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Abstract: The study of photochemical reaction dynamics requires accurate as well as

computationally efficient electronic structure methods for the ground and excited states. While

time-dependent density functional theory (TDDFT) is not able to capture static correlation,

complete active space self-consistent field (CASSCF) methods neglect much of the dynamic

correlation. Hence, inexpensive methods that encompass both static and dynamic electron

correlation effects are of high interest. Here, we revisit hole-hole Tamm-Dancoff approximated

(hh-TDA) density functional theory for this purpose. The hh-TDA method is the hole-hole

counterpart to the more established particle-particle TDA (pp-TDA) method, both of which are

derived from the particle-particle random phase approximation (pp-RPA). In hh-TDA, the N-

electron electronic states are obtained through double annihilations starting from a doubly anionic

(N+2 electron) reference state. In this way, hh-TDA treats ground and excited states on equal

footing, thus allowing for conical intersections to be correctly described. The treatment of dynamic

correlation is introduced through the use of commonly-employed density functional

approximations to the exchange-correlation potential. We show that hh-TDA is a promising 

candidate to efficiently treat the photochemistry of organic and biochemical systems that involve

several low-lying excited states – particularly those with both low-lying pp* and np* states where

inclusion of dynamic correlation is essential to describe the relative energetics. In contrast to the

existing literature on pp-TDA and pp-RPA, we employ a functional-dependent choice for the

response kernel in pp- and hh-TDA, which closely resembles the response kernels occurring in 

linear response and collinear spin-flip TDDFT. 
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I. Introduction 

Linear response time-dependent density functional theory (TDDFT) is the most commonly

used electronic structure method for excited states due to its low computational cost and relative

accuracy for absorption spectra involving valence excited states.1 Unfortunately, due to the

difficulties that presently available approximate exchange-correlation functionals encounter with

near-degeneracies and static correlation, it is unsuitable for photochemical problems involving a

conical intersection between the ground and first excited states.2 While complete active space self-

consistent field (CASSCF) methods can treat static electron correlation, they struggle to describe

dynamic correlation.3 Adding a correction to recover dynamic correlation (as in multireference

perturbation theory4 or multireference configuration interaction5) significantly increases the

computational cost of the method and renders nonadiabatic dynamics simulations computationally

intractable for many interesting medium to large sized molecules (although such dynamics is

feasible for small molecules6-12). 

There has long been interest in the development of inexpensive excited-state methods that

can simultaneously treat dynamic and static correlation. One approach to this problem is to

augment traditional multiconfigurational methods with semiempirical parameters. These

parameters can be as simple as a constant scaling parameter applied to the energy13 or as complex

as a full semiempirical treatment of the Hamiltonian matrix elements.14-15 While often successful,

these methods may require cumbersome system-specific parameterization.15-17 Alternatively,

conventional multiconfigurational wavefunctions can be combined with a Kohn-Sham density

functional theory (DFT)-based treatment of dynamic electron correlation.18-19 Many of these

methods use conventional multiconfigurational wavefunctions to capture static correlation and 

include a DFT-based treatment of dynamic correlation. Methods of this type include range-

separated wavefunction/DFT methods,20-21 multiconfigurational pair-density functional theory22-

23 (MC-PDFT), and combinations of DFT and configuration interaction,24-25 such as in 

DFT/MRCI.26-27 Alternative approaches attempt to incorporate multireference character directly

in the DFT formalism by using an unconventional reference28 or appealing to ensemble densities.

Spin-flip TDDFT (SF-TDDFT)29 is an example of a scheme based on an unconventional reference.

Spin contamination problems have plagued DFT-based spin-flip methods;30-31 however, this has

recently been addressed by combining SF-TDDFT with ad hoc corrections from DFT/MRCI.32

Ensemble formulations of DFT include the spin-restricted ensemble-referenced Kohn-Sham
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(REKS) methods.33 To date, REKS methods need to be formulated specifically for the chosen 

ensemble (defined by an active space, as in CASSCF), and a general formulation applicable to 

arbitrary active spaces is lacking. Current implementations including gradients and nonadiabatic

couplings are only applicable to an active space of two electrons in two orbitals.34-35  

The recent development of particle-particle random phase approximation (pp-RPA)

methods has opened new possibilities for inexpensive excited-state methods. The original aim of

pp-RPA was to provide ground state correlation energies via an adiabatic connection fluctuation

dissipation theorem (ACFDT) approach.36-41 While the particle-hole RPA (ph-RPA) ACFDT

approach recovers the ring channel of the correlation energy from the coupled cluster doubles

