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Abstract

Applications of density functional theory (DFT) in computational chemistry rely

on an approximate exchange-correlation (xc) functional. However, existing approx-

imations can fail dramatically for open-shell molecules, in particular for transition-

metal complexes or radicals. Most importantly, predicting energy-differences be-

tween different spin-states with approximate exchange-correlation functionals re-

mains extremely challenging. Formally, it is known that the exact xc functional

should be spin-state dependent, but none of the available approximations features

such an explicit spin-state dependence [Ch. R. Jacob, M. Reiher, Int. J. Quantum

Chem., 2012, 112, 3661–3684]. Thus, to find novel approximations for the xc func-

tional for open-shell systems, the development of spin-state dependent xc functionals

appears to be a promising avenue. Here, we set out to shed light on the spin-state

dependence of the xc functional by investigating the underlying xc holes, which we

extract from configuration interaction calculations for model systems. We analyze

the similarities and differences between the xc holes of the lowest-energy singlet

and triplet states of the dihydrogen molecule, the helium atom, and the lithium

dimer. To shed further light on the spin-state dependence of these xc holes we also

discuss exact conditions that can be derived from the spin structure of the reduced

two-electron density matrix. Altogether, our results suggest several possible routes

towards the construction of explicitly spin-state dependent approximations for the

xc functional.
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1 Introduction

Density-functional theory (DFT) is widely applied for studying functional open-shell

molecules. Computational studies of, e.g., electronic and magnetic properties of tran-

sition metal centers,1–5 transition-metal catalyzed reaction mechanisms,6–9 spectroscopic

properties of open-shell reaction centers,10–14 or spin-dependent electron transport,15,16

mostly rely on the availability of approximate exchange–correlation (xc) functionals that

are applicable for open-shell molecules.

However, despite intense research in the past decades, such density-functional approx-

imations (DFAs) are still plagued by a “spin-state problem”, i.e., a lack of predictive

power for energy differences between different spin states. Generally, such spin-state

energy differences are highly dependent on the chosen approximate xc functional.2,17–19

In a pioneering work, Reiher et al. found an approximately linear dependence on the

exact exchange admixture and proposed a hybrid functional tuned for spin-state ener-

getics in iron complexes.20 Subsequently, several generalized-gradient approximation and

hybrid xc functional with a good performance for specific classes of systems have been

identified,21,22 and novel approximate functional have been developed for spin-state en-

ergetics.23,24 Nevertheless, the choice of an approximate xc functional that performs

satisfactorily for spin-state energetics generally requires careful benchmarking.

On the other hand, wave-function based quantum-chemical calculations rarely offer a fea-

sible alternative to the use of DFAs. In most cases, the prediction of spin-state energy

differences requires a multireference treatment in combination with a balanced inclusion

of dynamical correlation25–27 as provided by CASPT2 and related multireference meth-

ods.8,28,29 However, these show an exponential scaling of the computational effort with

respect to the size of the active space. While approaches based on the density-matrix

renormalization group (DMRG) algorithm30–32 applied to the calculation of spin-state
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energies33,34 can significantly reduce this scaling, approaches for the balanced inclusion

of dynamical correlation in DMRG are still under development.35–37 Emerging methods

combining a multireference treatment with DFT might also be promising for spin-state

energetics,38–41 but all such methods still rely on the definition of an active space and thus

scale unfavorably with system size.

To gain insights into possible novel approaches for addressing the spin-state problem of

DFAs, one of us has previously reviewed the exact theory underlying DFT for open-shell

systems.42 Formally, the Hohenberg–Kohn (HK) theorems43 make no reference to spin.

When defining the universal HK functional via the Levy constrained search formalism44,45

as,

FHK[ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ〉 , (1)

where the constrained search includes all normalized, antisymmetric wavefunctions Ψ that

yield the electron density ρ(r), one notices that neither knowledge of the spin density nor

of the spin state of the system are required. Instead, the variational principle provided by

the second HK theorem43 will lead to the ground state, irrespective of its spin symmetry.

However, such a formulation is generally not useful, but instead one commonly targets the

lowest-energy state of a given spin symmetry (i.e., corresponding to a chosen eigenvalue

of Ŝ
2
). This implies the definition of a spin-state specific HK functional,46

F S
HK[ρ] = min

ΨS→ρ

〈
ΨS
∣∣∣T̂ + V̂ee

∣∣∣ΨS
〉

with Ŝ
2
ΨS = S(S + 1)ΨS, (2)

where the constrained search now includes only those normalized, antisymmetric wave-

functions ΨS that are eigenfunctions of Ŝ
2

with eigenvalue S(S+ 1). Being able to target

the lowest-energy state for each spin symmetry is a prerequisite for the calculation of the

energy differences between spin states with DFT.

The above definition of a spin-state specific HK functional translates to the definition of an

explicitly spin-state specific xc functional ES
xc[ρ]. However, none of the currently available
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DFAs feature such an explicit spin-state dependence. Instead, the spin-state dependence

is included implicitly by formulating DFAs in terms of not only the total electron density

ρ(r), but also the spin density Q(r) = ρα(r) − ρβ(r), and by simultaneously restricting

the treatment to the multiplet state with maximal eigenvalue of Ŝz (i.e., with MS = S).

This, in turn, mandates a violation of the fractional spin condition47–49 that must hold for

the exact spin-density dependent functional. Thus, DFAs that obey this exact constraint

must feature an explicit spin-state dependance that is modeled independently of the spin-

density dependence. For an in-depth discussion, we refer to Ref. 42.

As a first step towards the development of explicitly spin-state dependent approximations

to the xc functional, in this work we investigate the spin-state dependence of the xc

hole,50–52

ρhole
xc (r2|r1) =

ρ2(r1, r2)

ρ(r1)
− ρ(r2), (3)

where ρ2(r1, r2) is the electron pair density. The xc hole describes the change in the

probability of finding a second electron at position r2, given that there is a first electron

at position r1. The study of properties of xc holes has provided valuable insights52,53 that

have guided the development of approximate xc functionals.54 Many modern approximate

xc functionals are based on explicit models of the xc hole.55–59

This work is organized as follows. In Sect. 2 we review the necessary theoretical back-

ground and discuss analytical properties of the spin-state dependent xc hole. In Sect. 3 we

revisit the seminal work of Baerends and coworkers on the xc hole in the H2 molecule52,53

and compare different ways of visualizing xc holes. In Sect. 4 we then present xc holes

extracted from accurate wavefunction-based calculations for two-electron systems, specif-

ically for the H2 molecule and the helium atom in their lowest-energy singlet and triplet

states, and turn to the lowest-energy singlet and triplet states of the lithium dimer as

a simple many-electron test case in Sect. 5. Finally, our conclusions as well as possible

routes towards the construction of explicitly spin-state dependent exchange–correlation
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functionals are discussed in Sect. 6. The Computational Details are given at the end of

this paper.

