.; Eickmann, M.; Becker, S.; Abrignani, S.; Klenk, H.-D.; 

Rappuoli, R. SARS — Beginning to Understand a New Virus. Nat. Rev. Microbiol. 2003, 

1, 209–218. 

(4)  Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. 

C.; Daniels, A. D.; Jervey, S.; et al. Research and Development on Therapeutic Agents 

and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent. Sci. 

2020, 6, 315–331. 

(5)  Goetz, D. H.; Choe, Y.; Hansell, E.; Chen, Y. T.; McDowell, M.; Jonsson, C. B.; Roush, 

W. R.; McKerrow, J.; Craik, C. S. Substrate Specificity Profiling and Identification of a 

New Class of Inhibitor for the Major Protease of the SARS Coronavirus † , ‡. 

Biochemistry 2007, 46, 8744–8752. 

(6)  Shaffer, L. 15 Drugs Being Tested to Treat COVID-19 and How They Would Work. Nat. 

Med. 2020. 



(7)  Macalino, S. J. Y.; Gosu, V.; Hong, S.; Choi, S. Role of Computer-Aided Drug Design in 

Modern Drug Discovery. Arch. Pharm. Res. 2015, 38, 1686–1701. 

(8)  Njogu, P. M.; Guantai, E. M.; Pavadai, E.; Chibale, K. Computer-Aided Drug Discovery 

Approaches against the Tropical Infectious Diseases Malaria, Tuberculosis, 

Trypanosomiasis, and Leishmaniasis. ACS Infect. Dis. 2016, 2, 8–31. 

(9)  Aminpour, M.; Montemagno, C.; Tuszynski, J. A. An Overview of Molecular Modeling 

for Drug Discovery with Specific Illustrative Examples of Applications. Molecules 2019, 

24, 1693. 

(10)  Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N. C.; Simanon, N.; 

Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why Are Lopinavir and Ritonavir 

Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the 

Inhibitory Mechanisms. Biochemistry 2020, 59, 1769–1779. 

(11)  Kumar, S.; Sharma, P. P.; Shankar, U.; Kumar, D.; Joshi, S. K.; Pena, L.; Durvasula, R.; 

Kumar, A.; Kempaiah, P.; Poonam, *; et al. Discovery of New Hydroxyethylamine 

Analogs Against 3CLpro Protein Target of SARS-CoV-2: Molecular Docking, Molecular 

Dynamics Simulation and Structure-Activity Relationship Studies. J. Chem. Inf. Model. 

2020. 

(12)  Wang, J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 

(COVID-19) through Computational Drug Repurposing Study. J. Chem. Inf. Model. 2020. 

(13)  Tahir ul Qamar, M.; Alqahtani, S. M.; Alamri, M. A.; Chen, L.-L. Structural Basis of 

SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants. J. 

Pharm. Anal. 2020. 

(14)  Ngo, S. T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D.-H.; Vu, V. V. Computational 

Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. J. Chem. Inf. 

Model. 2020, acs.jcim.0c00491. 

(15)  Huynh, T.; Wang, H.; Luan, B. In Silico Exploration of the Molecular Mechanism of 

Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2’s Main Protease. J. Phys. 

Chem. Lett. 2020, 11, 4413–4420. 

(16)  Havranek, B.; Islam, S. M. An in Silico Approach for Identification of Novel Inhibitors as 

Potential Therapeutics Targeting COVID-19 Main Protease. J. Biomol. Struct. Dyn. 2020, 

1–12. 

(17)  Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, 

C.; et al. Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 

2020. 

(18)  Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, 

Q.; et al. Structures of Two Coronavirus Main Proteases: Implications for Substrate 

Binding and Antiviral Drug Design. J. Virol. 2008, 82, 2515–2527. 

(19)  Zhao, Q.; Li, S.; Xue, F.; Zou, Y.; Chen, C.; Bartlam, M.; Rao, Z. Structure of the Main 

Protease from a Global Infectious Human Coronavirus, HCoV-HKU1. J. Virol. 2008, 82, 

8647–8655. 



(20)  Xue, X.; Yang, H.; Shen, W.; Zhao, Q.; Li, J.; Yang, K.; Chen, C.; Jin, Y.; Bartlam, M.; 

Rao, Z. Production of Authentic SARS-CoV Mpro with Enhanced Activity: Application 

as a Novel Tag-Cleavage Endopeptidase for Protein Overproduction. J. Mol. Biol. 2007, 

366, 965–975. 