(CCD) equations,42 the ladder channel of the CCD correlation energy is obtained from the pp-RPA

ACFDT approach.36, 41 Weitao Yang and coworkers also highlighted pp-RPA and its Tamm-

Dancoff approximated pp-TDA variant as effective methods to compute electronic ground and

excited state energies.43-52 Starting from a doubly cationic (N–2)-electron reference, the N-electron

ground state and excited states generated by excitations from the highest occupied molecular

orbital (HOMO) are recovered by performing two-electron attachments.45, 49-50 This allows the

treatment of the N-electron ground and excited states on equal footing (derived as simultaneous

eigenvalues of a common Hamiltonian) at a computational cost comparable to the simplest excited

state methods, e.g., TDDFT/ph-RPA and configuration interaction singles (CIS). Because the

ground and excited states are treated on equal footing, pp-RPA and pp-TDA based on an (N–2)-

electron reference are able to predict the correct topography around conical intersections, as has

been shown explicitly for H3 and NH3.53 This is a major advance over conventional ph-TDDFT

and CIS methods, which cannot reproduce conical intersections involving the ground state.2 In

2014, Peng et al. derived the pp-RPA equations from linear response theory by choosing a pairing 

field perturbation (termed TDDFT-P, see below in Section II.A).54 This formally allowed for the

combination of pp-RPA and DFT references. Hence, the effect of dynamic correlation on the

orbitals is incorporated through the exchange-correlation (XC) potential, while the pp-RPA and

pp-TDA schemes ensure that ground and excited states are treated on equal footing and therefore

can treat exact degeneracies correctly (see also Section II.D). 

In a procedure complementary to pp-TDA and pp-RPA based on an (N–2)-electron 

reference, the N-electron ground state and excited states can also be generated through double

annihilations from a double anionic (N+2)-electron reference in which the lowest unoccupied 
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molecular orbital (LUMO) is populated with two additional electrons. This (N+2)-electron pp-

RPA scheme and its corresponding hole-hole (hh) Tamm-Dancoff approximation (hh-TDA) were

first presented by Yang and coworkers.49 Although the pp-RPA and pp-TDA methods based on an

(N-2)-electron reference have now become quite established,43-53 less attention has been paid to

the hh-TDA method based on an (N+2)-electron reference. Yang and coworkers applied the hh-

TDA method to oxygen and sulfur atoms49 (noting “relatively large errors” in the results), but we

have found no published reports of further developments or applications of hh-TDA to molecules.

In this paper, we suggest that the hh-TDA method is worthy of renewed attention. Similar to the

pp-TDA method, hh-TDA can effectively capture dynamic and static correlation in ground and 

low-lying excited states, including near- and exact degeneracies. Furthermore, the active orbital

space in the (N+2)-electron-based hh-TDA appears to be suitable for the description of excited

states in many organic molecules that are inaccessible to (N–2)-electron pp-TDA. Examples

include molecules with low-lying np* and pp* excited states that cannot be simultaneously

described within pp-TDA (which, by construction, can only describe excited states where an

electron is excited from the HOMO).  

In contrast to previous work on pp-RPA, for both pp- and hh-TDA, we formulate the

response kernel in a functional-specific way that resembles the kernels occurring in linear density 

matrix response theory. This new formulation of the response kernel is compared to the previously

used functional-independent variant. We put particular emphasis on the utility of the hh-TDA

method in the treatment of organic and biologically relevant systems involving both pp* and np*

transitions. 

II. Theory 

A. Particle-particle random-phase approximation from pairing field perturbations 

The particle-particle random phase approximation (pp-RPA) equations were derived by

Yang and coworkers54 by means of coupled time-dependent perturbation theory in analogy to well-

established linear response theory by choosing a pairing field perturbation within the framework

of Hartree-Fock/Kohn-Sham-Bogoliubov theory (termed TDDFT-P).55 The ground state for this

non-interacting particle system is defined by the zero-temperature grand potential as:54-57 

  (1)
  
Ω[γ ,κ ]= T

s
[γ ,κ ]+V

ext
[γ ]+ D

ext
[κ ]+ E

JXC
[γ ,κ ]− µN
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Here,  is the independent particle kinetic energy and  the external potential energy,

which contains the nuclear-electron attraction.  denotes the external pairing potential and 

the last term preserves the total electron number. is the mean-field potential energy due

to the electrons and includes the particle-hole and particle-particle channels via the one-particle

density matrix γ	 and the pairing matrix κ, respectively. The indices J, X, and C denote the

Coulomb, exchange, and correlation components of this functional, respectively. The one-particle

density matrix in the canonical molecular spin orbital basis is given by 

  (2)

while the pairing matrix (or anomalous density matrix) is defined as 

  (3)

 refers to the single-determinant ground state wavefunction of the non-interacting Kohn-Sham

(KS) system. Here and in the following i,j,k,l denote occupied, a,b,c,d unoccupied, and p,q,r,s

general molecular orbitals.