2 Theoretical Background: Spin in DFT

2.1 Spin-States in DFT

For a molecule in the absence of an external magnetic field with the non-relativistic

electronic Hamiltonian (in atomic units),

Ĥ = T̂ + V̂nuc + V̂ee (4)

where T̂ is the kinetic-energy operator, V̂nuc is the operator of the electron–nuclear attrac-

tion, and V̂ee is the operator of the electron–electron repulsion, the eigenfunctions of Ĥ

can always be chosen as simultaneous eigenfunctions of the operator of the squared total

spin Ŝ
2

(with eigenvalue S(S+1), S = 0, 1
2
, 1, . . . ) and of the operator of the z-component

of the total spin MS (with eigenvalue MS = −S, . . . ,+S). While states with different S,

commonly termed spin states, generally have different energies, for one spin state the

2S + 1 eigenfunctions with different MS (multiplet states) are always degenerate.

DFT relies on the HK theorem, which states that the ground-state energy E0 and electron

density ρ(r) can be determined by minimizing the total energy functional,

E[ρ] = FHK[ρ] +

∫
vnuc(r)ρ(r) d3r, (5)

with the universal HK functional defined in Eq. (1) and the nuclear potential vnuc(r).

Following Gunnarson and Lundquist,46 this procedure can be extended to the lowest-

energy state with a specific S by using the spin-state specific total energy functional,

ES[ρ] = F S
HK[ρ] +

∫
vnuc(r)ρ(r) d3r, (6)
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with the spin-state specific HK functional defined in Eq. (2). As is discussed in Ref. 42,

the definitions of the HK functional and of the total energy functional can be extended

to include a dependence on the spin density Q(r) = ρα(r) − ρβ(r). While this is neces-

sary for accessing the spin density of the lowest-energy states in addition to their total

electron density, this spin-density dependence is formally independent from the spin-state

dependance. This is also dictated by the fractional spin condition for the exact HK func-

tional.47–49 As an inclusion of the spin-density dependence raises numerous additional

intricacies,42 we will only consider spin-density independent functionals in this work.

In the Kohn–Sham (KS) formalism of DFT, the spin-state dependent universal HK func-

tional is decomposed as,

F S
HK[ρ] = T S[ρ] + V S

ee [ρ]

= Ts[ρ] + J [ρ] + V S
ee,xc[ρ] + T Sc [ρ]

= Ts[ρ] + J [ρ] + ES
xc[ρ]. (7)

In the first line, the general kinetic and electron–electron repulsion energy functionals

T S[ρ] and V S
ee [ρ] can be defined via the Levy constrained search formalism.44,45 The

kinetic energy functional is further decomposed into the noninteracting kinetic energy

Ts[ρ], which is defined via the KS reference system of noninteracting electrons, and a

correlation contribution T Sc [ρ] = T S[ρ] − Ts[ρ]. Similarly, the electron–electron repulsion

energy is decomposed into the classical Coulomb energy is given by

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
d3r1d3r2 (8)

and a nonclassical (exchange–correlation) contribution V S
ee,xc[ρ] = V S

ee [ρ] − J [ρ]. Finally,

the exchange–correlation (xc) energy functional is defined as the sum of the two non-

classical contributions,

ES
xc[ρ] = V S

ee,xc[ρ] + T Sc [ρ] = V S
ee,xc[ρ]− J [ρ] + T Sc [ρ]. (9)
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As the Coulomb energy depends only on the electron density, it is obviously spin-state

independent. Within a spin-density independent KS formalism, it is shown in Ref. 42

that different spin-states of the non-interacting reference system are always degenerate

with a state with S = 0 (for an even number of electrons) or S = 1
2

(for an odd number

of electrons). Therefore, Ts[ρ] becomes spin-state independent. Thus, the spin-state

dependence of the HK functional is fully contained in the spin-state dependence of the xc

functional.

2.2 Spin-Structure of the Reduced Density Matrices

Before further analyzing the spin-state dependence of the xc functional, it is instructive

to revisit the spin-structure of the reduced density matrices60,61 that provide the link

between the spin state and the electron–electron interaction. The Levy constrained search

in Eq. (1) or Eq. (2) defines an implicit mapping from the electron density ρ(r) to the

many-electron wavefunction Ψ(x1,x2, . . . ,xN), where xi = (ri, si) combines spatial and

spin coordinates of the ith electron. From this wavefunction, one can obtain the two-

electron reduced density matrix (2-RDM),

Γ2(x1,x2,x
′
1,x

′
2) = N(N − 1)

∫
· · ·
∫

Ψ(x1,x2,x3, . . . ,xN)

×Ψ∗(x1,x2,x3, . . . ,xN) dx3 · · · dxN (10)

as well as the one-electron reduced density matrix (1-RDM),

Γ1(x1,x
′
1) =

1

N − 1

∫
Γ2(x1,x2,x

′
1,x2) dx2 (11)

from which the (spin-resolved) electron density can be obtained as ρ(x) = Γ1(x,x).

The density matrices defined above can be decomposed into different spin components.
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The 2-RDM formally consists of sixteen spin components,

Γ2(x1,x2,x
′
1,x

′
2) = Γαααα2 (r1, r2, r

′
1, r
′
2)α(s1)α(s2)α(s′1)α(s′2)

+ Γαααβ2 (r1, r2, r
′
1, r
′
2)α(s1)α(s2)α(s′1)β(s′2)

+ Γααβα2 (r1, r2, r
′
1, r
′
2)α(s1)α(s2)β(s′1)β(s′2)

+ · · ·+ Γββββ2 (r1, r2, r
′
1, r
′
2) β(s1)β(s2)β(s′1)β(s′2). (12)

However, for eigenstates of Ŝz only six of these components, namely Γαααα2 , Γββββ2 , Γαβαβ2 ,

Γβαβα2 , Γαββα2 , and Γβααβ2 are nonzero.61 Since the 2-RDM is formed from an antisymmetric

wavefunction, Γ2 has to be antisymmetric with respect to the exchange of x1 ↔ x2 and

of x′1 ↔ x′2. It follows that ραααα2 and ρββββ2 are antisymmetric themselves, and that the

other four nonzero components are related by

Γαβαβ2 (r1, r2, r
′
1, r
′
2) = −Γαββα2 (r2, r1, r

′
1, r
′
2)

= −Γαββα2 (r1, r2, r
′
2, r
′
1) = Γβαβα2 (r2, r1, r

′
2, r
′
1). (13)

Therefore, only three independent components of the two-electron density matrix ρ2 re-

main.60,61 McWeeny and Mizuno60 introduced the following three independent compo-

nents, which are particularly convenient for an analysis of the spin structure of the 2-RDM,

A(r1, r2, r
′
1, r
′
2) = Γαααα2 (r1, r2, r

′
1, r
′
2) + Γαβαβ2 (r1, r2, r

′
1, r
′
2)