(21)  Wang, F.; Chen, C.; Tan, W.; Yang, K.; Yang, H. Structure of Main Protease from Human 

Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci. Rep. 

2016, 6, 22677. 

(22)  Wang, F.; Chen, C.; Liu, X.; Yang, K.; Xu, X.; Yang, H. Crystal Structure of Feline 

Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors. J. 

Virol. 2016, 90, 1910–1917. 

(23)  Wang, F.; Chen, C.; Yang, K.; Xu, Y.; Liu, X.; Gao, F.; Liu, H.; Chen, X.; Zhao, Q.; Liu, 

X.; et al. Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from 

Porcine Epidemic Diarrhea Virus. J. Med. Chem. 2017, 60, 3212–3216. 

(24)  Maestro, Schrödinger Release 11.8.0; Schrödinger, LLC: New York, NY, 2019. 

(25)  Halgren, T. A. MMFF VI. MMFF94s Option for Energy Minimization Studies. J. 

Comput. Chem. 1999, 20, 720–729. 

(26)  Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A. C.; Liu, Y.; Maciejewski, A.; 

Arndt, D.; Wilson, M.; Neveu, V.; et al. DrugBank 4.0: Shedding New Light on Drug 

Metabolism. Nucleic Acids Res. 2014, 42, D1091–D1097. 

(27)  Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers, J.; Mendez, D.; Mutowo, 

P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. 

Nucleic Acids Res. 2017, 45, D945–D954. 

(28)  Kalászi, A.; Szisz, D.; Imre, G.; Polgár, T. Screen3D: A Novel Fully Flexible High-

Throughput Shape-Similarity Search Method. J. Chem. Inf. Model. 2014, 54, 1036–1049. 

(29)  Banegas-Luna, A. J.; Cerón-Carrasco, J. P.; Puertas-Martín, S.; Pérez-Sánchez, H. 

BRUSELAS: HPC Generic and Customizable Software Architecture for 3D Ligand-Based 

Virtual Screening of Large Molecular Databases. J. Chem. Inf. Model. 2019, 59, 2805–

2817. 

(30)  O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. 

R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. 

(31)  Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking 

with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. 

Chem. 2010, 31, 455–461. 

(32)  Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive 

Evaluation of Ten Docking Programs on a Diverse Set of Protein–Ligand Complexes: The 

Prediction Accuracy of Sampling Power and Scoring Power. Phys. Chem. Chem. Phys. 

2016, 18, 12964–12975. 

(33)  Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; 

Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. 



Comput. Chem. 2005, 26, 1781–1802. 

(34)  Ribeiro, J. V.; Bernardi, R. C.; Rudack, T.; Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; 

Schulten, K. QwikMD — Integrative Molecular Dynamics Toolkit for Novices and 

Experts. Sci. Rep. 2016, 6, 26536. 

(35)  Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. 

Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting 

Improved Sampling of the Backbone φ, ψ and Side-Chain Χ1 and Χ2 Dihedral Angles. J. 

Chem. Theory Comput. 2012, 8, 3257–3273. 

(36)  Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A. D. Extension of the CHARMM 

General Force Field to Sulfonyl-Containing Compounds and Its Utility in Biomolecular 

Simulations. J. Comput. Chem. 2012, 33, 2451–2468. 

(37)  Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. H++ 3.0: Automating PK Prediction and 

the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and 

Simulations. Nucleic Acids Res. 2012, 40, 537–541. 

(38)  Nosé, S.; Klein, M. L. Constant Pressure Molecular Dynamics for Molecular Systems. 

Mol. Phys. 1983, 50, 1055–1076. 

(39)  Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. 

Phys. 2002, 100, 191–198. 

(40)  Grest, G. S.; Kremer, K. Molecular Dynamics Simulation for Polymers in the Presence of 

a Heat Bath. Phys. Rev. A 1986, 33, 3628–3631. 

(41)  Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald 

Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 

(42)  Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A 

Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 

(43)  Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. . Numerical Integration of the Cartesian 

Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. 

Comput. Phys. 1977, 23, 327–341. 

(44)  Gumbart, J. C.; Roux, B.; Chipot, C. Standard Binding Free Energies from Computer 

Simulations: What Is the Best Strategy? J. Chem. Theory Comput. 2013, 9, 794–802. 

(45)  Kötter, A.; Mootz, H. D.; Heuer, A. Standard Binding Free Energy of a SIM–SUMO 

Complex. J. Chem. Theory Comput. 2019, 15, 6403–6410. 