For the hypothetical true functional , the real-space density and anomalous

density of the non-interacting KS system are identical to the respective quantities of the true

interacting system. In the work of Peng et al.,54 a non-superconducting system with no external

pairing field in the ground state Hamiltonian is used. In that case, . As a result, the

mean-field potential energy is free from indirect electron-electron interactions (e.g., phonon-

mediated interactions)55 and contains only direct electron-electron interaction contributions via the

(anti-symmetrized) Coulomb operator and XC potential. Based on the ground state defined by Eq. 

1, Peng et al. derived the pp-RPA method by perturbing the ground state with an external pairing

field perturbation. The TDDFT-P equations, which describe the coupled response to the pairing 

field perturbation, are given as:54 

  (4)

  (5)
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orbital energy, and µ is the chemical potential or Fermi energy. The pairing matrix response 

of the mean field potential is contained in . 

  (6)

In our formulation of pp-RPA, the choice of  differs from the one presented by Yang and

coworkers,44-45, 54 as discussed in detail below. 

B. The adiabatic particle-particle linear-response kernel 

For a non-superconducting system in the absence of , the pairing matrix and its

associated XC potential are zero in the electronic ground state. Consequently, only the γ-dependent

terms in Eq. 1 survive and minimizing the zero-temperature grand potential becomes equivalent

to minimizing the standard KS or Hartree-Fock (HF) energy expression. It is only after taking the

second derivatives with respect to κ that the particle-particle channels of the mean-field potential

as in Eqs. 4 and 5 become non-zero. In the framework of ab initio wavefunction theory, the pp-

RPA equations are based on a HF reference and the mean-field potential takes the form of an anti-

symmetrized Coulomb integral.41 In that case, the pp and particle-hole (ph) channels of the mean-

field potential are formally equivalent. We note, however, that only the exchange-type integral

survives the spin integration in the pp channel (see supporting information, SI). 

In the context of approximate KS DFT, there may exist some liberty in choosing the explicit

form of this response kernel. Given that contemporary semi-local density functional

approximations are defined for κ = 0, the pairing matrix response of the density functional 

drops out: 

  (7)

Yang and coworkers have already employed this approximation for the XC density functional

response. Furthermore, they chose to use the HF-type mean-field response, i.e., a bare anti-

symmetrized Coulomb integral, as the response kernel.54 It is therefore independent of the

underlying density functional approximation (DFA). With this kernel, the chosen DFA only affects

the orbitals and orbital energies that enter the pp-RPA calculation, but not the pp response

expression itself. 
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In this work, we employ a different choice for the pp response kernel. Given the formally

equivalent ph and pp response kernels when using a HF reference,41 which may be regarded as a

special choice of the KS system, we draw analogy from the well-known ph linear response 

TDDFT. In spin-preserving1, 58 and spin-flip (SF)29 formulations of TDDFT, the response kernel

reflects the underlying ground state DFA in the way the non-local Fock exchange enters the

response. Hence, we choose to use the same modification of the non-local Fock exchange, i.e., the

global scaling and/or range-separation employed by the corresponding DFA. 

  (8)

The first term on the right-hand side corresponds to the Coulomb-type two-electron integral

(Mulliken notation for spin MOs), whereas the remaining terms denote the modified exchange-

type two-electron integrals.  is the functional-specific scaling factor for the global (full-range,

FR) exchange integral 

  (9)

Here, f refers to a molecular spin orbital and /  denote all spatial and spin coordinates of

electrons 1/2. The long-range (LR) part of the exchange integral employs the modified Coulomb 

operator and is given as

 (10)

Like Yang and coworkers, we also assume the pairing matrix response of the XC functional to be
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spin-flip and /  in the pp/hh channels. Therefore, only the exchange integral does not

vanish upon spin integration, as in pp-RPA, and the flipped sign results from the commutation

relation of the annihilation and creation operators (see SI for a comparison). SF-TDDFT can be

derived from linear-response ph TD-DFT, if changes in the density matrix that do not preserve the

 expectation value are allowed.29 Due to its origin from an analogy to linear response SF-