+ Γβαβα2 (r1, r2, r
′
1, r
′
2) + Γββββ2 (r1, r2, r

′
1, r
′
2) (14)

B(r1, r2, r
′
1, r
′
2) = Γαααα2 (r1, r2, r

′
1, r
′
2) + Γαβαβ2 (r1, r2, r

′
1, r
′
2)

− Γβαβα2 (r1, r2, r
′
1, r
′
2)− Γββββ2 (r1, r2, r

′
1, r
′
2) (15)

C(r1, r2, r
′
1, r
′
2) = Γαααα2 (r1, r2, r

′
1, r
′
2)− Γαβαβ2 (r1, r2, r

′
1, r
′
2)− Γβαβα2 (r1, r2, r

′
1, r
′
2)

− Γαββα2 (r1, r2, r
′
1, r
′
2)− Γβααβ2 (r1, r2, r

′
1, r
′
2) + Γββββ2 (r1, r2, r

′
1, r
′
2)

(16)

It can be shown60 that for a given spin state S, the 2-RDM components of the multiplet
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states with different MS are related by

AMS(r1, r2, r
′
1, r
′
2) = AMS=S(r1, r2, r

′
1, r
′
2) (17)

BMS(r1, r2, r
′
1, r
′
2) =


0 for S = 0(
MS

S

)
BMS=S(r1, r2, r

′
1, r
′
2) for S ≤ 1

2

(18)

CMS(r1, r2, r
′
1, r
′
2) =


0 for S = 0, 1

2(
3M2

S − S(S + 1)

S(2S − 1)

)
CMS=S(r1, r2, r

′
1, r
′
2) for S ≤ 1

(19)

While A(r1, r2, r
′
1, r
′
2) is the same for all multiplet states, their B(r1, r2, r

′
1, r
′
2) and

C(r1, r2, r
′
1, r
′
2) are related by a simple linear scaling. As the different multiplet states are

degenerate, one can always choose the state with MS = 0 (or an equivalent ensemble42)

in the Levy constrained search in Eq. (1) or Eq. (2), which implies B(r1, r2, r
′
1, r
′
2) =

C(r1, r2, r
′
1, r
′
2) = 0. Of course, A(r1, r2, r

′
1, r
′
2) , B(r1, r2, r

′
1, r
′
2), and C(r1, r2, r

′
1, r
′
2)

are implicitly linked by the fact that they emerge from the same antisymmetric wavefunc-

tion Ψ(x1, . . . ,xN), which in turn implicitly depends on the electron density.

The expectation value of the electron–electron interaction is determined by the electron

pair density ρ2(r1, r2), which is given by the diagonal of A(r1, r2, r
′
1, r
′
2),

〈Ψ|V̂ee|Ψ〉 =
1

2

∫∫
ρ2(r1, r2)

|r1 − r2|
d3r1d3r2 =

1

2

∫∫
A(r1, r2, r1, r2)

|r1 − r2|
d3r1d3r2. (20)

Here, the electron pair density ρ2(r1, r2) is the probability density for finding a first

electron at position r1 and a second electron at position r2. For later use, we also introduce

the on-top pair density ρ2(r, r), which is the probability density for simultaneously finding

two electrons at position r.

The expectation value of the total spin operator is also determined by A(r1, r2, r
′
1, r
′
2),60

〈Ψ|Ŝ
2
|Ψ〉 = −1

4

∫∫ (
A(r1, r2, r1, r2) + 2A(r2, r1, r1, r2)

)
d3r1d3r2 +

3

4
N. (21)
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Thus, the system’s electron–electron repulsion and its spin state are linked viaA(r1, r2, r
′
1, r
′
2),

and changing the spin state will affect the electron–electron interaction energy. The dif-

ficulty of capturing this implicit link in the construction of approximate xc functionals is

at the root of the spin-state problem of current DFAs.

The spin structure of the 1-RDM now directly follows from the spin structure of the 2-

RDM and Eq. (11). For eigenstates of Ŝz, there are only two independent spin components,

Γαα1 (r1, r
′
1) and Γββ1 (r1, r

′
1) or alternatively, a total density matrix

ρ1(r1, r
′
1) =

1

N − 1

∫
A(r1, r2, r

′
1, r2) d3r2 = Γαα1 (r1, r

′
1) + Γββ1 (r1, r

′
1) (22)

and a spin density matrix,

Q1(r1, r
′
1) =

1

N − 1

∫
B(r1, r2, r

′
1, r2) d3r2 = Γαα1 (r1, r

′
1)− Γββ1 (r1, r

′
1), (23)

from which the total electron density ρ(r) = ρ1(r, r) = ρα(r)+ρβ(r) and the spin density

Q(r) = Q1(r, r) = ρα(r)− ρβ(r) emerge as their diagonals.

The relation between the spin density matrices (and the spin densities) of the degenerate

multiplet states,42,60

QMS
1 (r1, r

′
1) =


0 for S = 0(
MS

S

)
QMS=0

1 (r1, r
′
1) for S ≤ 1

2

(24)

is a direct consequence of Eq. (18), and translates to the fractional spin condition47–49

discussed earlier.

2.3 The Exchange–Correlation Hole

For independent, uncorrelated electrons the pair density would be given by the product

of the electron densities for the two electrons,

ρuncorr
2 (r1, r2) = ρ(r1)ρ(r2). (25)
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The true pair density for correlated electrons can then be expressed as the sum of this

uncorrelated pair density and a correction term,

ρ2(r1, r2) = ρ(r1)ρ(r2) + ρxc
2 (r1, r2), (26)

where the correction term ρxc
2 (r1, r2) accounts for exchange and correlation. The expec-

tation value of the electron–electron repulsion energy [cf. Eq. (20)] then becomes

〈Ψ|V̂ee|Ψ〉 =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
d3r1d3r2 +

1

2

∫∫
ρxc

2 (r1, r2)

|r1 − r2|
d3r1d3r2

= J [ρ] + V S
ee,xc[ρ], (27)

where the functionals of the Coulomb interaction and of the non-classical part of the

electron–electron interaction have already been introduced above in Eq. (7).