(46)  Fu, H.; Gumbart, J. C.; Chen, H.; Shao, X.; Cai, W.; Chipot, C. BFEE: A User-Friendly 

Graphical Interface Facilitating Absolute Binding Free-Energy Calculations. J. Chem. Inf. 

Model. 2018, 58, 556–560. 

(47)  Fu, H.; Cai, W.; Hénin, J.; Roux, B.; Chipot, C. New Coarse Variables for the Accurate 

Determination of Standard Binding Free Energies. J. Chem. Theory Comput. 2017, 13, 

5173–5178. 

(48)  Genheden, S.; Ryde, U. Comparison of End-Point Continuum-Solvation Methods for the 



Calculation of Protein-Ligand Binding Free Energies. Proteins Struct. Funct. Bioinforma. 

2012, 80, 1326–1342. 

(49)  Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z. H.; Hou, T. End-Point 

Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and 

Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. 

(50)  Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring 

Ligand-Protein Recognition Process: An Overview. Front. Pharmacol. 2018, 9. 

(51)  Guterres, H.; Im, W. Improving Protein-Ligand Docking Results with High-Throughput 

Molecular Dynamics Simulations. J. Chem. Inf. Model. 2020, 60, 2189–2198. 

(52)  Otto, H.-H.; Schirmeister, T. Cysteine Proteases and Their Inhibitors. Chem. Rev. 1997, 

97, 133–172. 

(53)  Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; 

Ziebuhr, J.; et al. Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main 

Proteases. PLoS Biol. 2005, 3, e324. 

(54)  Scheurer, M.; Rodenkirch, P.; Siggel, M.; Bernardi, R. C.; Schulten, K.; Tajkhorshid, E.; 

Rudack, T. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent 

Interactions in MD Simulations. Biophys. J. 2018, 114, 577–583. 

 

Table 1. Top 8 Docking Results for SARS-COV-2 Mpro. 

Compound ID Generic Name Number of Conformations that Possess 

Binding Affinity of ≤ – 33 kJ mol-1  

ChEMBL275592 NA 9 

DB01232 saquinavir 9 

DB00471 montelukast 7 

DB00549 zafirlukast 7 

ChEMBL288347 NA 6 

DB00559 bosentan 6 

DB01200 bromocriptine 5 

DB08995 doismin 5 

 

Table 2. MD Results and Relative Binding Energies of the Top 8 Docking Compounds. 

Compound Structure Stability in 

the Mpro Pocket 

Averaged Contact 

Area (Å2)a 

MMGBSA Relative Binding 

Energies (kJ mol-1) 

ChEMBL275592 Stable 395 − 158 

montelukast Stable 433 − 154 

ChEMBL288347 Stable 411 − 144 

bromocriptine Stable 354 − 121 

saquinavir Stable 362 − 117 

zafirlukast Unstable  − 73 

bosentan Unstable  − 59 



doismin Unstable  − 57 
aAveraged contact area between compounds and the Mpro during the 100 ns NPT ensemble. 

 

Table 3. Averaged Contact Area (Å2) between Compounds and Active Site Residues of the 

Mpro during the 100 ns NPT Ensemble. 

Residue Contact Area (Å2) 

 N3  ChEMBL275592 montelukast ChEMBL288347 bromocriptine saquinavir 

Thr25 14 19 16 14 12 12 

His41 24 15 17 19 6 11 

Ser46 2 20 8 32 31 29 

Met49 5 27 7 30 24 17 

Asn142 44 3 30 16 69 32 

Gly143 25 31 19 6 28 6 

Cys145 13 14 23 5 18 4 

Met165 19 24 55 52 39 14 

Glu166 50 49 43 30 20 26 

Pro168 53 18 30 40 9 33 

Gln189 56 40 43 70 40 83 

Ala191 23 16 19 12 0 4 

 

 



 

Figure 1. Two-dimensional structures of the selected top 8 compounds.  
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Figure 2. From left to right: RMSD, RMSF, and hydrogen bond interactions of the Mpro−N3 

complex through 100 ns MD simulations. Model 1 (top), Model 2 (middle), and Model 3 (bottom). 

 

 

Figure 3. (a) Representative pose of the N3 ligand in the Mpro pocket. The protein surface is 

colored based on the electrostatic potential. (b) Hydrogen bond interactions (red dashed line) of 

the N3 ligand in complex with the Mpro. 
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Figure 4. Last frame of 100 ns MD simulations of ligands in the Mpro pocket. (a) N3 inhibitor, (b) 

ChEMBL275592, (c) montelukast, (d) ChEMBL288347, (e) bromocriptine, and (f) saquinavir.  
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