TDDFT, we refer to our choice of the response kernel, Eq. 11, as the linear response-type kernel

in the following to distinguish it from the DFA-independent, HF-like kernel used by Yang and 

coworkers.41 

C. The hole-hole Tamm-Dancoff approximated pp-RPA method 

Using the response kernel in Eq.11, we can rewrite Eqs.4 and 5 in matrix notation as 

 . (12)

Here, the superscripts pp and hh define the particle-particle (double creation in the virtual space)

and hole-hole (double annihilation in the occupied space) blocks, respectively. App is of dimension 
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and Bph between the pp and hh blocks, we obtain the so-called Tamm-Dancoff approximated

(TDA) eigenvalue problems: 

 (17)

for the pp-TDA case and 

 (18)

for the hh-TDA problem. 

Note that within TDA, the constant diagonal shift of  in Eqs. 13 and 14 can be removed 

from the definition of the corresponding matrix elements. Both of these eigenvalue problems are

guaranteed to have only real eigenvalues. This makes them more robust than the full pp-RPA case,

which can have complex solutions that spoil the potential energy surfaces around conical

intersections (as noted in the context of coupled cluster theory59-60). While the pp-TDA method

based on an (N–2)-electron reference has been extensively investigated as a method to describe

low-lying excited states45, 49 and S0/S1 conical intersections,53 the hh-TDA method has been less

thoroughly explored for molecular electronic structure.49 In this work, we suggest hh-TDA should 

be revisited as an efficient DFT-based method capable of computing low-lying excited states even

in the presence of conical intersections.  

Before benchmarking the hh-TDA method along with our choice for the response kernel

(Eq.11), we will briefly discuss some practical aspects of the pp-TDA and hh-TDA methods in the

next section.  

D. Practical considerations of the pp-TDA and hh-TDA methods

In both the pp-TDA and hh-TDA methods, the N-electron target system is described by 

first solving the ground state electronic structure for a system that differs by two electrons from

the N-electron target system. This corresponds to a double cation (N–2 electrons) in the case of

pp-TDA or a double anion (N+2 electrons) in the case of hh-TDA. The ground and excited states

of the N-electron target system are then obtained by creation (pp-TDA) or annihilation (hh-TDA)

of two electrons (see Figure 1).

The inability to describe either doubly excited states or conical intersections involving the

ground state are well-known shortcomings of standard single-reference methods like linear-

response (ph) TD-DFT and CIS. These are both rectified by pp- and hh-TDA. Since the ground

and the excited states are solutions of the same eigenvalue problem, near- and exact degeneracies

A
pp
X = Xω pp

A
hh
Y = Yω hh

  
∓2µ
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(such as conical intersections) can be properly described. Furthermore, some doubly excited states

can be computed (see Figure 2). At the same time, the preceding ground state calculation of the

double ionic state is of single-reference complexity and incorporates dynamic correlation by virtue

of the XC potential. Therefore, both pp- and hh-TDA schemes are in principle able to capture static

and dynamic correlation, making them promising methods for use in nonadiabatic dynamics

simulations. Furthermore, in contrast to the SF-TDDFT scheme, pure eigenfunctions of are

obtained trivially in both pp- and hh-TDA.  

However, both methods also have some obvious shortcomings in common. First, the

excited state expansion space is highly restricted. Taking the N-electron target system as reference,

pp-TDA only includes excitations from the HOMO, while hh-TDA is restricted to excitations to

the LUMO. Second, both methods take a detour by computing the orbitals for a reference that

differs in its total charge from the target state, as SF-TDDFT does with a differing spin state. As a

result, two-state degeneracies of the N-electron state can be treated at the cost of a single reference

method. However, the orbitals are not optimized for the N-electron system. This may have a 

significant implication for dynamics simulations: a degeneracy on the (N+2) or (N–2) surface itself

can occur and cause instabilities in the SCF procedure.  

Zhang et al. noted that the choice of a (N+2) reference may be hampered by the existence

of unbound orbitals.50 Presumably, this is one of the reasons that the hh-TDA method has not

received serious attention in molecular electronic structure so far. There are two distinct

consequences of unbound orbitals that can be envisioned. The first consequence is quite practical,

namely that it may be difficult to converge the SCF procedure for the (N+2) reference. In the usual

hh-TDA method, non-convergence of the SCF procedure for the (N+2) reference would be fatal.

The second consequence is somewhat more formal. Even if SCF convergence can be achieved,

orbitals with positive orbital energies do not correspond to bound electrons. They can thus be very

sensitive to the employed basis set. Indeed, with a sufficiently flexible basis set, they would be

expected to be highly delocalized continuum functions and poor representatives of a low-lying 

valence excited state.  