This can be recast in a different form by starting from the conditional probability of

finding a second electron at position r2, given that the first electron is at position r1,

P cond(r2|r1) =
ρ2(r1, r2)

ρ(r1)
= ρ(r2) + ρhole

xc (r2|r1) (28)

with the exchange–correlation hole,

ρhole
xc (r2|r1) =

ρxc
2 (r1, r2)

ρ(r1)
=
ρ2(r1, r2)

ρ(r1)
− ρ(r2). (29)

The non-classical part of the electron–electron interaction then becomes

V S
ee,xc[ρ] =

1

2

∫∫
ρhole

xc (r2|r1)

|r1 − r2|
d3r2 ρ(r1) d3r1 (30)

and the exchange–correlation energy functional can be expressed as

ES
xc[ρ] =

1

2

∫∫
ρhole

xc (r2|r1)

|r1 − r2|
d3r2 ρ(r1) d3r1 + T Sc [ρ]. (31)

In these expressions, the spin-state dependence of the functionals emerges via the implicit

dependence of the wavefunction, and thus also of the exchange–correlation hole, on the

electron density via the Levy constrained search of Eq. (2).
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To elegantly handle the correlation contribution to the kinetic energy, T Sc [ρ], one can

invoke the adiabatic connection between the noninteracting (coupling constant λ = 0 and

the fully interacting system (λ = 1), while keeping the electron density constant. It can

be shown51 that the xc energy functional is then given by

Exc[ρ] =
1

2

∫∫
ρ̄hole

xc (r2|r1)

|r1 − r2|
d3r2 ρ(r1) d3r1, (32)

with the coupling constant averaged xc hole,

ρ̄hole
xc (r2|r1) =

∫ 1

0

λρ
hole

xc (r2|r1) dλ, (33)

where λρ
hole
xc (r2|r1) denotes the xc hole at coupling strength λ. In the present work,

we will only consider the bare xc hole ρhole
xc (r2|r1), but we note that an extension to

coupling-strength averaged xc holes is possible using the technology introduced by Teale

and coworkers.62–64

3 Visualization of XC Holes

Studying the xc holes extracted from accurate wavefunction-based calculations can pro-

vide valuable insights52 and guide the development of approximate xc functionals. In fact,

most approximate xc functionals currently in used are based on a model of the coupling-

constant averaged xc hole.54 As the xc hole depends on the spatial coordinates of both

the position of the reference electron r1 and and of the second electron r2, its visualiza-

tion will require some simplification of this six-dimensional quantity. First, we fix the

position of the reference electron at r1 = rref. For visualizing the remaining three spatial

dimensions r2 = r, different representations are possible, some of which will be discussed

in the following. Each reveals different features of the xc hole, and a combination of these

different representations will thus be required for our subsequent analysis of the spin-state

dependence of the xc hole.
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Figure 1: Negative electron density −ρ(r) (solid blue line) and exchange–correlation hole

ρhole
xc (r|rref) (dashed light blue line) in the singlet ground state of the H2 molecule for an

intermolecular distance d of 1.4 bohr (left), 2.1 bohr (middle), and 5.0 bohr (right). All

data has been obtained from Full-CI calculations using the cc-pVTZ basis set, and the

reference electron has been placed on the internuclear z-axis at a distance of 0.3 bohr

from the right hydrogen atom (indicated by a cross in the plots). (a) Plot of −ρ(z) and

ρhole
xc (z|rref) along the internuclear z-axis. (b) Plot of the cylindrically-averaged negative

density −ρcy-av(z) and xc hole ρhole
xc,cy-av(z|rref) [cf. Eq. (35)]. (c) Plot of ρhole

xc (r|rref) on a

contour of constant electron density through the position of the reference electron (see

inset for a visualization of these isodensity contours in the xz-plane); (d) Plot of the

spherically-averaged negative density −ρsph-av(r) and xc hole ρhole
xc,sph-av(r|rref) [cf. Eq. (36)].
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Plots of the negative electron density and of the xc hole for the singlet ground state of the

H2 molecule at different bond distances, which have been extracted from full configuration

interaction (Full-CI) calculations (see Section “Computational Details”), are presented in

Fig. 1. Here, we place the reference electron at position r1 = rref at a distance of 0.3 bohr

from the right hydrogen atom. In Fig. 1a, the negative density and xc hole are shown

along the internuclear z-axis. These are in agreement with those obtained in the seminal

work of Baerends and coworkers.52,53

The xc hole in the singlet ground state of the H2 molecule can be decomposed into the con-

tributions of an exchange and a correlation hole.52 For a closed-shell two electron system,

the exchange hole, which cancels the self-interaction that is contained in the uncorrelated

pair density, is equal to −1
2
ρ(r), i.e., it is delocalized over the whole molecule. The corre-

lation hole is negative in the vicinity of the reference electron, while it is positive further

away from the reference electron. For the equilibrium structure of H2 (d = 1.4 bohr), this

results in an xc hole that is mostly localized at the hydrogen atom close to the reference

electron, but that also extends to the other hydrogen atom. When increasing the bond

distance, the depth of the correlation hole at the hydrogen atom close to the reference

electron increases, while simultaneously its positive contribution at the other hydrogen

atom increases (left–right correlation). For the dissociated H2 molecule, the correlation

hole fully cancels the exchange hole at the other hydrogen atom and the xc hole thus

becomes fully localized at the hydrogen atom close to the reference electron.

While the decomposition into an exchange and a correlation hole can be useful for an

initial discussion, an important finding of the work of Baerends and coworkers52 was the

fact that the xc hole is always more localized than the individual exchange and correlation

holes. In many cases, this should simplify the construction of approximations for the xc

hole. In fact, most available approximate xc functionals rely at least partly on an error

cancelation between the exchange and correlation parts. For this reason, we will only
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discuss the properties of the total xc hole in the following.

The normalization of the xc hole is given by,∫
ρhole

xc (r|rref) d3r = −1. (34)

However, this normalization cannot be inferred in the plots along the z-axis shown in

Fig. 1a. Instead, the area under the curve changes with increasing bond distance. To

recover the normalization of the xc hole in the visualization, Fig. 1b plots the cylindrically-

averaged density and xc hole, i.e.,

ρhole
xc, cy-av(z|rref) =

∫ 2π

0

∫ ∞
0

ρhole
xc (r = r, ϕ, z|rref) r drdϕ (35)

where r, ϕ, z are defined in a cylindrical coordinate system, and where the cylindrically-

averaged density is defined analogously. Note that because of the symmetry of the H2

molecule and the placement of the reference electron on the internuclear z-axis, the density

and xc hole are independent of ϕ.

The features of the xc hole that were discussed above can also be recognized in the

cylindrically-averaged plots shown in Fig. 1b, but the large peaks at the nuclei are now

smoothed because of the averaging. For the density, the area under the curve now corre-

sponds to the number of electrons, while for the xc hole it corresponds to its normalization.

Note that, in contrast to the plots along the z-axis in Fig. 1a, the depth on the xc hole

[i.e., ρhole
xc (rref|rref)] cannot be extracted from the cylindrically-averaged plots.

In the plots considered so far, the short-range behavior of the xc hole in the vicinity of

the reference electron is masked by the second term in Eq. (29), i.e., by the change of the

electron density itself. To uncover this short-range behavior more clearly, Fig. 1c plots

the xc hole on isodensity contours that correspond to the electron density at the position

of the reference electron (shown as insets). The contour is followed by using the angle ϕ

in polar coordinates with respect to the midpoint between the two nuclei or around the

17



nucleus close to the reference electron. In both cases, ϕ = 0 corresponds to the position

of the reference electron.

As the second term in Eq. (29) is constant on the isodensity contours and the denominator

in the first term is the fixed density at the position of the reference electron, the plots

in Fig. 1c reflect the change of the electron pair density ρ2(r, rref). For the H2 molecule

at its equilibrium bond distance, the xc hole along the isodensity contour is smallest at

the position of the reference electron. The Coulomb repulsion of the reference electron

reduces the probability of finding a second electron in its vicinity (“Coulomb hole”).

Note that for the exact wavefunction, the plots would show a cusp at the position of the

reference electron, which is only partly recovered by our finite-basis set calculations.65

When increasing the bond distance, the plots of the xc hole become flatter, and in the

dissociation limit, the xc hole is constant along the isodensity contour. This reflects the

earlier observation that the xc hole becomes fully localized at the nucleus close to the

reference electron and the probability of finding a second electron at the same nucleus

becomes zero.

Finally, Fig. 1d shows plots of the spherically-averaged negative density and xc hole,

ρhole
xc, sph-av(r|rref) =

∫ 2π

0

∫ π

0

ρhole
xc (r = r, θ, ϕ|rref) sin θdθdϕ (36)

where r, θ, ϕ are defined in a spherical coordinate system, and where the spherically-

averaged density is defined analogously. Here, the normalization of the xc hole is recovered

by integrating r2ρhole
xc, sph-av(r|rref). As the Coulomb interaction is spherically isotropic, a

spherically-averaged model of the xc hole is often used when constructing approximate xc

functionals.54

The spherically-averaged xc holes are the most negative at the position of the reference

electron, and approach zero at large distance. One particular feature of the xc hole

that is clearly visible in the plots in Fig. 1d is the depth of the xc hole ρhole
xc (rref|rref) =
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1
4π
ρhole

xc, sph-av(r = 0|rref). For the H2 molecule at its equilibrium distance, the depth of

the xc hole is smaller than the negative electron density, i.e., the probability of finding a

second electron at the position of the reference electron is not zero. When increasing the

bond distance, the depth of the xc hole increases, and in the dissociation limit it becomes

equal to the negative electron density, i.e., the probability of finding a second electron at

the position of the reference electron approaches zero.

4 Spin-State Dependent XC Holes in Two-Electron

Systems: H2 and He

As a first test case for exploring the spin-state dependence of the xc hole we consider

two-electron systems. First, we compare the ground-state singlet state of the H2 molecule

(see Section 3) to the lowest-energy triplet state. Second, we compare the singlet ground-

state of the He atom (1s2) to its lowest energy triplet state (1s12s2). Note that the total

electron densities of these singlet and triplet states are in general different, which will also

contribute to changes in the xc hole.

Fig. 2 shows different visualizations of the xc holes in the singlet and triplet states of

the H2 molecule and the He atom. For the H2 molecule, both the equilibrium bond

distance of d = 1.4 bohr and the case of a dissociated H2 molecule with d = 5.0 bohr are

considered. In the latter case, the singlet and triplet states become degenerate and their

total electron densities are equal. The reference electron is placed 0.3 bohr to the right

of the right hydrogen nucleus or of the helium nucleus, respectively.

Fig. 2a compares the cylindrically-averaged xc holes of the singlet (top) and triplet (bot-

tom) states. For the H2 molecule at d = 1.4 bohr (left), the xc hole of the triplet state is

more localized at the nucleus close to the reference electron than for the singlet state. In
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Figure 2: Comparison of the xc holes ρhole
xc (r|rref) (solid lines) in the lowest-energy singlet

(blue) and triplet states (red) of the H2 molecule with an intermolecular distance d of

1.4 bohr (left) and 5.0 bohr (middle) and of the He atom (right). The negative electron

density −ρ(r) (dashed light blue and orange lines for singlet and triplet states, respec-

tively) is included for comparison. All data has been obtained from Full-CI calculations

using the cc-pVTZ basis set, and the reference electron has been placed on the internu-

clear z-axis at a distance of 0.3 bohr from the right hydrogen atom (indicated by a cross

in the plots). (a) Plots of the cylindrically-averaged negative density −ρcy-av(z) and xc

hole ρhole
xc,cy-av(z|rref) [cf. Eq. (35)]. (b) Plot of ρhole

xc (r|rref) on a contour of constant electron

density through the position of the reference electron (see inset for a visualization of these

isodensity contours in the xz-plane). (c) Plot of the spherically-averaged negative density

−ρsph-av(r) and xc hole ρhole
xc,sph-av(r|rref) [cf. Eq. (36)].
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fact, in the region of this nucleus the xc hole almost equals the negative electron density,

i.e., the probability of finding a second electron at this nucleus approaches zero. While

for the singlet state, the exchange hole is equal to half the negative electron density, for

the triplet state it becomes localized at the nucleus close to the reference electron. On the

other hand, the contribution of the correlation hole becomes significantly smaller than for

the singlet state, and in the triplet state the correlation hole only leads to a small decrease

of finding the second electron close to the reference electron and a corresponding increase

in regions further away from the reference electron. The latter is visible in Fig. 2a as a

small positive part of the xc hole between ca. z = −1.0 and z = −2.0 bohr and as a small

difference between the negative electron density and the xc hole between ca. z = 2 and

z = 4 bohr.

For the dissociated H2 molecule (d = 5.0 bohr, middle), the xc holes of the singlet and

triplet state are identical, and the xc holes are fully localized at the nucleus close to the

reference electron, where it equals the negative electron density. Note that while for the

singlet state, this total xc hole originates from the combination of a delocalized exchange

and a delocalized correlation hole,52 for the triplet state it is solely due to the exchange

hole, while the correlation hole is zero in the triplet state of the dissociated H2 molecule.

For the He atom (right), the xc hole of the closed-shell singlet state is dominated by

the exchange hole (i.e., half the negative electron density) and the contributions of the

correlation hole are not visible in the plots of the cylindrically-averaged xc hole in Fig. 2a.