Regarding the first consideration, we note that poor convergence of the SCF procedure will

be exacerbated if the long-range potential is incorrect. DFAs with 100% long-range Fock exchange

are known to capture the asymptotic potential correctly. Accordingly, using DFAs with full long-

range exchange, we have not observed any instability of the (N+2)-electron SCF procedure for the

Ŝ
2
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molecules we tested. Even the green fluorescent protein chromophore (HBI) anion with a net

charge of –3 for the reference state converges without difficulty when an asymptotically correct,

range-separated DFA is used. However, the hh-TDA method is likely to encounter serious SCF

convergence difficulties for DFAs that do not incorporate long-range exact exchange.  

It has been previously observed that finite-basis set DFT is capable of providing reasonable

electron affinities computed as energy differences EA=EN-EN+1, even when the anion has unbound 

occupied orbitals.61 This suggests that the second consideration is largely formal. However, there

are also some practical concerns. The success of hh-TDA in describing excited states is predicated 

on the HOMO orbital of the (N+2)-electron determinant being a good approximation to the bound

orbital that predominantly contributes to the low-lying N-electron excited states. This will certainly 

not hold if the HOMO is a good approximation to a continuum orbital, which is the expected

outcome in a sufficiently large basis set. We take a practical approach here and recommend that

diffuse basis sets should be avoided in the context of hh-TDA. For the finite orbital basis sets of

double- or triple-zeta quality used in this study, there are very few cases where the hh-TDA scheme

based on an (N+2)-electron reference fails, in spite of the presence of occupied orbitals with

positive energies. This implies that the HOMO of the (N+2)-electron system is a good 

approximation to the LUMO of the N-electron system, albeit with shifted orbital energies. This

shift is effectively removed during the hh-TDA step, leading to a reasonable description of the

relative energies between the N-electron ground and low-lying excited states. We will further

elaborate on this issue in Section IV.E, but we emphasize again that diffuse basis sets should

usually be avoided in combination with the (N+2)-electron reference calculation.  

For pp-TDA, there may also exist a practical implication with respect to the underlying

DFA. It was shown that pp-RPA based on a HF reference leads to less accurate singlet-triplet

splittings,48 slower basis set convergence,45 and overall less accurate excitation energies for small

molecules45 than pp-RPA based on DFAs with little or no exact exchange. Similar results for

excitation energies were reported for pp-TDA.45 A convenient test case is the ππ* state of ethylene,

where both hh-TDA and pp-TDA provide a suitable active orbital space. Accurate methods such 

as coupled cluster and multireference perturbation theory agree that this should be the lowest

valence excited state. For ethylene, we observe a stronger dependence on the amount of Fock

exchange in the DFA for pp-TDA (Table S13 in the SI). The ππ* state is the fourth excited state

for pp-TDA-HF, while it is the second excited state for hh-TDA-HF. It is well-known that adding
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Fock exchange to a DFA increases the differential treatment of virtual and occupied orbitals. In 

molecular systems,62 the virtual orbitals in HF are best suited to describe electron attachment,

while virtual orbitals in (semi-)local DFT are more appropriate to describe electronic excitations.63

This implies that DFAs with large amounts of exact exchange will raise the energy of the HOMO

of the N-electron target system in pp-TDA. Therefore, when using practical DFAs, the optimal

amount of exact exchange could be different for pp-TDA and hh-TDA and this point deserves

further study. In this work, we focus on DFAs for the linear-response-type kernel hh-TDA

framework.  

We will note (details in Table S13) that the ordering of the ππ* state for ethylene in pp-

TDA is improved by using our linear response-type kernel compared to the previously introduced 

functional-independent HF-type response kernel.45, 49, 54 For clarity, it should be noted that purely

(semi-)local DFAs have a vanishing response kernel in our linear-response-type formulation, i.e.,

App and Ahh are diagonal in that case. In the HF-type response kernel, the bare anti-symmetrized 

Coulomb integral is used as the response kernel, regardless of the underlying DFA. 

In hh-TDA, within the limitations of the given basis set (see above), the LUMO (with

respect to the N-electron target system) is generated on equal footing with the occupied orbitals

for HF or any DFA. Another difference between hh- and pp-TDA is the dimension of the A matrix

to be diagonalized. In pp-TDA, this dimension increases strongly with the size of the atomic orbital

(AO) basis. For hh-TDA, the dimensions are independent of the basis set size (unless effective

core potentials are used).  