For the triplet state, the electron density significantly differs from the one of the singlet

state. While in a one-electron picture, the 1s orbital is doubly occupied in the singlet state,

the 1s and 2s electrons are both singly occupied in the triplet state. At the position of the

reference electron, the 1s orbital dominates. Therefore, the xc hole roughly corresponds

to the negative of the 1s orbital, i.e., given a 1s electron is found at the reference position,

the second electron must be in the 2s orbital.
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For a two-electron system, the short-range behavior of the xc hole can be analyzed by

considering analytical properties of the wavefunction and the electron pair density. For

a two-electron system, the wavefunction Ψ(x1,x2) can be factorized into a spatial and a

spin part as,

Ψ(x1,x2) = Ψ(r1, r2)σ(s1, s2). (37)

For a singlet state, the spin part is antisymmetric and the spatial part is symmetric with

respect to the exchange of the two electron, while for the triplet state the spin part is

symmetric and the spatial part is antisymmetric, i.e.,

ΨS=0(r1, r2) = +ΨS=0(r2, r1) (38)

ΨS=1(r1, r2) = −ΨS=1(r2, r1). (39)

For the singlet state, the exact short-range behavior of the wavefunction for r2 → r1 is

dictated by Kato’s cusp condition65–67 (singlet coalescence condition),

ΨS=0(r1, r1 + ∆r) = ΨS=0(r1, r1) +
1

2
ΨS=0(r1, r1) |∆r|+O(|∆r|2). (40)

For the triplet state, the antisymmetry of the spatial wavefunction implies that ΨS=1(r1, r1) =

0, and the cusp at the two-electron coalescence point thus vanishes while the first deriva-

tive becomes discontinuous65,67 (triplet coalescence condition),

ΨS=1(r1, r1 + ∆r) = ∆r · ∂ΨS=1(r1, r1 + ∆r)

∂|∆r|

∣∣∣∣
|∆r|=0

(
1 +

1

4
|∆r|

)
+O(|∆r|3). (41)

For the electron pair density, these conditions translate to (see also Ref. 61),

ρS=0
2 (r1, r1 + ∆r) = ρS=0

2 (r1, r1) +
1

2
ρS=0

2 (r1, r1) |∆r|+O(|∆r|2) (42)

and

ρS=1
2 (r1, r1 + ∆r) = O(|∆r|2). (43)
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This different short-range behavior of the electron pair density of the singlet and triplet

state can be recognized in the plots of the xc hole along the isodensity contour through

the position of the reference electron that are shown in Fig. 2b. For the H2 molecule at

d = 1.4 bohr, the xc hole of the singlet state features a cusp at the position of the reference

electron when plotted along an isodensity contour, which is recovered only approximately

in our finite-basis set calculations. In contrast, for the triplet state the xc hole is constant

in the vicinity of the reference electron and only increases quadratically at larger distances

from the reference electron. In addition, the fact that the on-top pair density ρ2(r, r) is

zero for the triplet state is reflected by the observation that the depth of the xc hole

equals the negative electron density at the position of the reference electron, while for the

singlet state the on-top pair density can be nonzero and the xc hole is thus less deep.

For the H2 molecule at d = 5.0 bohr, the on-top pair density ρ2(r, r) becomes zero for

both the singlet and the triplet state. Therefore, in both cases the xc hole is constant

and equal to the negative electron density along an isodensity contour line through the

reference electron. For the He atom, a cusp (which is recovered only approximately here)

is found for the singlet state, while the xc hole is constant and equal to the negative

electron density for the triplet state (see also Refs. 65, 68 for an in-depth analysis of the

dependence of the wavefunction of the He atom on the interelectronic distance from the

perspective of wave-function theory).

Finally, the spherically averaged xc holes of the singlet and triplet states are plotted in

Fig. 2c. For the H2 molecule at its equilibrium bond distance and for the He atom,

the differences in the on-top pair density of the singlet and triplet state discussed above

are reflected by the depth of the spherically averaged xc holes at r = 0. Apart from

these differences close to the position of the reference electron, the overall shape of the

spherically averaged xc holes is rather similar for the singlet and triplet states. Again, for

the dissociated H2 molecule (d = 5.0 bohr), the xc holes of the singlet and triplet state
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coincide.

5 Spin-State Dependent XC Holes in Many-Electron

Systems: Li2

As a test case for a simple many-electron system, we consider the Li dimer with six

electrons. In an one-electron picture of the singlet ground state of Li2, the two 1s core

orbitals of both lithium atoms are doubly occupied while the two singly occupied 2s

orbitals form a σ bond. In the lowest energy triplet state of Li2, these two triplet-coupled

valence electrons occupy the σ and σ∗ orbitals, or — in an alternative view — each sit in

a 2s orbital at one of the atoms. Fig. 3 shows the xc holes for the lowest-energy singlet

and triplet states of the Li dimer at its equilibrium bonds distance of 5.1 bohr as obtained

from CISD calculations. We consider three different positions of the reference electron

on the intermolecular z-axis at 0.3 bohr, 1.3 bohr, and 2.0 bohr to the right of the right

lithium atom.

Fig. 3a plots the cylindrically-averaged xc holes of the singlet (top) and triplet (bottom)

state of Li2. For the triplet state, the cylindrically-averaged spin density of the multiplet

state with MS = S, which indicates the localization of the triplet-coupled 2s electrons,

is also included. When placing the reference electron 0.3 bohr from nucleus (left), the

electron density at this reference point is almost exclusively due to 1s electrons. In this

case, the xc hole is very similar for the singlet and triplet state and the xc hole roughly

equals half of the negative 1s electron density. Thus, no obvious difference between the

spin states is observed for such a placement of the reference electron.

At the position of the reference electron 1.3 bohr from the Li nucleus (middle) both 1s

and 2s electron density are present. For the singlet state, the xc hole remains localized
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Figure 3: Comparison of the xc holes ρhole
xc (r|rref) (solid lines) in the lowest-energy singlet

(blue) and triplet states (red) of the Li dimer with an intermolecular distance of d =

5.1 bohr. The reference electron has been placed on the internuclear z-axis at a distance

of 0.3 bohr (left), 1.3 bohr (middle), and 2.0 bohr (right) from the right lithium atom

(indicated by a cross in the plots). The negative electron density −ρ(r) (dashed light blue

and orange lines for singlet and triplet states, respectively) is included for comparison.

All data has been obtained from CISD calculations using the cc-pCVTZ basis set. (a)

Plots of the cylindrically-averaged negative density −ρcy-av(z) and xc hole ρhole
xc,cy-av(z|rref)

[cf. Eq. (35)]. For the triplet state, the cylindrically-averaged negative spin density

−Qcy-av(z) of the multiplet state with MS = S is also included (black solid line). (b)

Plot of ρhole
xc (r|rref) on a contour of constant electron density through the position of

the reference electron (see inset for a visualization of these isodensity contours in the

xz-plane). (c) Plot of the spherically-averaged negative density −ρsph-av(r) and xc hole

ρhole
xc,sph-av(r|rref) [cf. Eq. (36)].
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at the nucleus close to reference electron, but now cancels parts of both the 1s and 2s

electron density. For the triplet state, finding a triplet-coupled 2s electron at the reference

position implies that the second electron cannot occupy the same 2s orbital. Therefore,

xc hole of the triplet state becomes broader compared to the singlet state as it has a

larger contribution resembling the 2s electron density at the nucleus close to the reference

electron.

The differences between the singlet and triplet states are further amplified when the

reference electron is moved to 2.0 bohr from the Li nucleus (right), where the electron

density is almost exclusively due to the 2s electron density. For the singlet state, the

xc hole remains localized at the nucleus close to the reference electron and corresponds

to approximately half of the negative 2s electron density at this nucleus. For the triplet

state, the xc hole now fully cancels the 2s electron density at the nucleus close to the

reference electron and thus becomes more delocalized compared to the singlet state.

To further analyze the xc holes in the singlet and triplet state of the Li dimer, we revisit

exact properties of the wavefunction and of the electron pair density in different spin

states. For a many-electron system with more than two electrons, a factorization of the

wavefunction into a spatial and a spin dependent part, as given in Eq. (37) for the two-

electron case, is not possible,69,70 i.e.,

Ψ(x1, . . . ,xN) 6= Ψ(r1, . . . , rN)σ(s1, . . . , sN) for N > 2, (44)

and the structure of the many-electron wavefunction with respect to the exchange of

spatial coordinates is intricately coupled to the spin state of the system.71

Instead, we can consider the component of the 2-RDM that determines the electron pair

density, A(r1, r2, r
′
1, r
′
2), which can be decomposed into a part that is symmetric and a

part that is antisymmetric with respect to the exchange of r1 ↔ r2,

A(r1, r2, r
′
1, r
′
2) = Asymm(r1, r2, r

′
1, r
′
2) + Aanti(r1, r2, r

′
1, r
′
2). (45)
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Here, the symmetric part is defined as

Asymm(r1, r2, r
′
1, r
′
2) =

1

2

(
A(r1, r2, r

′
1, r
′
2) + A(r2, r1, r

′
1, r
′
2)
)

(46)

with

Asymm(r1, r2, r
′
1, r
′
2) = Asymm(r2, r1, r

′
1, r
′
2), (47)

and the antisymmetric part is defined as

Aanti(r1, r2, r
′
1, r
′
2) =

1

2

(
A(r1, r2, r

′
1, r
′
2)− A(r2, r1, r

′
1, r
′
2)
)

(48)

with

Aanti(r1, r2, r
′
1, r
′
2) = −Aanti(r2, r1, r

′
1, r
′
2). (49)

In analogy to the derivation outlined in the previous section for the two-electron case, we

find that the symmetric and the antisymmetric part must obey different cusp conditions

analogous to the singlet coalescence condition (for the symmetric part) and the triplet

coalescence condition (for the antisymmetric part). Using the above decomposition of

A(r1, r2, r
′
1, r
′
2), the electron pair density can also be decomposed into a symmetric and

and antisymmetric component (see also Ref. 72, 73),

ρ2(r1, r2) = ρsymm
2 (r1, r2) + ρanti

2 (r1, r2), (50)

with

ρsymm
2 (r1, r2) = Asymm(r1, r2, r1, r2) (51)

ρanti
2 (r1, r2) = Aanti(r1, r2, r1, r2). (52)

These symmetric and antisymmetric components of the electron pair density exhibit a

different exact short-range behavior, which is given by

ρsymm
2 (r1, r1 + ∆r) = ρsymm

2 (r1, r1) +
1

2
ρsymm

2 (r1, r1) |∆r|+O(|∆r|2) (53)
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and

ρanti
2 (r1, r1 + ∆r) = O(|∆r|2). (54)

The relative contribution of the symmetric and antisymmetric components to the electron

spin density depends on the spin state of the system. This is most obvious for the two-

electron systems considered in the previous section, where the antisymmetric part vanishes

for singlet states, whereas the symmetric part vanishes for triplet states. In Appendix A,

we demonstrate that the normalization of the symmetric and antisymmetric parts of the

electron pair density is determined by the spin state.

For the Li dimer as a four electron system, the total electron pair density is normalized

to N(N − 1) = 12. Using the result of Appendix A, we find that for the singlet state,∫∫
ρsymm

2 (r1, r2) d3r1d3r2 = 6 and

∫∫
ρanti

2 (r1, r2) d3r1d3r2 = 6 (55)

whereas for the triplet state∫∫
ρsymm

2 (r1, r2) d3r1d3r2 = 4 and

∫∫
ρanti

2 (r1, r2) d3r1d3r2 = 8. (56)

To some extent, the different contributions of the symmetric and antisymmetric compo-

nents of the electron pair density can be seen in the plots of the xc holes of the singlet and

triplet states along isodensity contours through the reference electron, which are shown

in Fig. 3b. If the reference electron is 0.3 bohr from the Li nucleus (left), where the

electron density is solely due to singlet-coupled electrons, the relative contributions of the

symmetric and antisymmetric components are equal for the singlet and triplet state and,

consequently, the short-range behavior of the xc hole is identical for both states. Along the

isodensity contour, the xc hole should show a cusp at the position of the reference electron

which is due to the symmetric component of the electron pair density. Note, however,

that in our finite-basis set calculations this cusp is only recovered approximately.
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When positioning the reference electron 1.3 bohr from the Li nucleus (middle), the xc hole

along the isodensity contour should still exhibit a cusp at the position of the reference

electron for both the singlet and triplet state. Since for the triplet state, parts of the

electron density at the reference point are due to triplet coupled electrons, the relative

contribution of the antisymmetric part of the electron pair density should increase. While

it is obvious that the xc holes along the isodensity contour differ, different cusp conditions

are not discernible from the plots because of the insufficiencies of our finite basis set

treatment. For a placement of the reference electron 2.0 from the Li nucleus (right), the

xc hole of the triplet state should now be almost exclusively due to the antisymmetric

part of the electron pair density. Unfortunately, the different cusp conditions are masked

by the fact that on the one hand, the electron pair density at the position of the reference

electron becomes very small also for the singlet state, and that on the other hand there

are large changes of the xc hole of the triplet state along the isodensity contour. The

latter are caused by changes in the contribution of the 2s electron density along the

isodensity contour. Here, further analysis of the short-range behavior using larger basis

sets or explicitly correlated methods65 could possibly reveal further details.

Finally, Fig. 3c plots the spherically averaged xc holes of the singlet and triplet state

in Li2. Again, if the reference electron is 0.3 bohr from the Li nucleus (left), the xc

holes of the singlet and triplet state are identical. The depth of the xc hole is more

than half of the electron density at the position of the reference electron, but there also

remains a large probability for finding the second electron at the position of the reference

electron. For a reference position 1.3 bohr from the Li nucleus (middle) the depth of

the xc hole gets closer to the electron density at the position of the reference point.

Overall, the spherically-averaged singlet and triplet xc holes remain rather similar. If

the reference electron is placed 2.0 bohr from the Li nucleus, the depth of the xc hole

becomes approximately equal to the electron density at the reference point. While this

electron density differs for the singlet and triplet state, the short-range behavior of the
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spherically-averaged xc holes is again very similar for both states. At larger distances

from the reference electron, differences appear that mirror the different long-range parts

of the xc holes that have been discussed above.