We mention for the sake of completeness, that pp-TDA-HF is equivalent to full

configuration interaction (FCI) for any two-electron system, while hh-TDA-HF is equivalent to

FCI for an N-electron system in a basis that provides exactly two virtual molecular spin orbitals. 

We have confirmed this via calculations on H2 in an STO-3G basis set (see SI). Thus, both schemes

have similarities to CASCI methods with a fixed active space (i.e., N electrons in N/2+1 orbitals

for hh-TDA and two electrons in  orbitals for pp-TDA). One can speculate that the ability

of the pp-TDA and hh-TDA to describe static correlation arises from their similarity to CASCI

methods. For the same reason, however, neither pp-TDA nor hh-TDA are size consistent. As long

as no degeneracy of the LUMO/LUMO+1 (hh-TDA) or the HOMO/HOMO–1 (pp-TDA) is

present, this is not expected to have practical implications for the description of relative energies

between electronic states. 

  
n

virt
+1



Bannwarth, Yu, Hohenstein, Martínez – hh-TDA – Page 13 

III. Computational Details  

The hh-TDA and pp-TDA methods have been implemented in the electronic structure code

TeraChem.64-65 All hh-TDA and pp-TDA calculations in this work are performed with this

development version of TeraChem. To compare with the pp-TDA data in the literature, we have

implemented our choice for the response kernel (Eq.11) as well as the HF-type response kernel of

Yang and coworkers.54 We confirmed that our implementation is correct by comparison of pp-

TDA excitation energies with values reported in the literature45 as well as comparisons between 

CASCI and hh/pp-TDA using Hartree-Fock reference states. 

In the functional assessment for vertical excitation energies with hh-TDA in Section IV.A,

we considered the global hybrid functionals B3LYP,66-69 PBE0,70-71 and BHLYP66-67, 72 as well as

Hartree-Fock. Thus, we cover different amounts of non-local Fock exchange in the mean field

Hamiltonian (20%, 25%, 50%, and 100%, respectively). Additionally, we test different range-

separated hybrid functionals, namely CAM-B3LYP,66-69, 73 wPBEh,74 and the B9775 type

functionals:  wB97,76 wB97X,76 and wB97X-D3.77 For clarity, it is emphasized that the latter two 

are different in their functional parameters (see SI), and hence, should give rise to different

electronic structures. The DFA assessment is restricted to the linear response-type kernel variant

of hh-TDA (Eq.11) For the assessment of different functionals, we employed the spherical split-

valence atomic orbital def2-SV(P)78-79 basis set by Ahlrichs and coworkers. All SCF calculations

used the converged Hartree-Fock orbitals as guess orbitals. The systems considered in this work 

are given in the SI. 

When comparing pp-TDA and hh-TDA in Section IV.B, we use the same spherical TZVP

basis set80 that has been used in the original benchmark papers by Thiel and coworkers.81 Both 

schemes are employed in a setting, in which the occupied and active orbitals have been generated

on equal footing, i.e., where these orbitals experience a mean-field potential with the same number

of electrons. The pp-TDA is hence combined with the generalized gradient approximation (GGA)

functional PBE70 (see also Section II.D). hh-TDA is combined with the range-separated functional

wB97X,76 which is shown to be a well-performing combination in Section IV.A (and in the SI). 

We consider both the linear response-type (this work) and the HF-type (Yang and coworkers)

response kernels for pp-TDA and hh-TDA. Additionally, we have performed ph Tamm-Dancoff

approximated TDDFT calculations with the wB97X functional. For reference, we use the best

estimates for excitation energies of Thiel and coworkers81 and complement these with equation-
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of-motion singles and doubles coupled cluster (EOM-CCSD) calculations (same basis set) as

implemented in Q-Chem v5.0.0.82  

In Section IV.C.1, we calculate the ethylene potential energy surface (PES) with hh-TDA-

wB97X (linear response kernel) using the Cartesian def2-SVP78-79 basis set. The scans along the

pyramidalization and torsion angles were performed without relaxation of the remaining degrees

of freedom.  

The excited state energies of thymine at three critical structures are considered in Section 

IV.C.2. We use hh-TDA in combination with the wPBE functional and the Cartesian 6-31G** 

basis set.83-85 A range separation parameter w=0.2 a.u. was selected after a coarse scan and 

comparison against high level reference values for this molecule. We calculated these reference

values with EOM-CCSD/aug-cc-pVDZ with Q-Chem. While the Franck-Condon (FC), the S1

minimum, and the S1/S2 minimum energy conical intersection (MECI) were optimized with hh-

TDA, we used the respective coupled cluster (CC) geometries of Ref. 86 for single-points at the

EOM-CCSD/aug-cc-pVDZ level of theory. The S2 (pp*) saddle point geometry therein is claimed

to be “in close proximity” to the conical intersection seam.86 Due to the lack of a properly CC-

optimized MECI structure, we use that structure as a substitute and estimate the MECI energy by 

averaging the S1 and S2 energies computed with EOM-CCSD/aug-cc-pVDZ. 