6 Conclusions and Perspectives

Here, we have analyzed the xc holes extracted from wavefunction-based configuration

interaction calculations for the lowest-energy singlet and triplet states for simple model

systems. In particular, we have considered the H2 molecule at different internuclear

distances and the helium atom as prototypical two-electron systems as well as the Li

dimer as a simple many-electron system. First, we find that in all cases, the total xc

hole is in general localized in the vicinity of the reference electron, whereas the individual

exchange and correlation holes can be rather delocalized.52 Moreover, the total xc holes of

the singlet and triplet states are more similar to each other than the individual exchange

and correlation holes.

This is most obvious for the H2 molecule at large intermolecular separation, in which

the singlet and triplet states become degenerate and feature identical total xc holes,

while their decomposition into exchange and correlation holes is very different. The well-

known empirical findings that spin-state energy differences can be tuned by varying the

amount of exact exchange admixture19,20 is a consequence of the different decomposition

of the total xc hole into exchange and correlation contributions in different spin states.

Our observation that the total xc holes of singlet and triplet states show more common

features than the individual exchange and correlation holes reaffirms our assumption

that modeling the total xc hole instead of the individual exchange and correlation holes

might be a promising strategy for the development of explicitly spin-state dependent

approximations to the xc functional.
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The most obvious difference between the xc holes of singlet and triplet states is the dif-

ferent depth of the xc hole, which is directly related to the on-top pair density ρ2(r, r).

For two-electron systems, the depth of the xc hole equals the negative electron density

at the position of the reference electron in the triplet state, while it is generally less deep

for the singlet state. For many-electron systems, we have established a decomposition

of the electron pair density into a symmetric component (which obeys a singlet coales-

cence condition) and an antisymmetric component (which obeys a triplet coalescence

condition). By analyzing the spin-state dependence of the 2-RDM, we have shown that

the relative contributions of these two components are directly determined by the spin

state. This might provide a route to the construction of explicitly spin-state dependent

approximations to the xc functional.

However, the relative contributions of the symmetric and antisymmetric components of

the electron pair density are different in different regions of space, i.e., they depend on the

localization of the electrons for which the spin coupling differs. Thus, the construction of

explicitly spin-state dependent approximations to the xc functional will require accounting

for this spatial distribution of spin coupling effects. Most likely, this will require using a

suitable auxiliary quantity in addition to the total electron density.

The most straight-forward approach would be using the (exact or approximate) on-top

pair density for constructing approximations of the xc hole. Such a strategy is used in

the context of methods combining a multideterminental reference system with a density

functional treatment of dynamic correlation.38,74–77 However, in such approaches the spin-

state dependence is included via the spin-state of the multideterminental wavefunction

and not included explicitly in the xc functional.

Alternatively, one could model the (spin-state dependent) on-top pair density as a func-

tional of the total electron density and another auxiliary quantity. Conventionally, the

spin density of the state with MS = S is used to this end, and it has been shown that
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within such a picture the local spin-density approximation provides a very accurate ap-

proximation of the on-top pair density.78 However, we are convinced that the use of the

spin density for modeling the spin-state dependence is undesirable, as it implies a violation

of the fractional spin condition.42 Alternatively, the spin density could be reinterpreted

as on-top pair density as suggested by Perdew et al.,79 which could offer a possible route

to the construction of explicitly spin-state dependent models of the xc hole. Finally, we

note that Staroverov and Davidson have suggested using the singlet and triplet densities

that arise from our symmetric and antisymmetric components of the electron pair density

by integration over r2 as fundamental quantities for the construction of approximate xc

functionals.

We hope that this study sheds some light on the treatment of spin states in density-

functional theory, and that it will inspire future work towards the construction of explicitly

spin-state dependent exchange–correlation functionals.

Computational Details

All configuration interaction (CI) calculations have been performed using PySCF.80,81

For the two-electron systems, PySCF’s full configuration interaction module FCI has

been used, whereas for the Li dimer the configuration interaction with single and double

excitations module CISD was used. For the triplet states, our CI calculations started

from a spin-restricted open-shell Hartree-Fock determinant to ensure that the resulting

CI solution is a pure spin state. The cc-pVTZ basis82 set was employed for the H2 and

the He atom, whereas the cc-pCVTZ basis set83 was used for the Li dimer in order to

capture core correlation effects.
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PySCF gives access to the of the 2-RDM in the molecular orbital basis,

Γ2(r1, r2, r
′
1, r

′
2) =

∑
pqrs

cpqrsφp(r1)φq(r2)φr(r
′
1)φs(r

′
2), (57)

from which the xc hole can be calculated according to Eq. (29).

All plots have been prepared using Matplotlib.84,85 A Jupyter notebook that can be used

to obtain all the plots presented here is made available on GitHub at https://github.

com/chjacob-tubs/xcholes.

Acknowledgments

This paper is dedicated to Prof. Evert-Jan Baerends (VU University Amsterdam), whose

pioneering work on exchange–correlation holes inspired our study, on the occasion of his

upcoming 75th birthday.

A Spin-state dependence of the normalization of

ρsymm
2 (r1, r2) and ρanti2 (r1, r2)

The normalization of the electron pair density is given by∫∫
ρ2(r1, r2) d3r1d3r2

=

∫∫
ρsymm

2 (r1, r2) d3r1d3r2 +

∫∫
ρanti

2 (r1, r2) d3r1d3r2 = N(N + 1). (58)

Using the definitions of the symmetric and antisymmetric parts of A(r1, r2, r
′
1, r
′
2) [cf.

Eqs. (46) and (48)], the expression for the calculation of the expectation value of the total
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spin operator given in Eq. (21) can be recast as,

〈Ŝ
2
〉 = −1

4

∫∫ (
3Asymm(r1, r2, r1, r2)− Aanti(r1, r2, r1, r2)

)
d3r1d3r2 +

3

4
N

= −3

4

∫∫
ρsymm

2 (r1, r2) d3r1d3r2 +
1

4

∫∫
ρanti

2 (r1, r2) d3r1d3r2 +
3

4
N (59)

and it follows that

3

∫∫
ρsymm

2 (r1, r2) d3r1d3r2 −
∫∫

ρanti
2 (r1, r2) d3r1d3r2 = 3N − 4〈Ŝ

2
〉 (60)

Combining Eqs. (58) and (60), we find∫∫
ρsymm

2 (r1, r2) d3r1d3r2 =
1

4
N2 +

1

2
N − 〈Ŝ

2
〉 (61)∫∫

ρanti
2 (r1, r2) d3r1d3r2 =

3

4
N2 − 3

2
N + 〈Ŝ

2
〉. (62)

Thus, when increasing 〈Ŝ
2
〉, the normalization of the antisymmetric part increases, while

the one of the symmetric part decreases. The above result has previously been obtained

for the corresponding singlet and triplet densities in a slightly different way by Davidson

et al.72,73
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