In Section IV.C.3, we apply hh-TDA with the wB9776 functional in combination with the

Cartesian 6-31G** basis set83-85 and compare to results obtained with multireference configuration

interaction methods including single and double excitations (MRSDCI).87  

IV. Results 

A. Functional benchmarking for hh-TDA 

The performance of density functionals for the calculation of vertical excitation energies

in the linear-response ph time-dependent density functional theory framework is well known88 and 

the role of Fock exchange is fairly well understood.1 In contrast, for the hh-TDA method proposed 

in this work, the impact of Fock exchange and the use of an anionic reference on the excitation 

energies is not known. Therefore, we start by benchmarking several common DFAs along with

Hartree-Fock (HF) in the calculation of vertical excitation energies with hh-TDA. 
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To gain more insight, we consider the lowest vertical excitation energies using molecules

and reference data from previously published data sets where highly accurate excitation energies

are available.81, 89-90 We classify the excitation type into different categories: intermolecular

charge-transfer (CT) and predominantly local excitations. We also consider molecules that have

push-pull type excitations, i.e., excitations with partial intramolecular CT character. We find that

the functionals behave similarly for this set as for the local excitations. Thus, we have added them

to the latter set and distinguish only intermolecular CT and intramolecular excitations (see SI for

separate results of the local and the push-pull set). In the latter set, we have selected molecules for

which hh-TDA, across different DFAs, produces the same character for the lowest vertical

excitation as the reference method (SCS-CC291).

We have not considered any purely semi-local GGA-type DFAs, since these show severe

convergence problems in the self-consistent field (SCF) procedure of the double anionic reference

(see also Section II.D). Though we also expect that global hybrids will not be optimal in that case,

for completeness we have included some prototypical global hybrid functionals that differ in the

amount of Fock exchange. All functionals considered are listed in Section III, but we restrict the

discussion in this paper to the globally constant Fock-exchange DFAs B3LYP, BHLYP, and HF

(these functionals contain 20%, 50%, and 100% of Fock exchange, respectively). Furthermore, we

find that all tested range-separated DFAs with 100% long-range exchange perform similarly;

therefore, we restrict the current discussion to the wB97X-D3 functional. The results for the other

functionals that were tested can be found in the SI. 

Figure 3 shows the Gaussian error distributions based on the mean deviation (MD) and

standard deviation (SD) obtained for the aforementioned reference data sets of excitation energies. 

While hh-TDA-HF yields CT excitation energies that are on average underestimated by almost 1

eV, the excitation energies for locally excited states show a systematic overestimation of about the

same magnitude. Furthermore, the error is significantly more systematic for the intermolecular CT

excitations. For DFAs with low amounts of Fock exchange, i.e., B3LYP, these trends are reversed,

however, with a smaller magnitude for the underestimation of local excitation energies. It is

noteworthy that the DFAs behave quite different than in a ph linear response TD-DFT framework.

In the latter, DFAs with low amounts of Fock exchange significantly underestimate CT

excitations.89 The BHLYP functional, which is in between in terms of the percentage of Fock 

exchange, shows more consistent errors for both sets (MD » 0.4-0.5 eV), as well as more narrow
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error distributions. The range-separated DFA wB97X-D3 behaves even slightly better than 

BHLYP. This, along with the fact that the 100% asymptotic Fock exchange makes these DFAs

less prone to SCF convergence issues with the (N+2)-electron reference, suggests the use of

asymptotically correct range-separated hybrid functionals in combination with the hh-TDA

scheme. 

In addition to benchmarking the DFAs for CT and local states, we investigate state

splittings between pp* and locally excited states with different character (mostly np*). For this

purpose, we have selected a set of systems mostly comprised of molecules from Thiel’s 2008

benchmark set.81, 90 Problematic systems, which are impossible to treat with hh-TDA due to the

restricted orbital space, were discarded from the benchmark set. These are systems in which either

the population of the frontier orbitals in the (N+2)-electron system is not clear (degenerate LUMOs

in the N-electron determinant) or the excited states cannot predominantly be described by a single

orbital-orbital transition (benzene, naphthalene, pyrrole, s-triazine). Furthermore, butadiene,

hexatriene, and octatetraene are not considered here but in Section IV.B. The results are visualized 

in Figure 4, while the respective symmetry labels and results for other density functionals can be

found in the SI. First, we stress the relevance of high amounts of Fock exchange in the DFA, which 

we mentioned earlier in Section II.D. We find that B3LYP and BHLYP, but also a few range-

separated functionals (CAM-B3LYP or wPBEh, see SI), show incorrect orbital occupations for

some carbonyl systems in the (N+2)-electron SCF calculation, i.e., the HOMO of the (N+2)-

electron system does not correspond to the LUMO obtained from an SCF calculation on the N-

electron system. Hence, the excited states for these systems cannot be described properly with 

these functionals.

We also find that the global hybrid functionals perform poorly for the state splittings

compared to Hartree-Fock or range-separated functionals (e.g., wB97X-D3). Except in two cases

(np*/pp* in aspirin and sp*/pp* in cyclopropane), the latter two perform similarly. Both describe

the np* splittings reasonably well, while systematically overestimated pp* excitations are found 

for aromatic systems, regardless of which DFA is used. This seems to be caused by the absence of

accessible higher lying anti-bonding p orbitals in the expansion space, which would lower these

excitations and improve the energetic splittings with respect to the np* excitations. This is also 

observed for the splittings between the different pp* states in cyclopentadiene and norbornadiene,

presumably for the same reasons. Interestingly, reduced short-range Fock exchange leads to
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increased sp* excitation energies in cyclopropene, which then lead to qualitatively incorrect

energy splittings with respect to the pp* state. This is observed for all DFAs and only HF ranks

these states qualitatively correctly.  

Overall the results indicate that the hh-TDA scheme in combination with a range-separated

hybrid functional appears to be a promising method for describing the ground and low-lying

excited states of organic molecules on equal footing.  

B. Comparison of pp-TDA and hh-TDA with linear response-type and full exchange response

kernels 

In this section, we compare the hh-TDA and pp-TDA schemes as well as the two different

response kernel choices. In Table 1, we have tabulated the statistical data for excitation energies

computed for a subset of excitations from the Thiel benchmark set81 with the linear response (LR) 

and HF-type kernels for hh-TDA-wB97X and pp-TDA-PBE. We note that our pp-TDA-PBE (HF)

results are in agreement with the ones presented earlier by Yang and coworkers (note that we use

a slightly different basis set here).45 The statistical data is listed in Table 1, while detailed values

of the individual systems and states are given in the SI. A significant difference between the hh-

TDA and pp-TDA schemes becomes apparent when looking at systems that involve both pp* and

other types of excitations (i.e., np* or sp*). Here, we find that hh-TDA typically provides the

better option, since the configuration space in hh-TDA is more suited to describe both excitation 

types simultaneously. This manifests itself in a larger number of states on this set, which can 

actually be described by hh-TDA. The nucleobases and carbonyl systems are particularly good

cases for hh-TDA (see SI). For pp-TDA-PBE, SCF convergence problems for these systems

eliminate the possibility to include them in the analysis. This seems to be due to (nearly) degenerate

frontier molecular orbitals in the (N-2) reference and was confirmed using alternative electronic

structure software (Turbomole version 6.4).74, 92 The HF-type variant performs better for pp-TDA-

PBE than the LR variant, the latter being equivalent to plain PBE orbital energy differences. For

hh-TDA-wB97X, this is reversed and the LR-type kernel performs better, as reflected by smaller

mean (absolute) and standard deviations. Both pp-TDA-PBE schemes on average show

underestimated excitation energies, whereas the opposite is true for hh-TDA-wB97X. From all of

the considered pp/hh schemes, hh-TDA-wB97X (LR) performs the best on this set. 
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Compared to regular ph-TDA-wB97X and EOM-CCSD, hh-TDA-wB97X (LR) provides

almost comparable accuracy, with a slightly less systematic error distribution as reflected by a SD,

which is twice as large as for ph-TDA-wB97X.  In summary, we find that hh-TDA provides a

reasonable method typically with a broader applicability to many organic systems compared to pp-

TDA. In the next sections, we will only consider the LR-type kernel variant of hh-TDA and

investigate potential energy surface properties beyond the Franck-Condon point.  

C. Potential energy surfaces with hh-TDA 

1. Ethylene 

As addressed in the previous sections, one of the main advantages of the hh-TDA method 

is the ability to accurately treat degeneracies involving the ground state and low-lying excited

states. The topologically correct description of the potential energy surfaces in regions of

degeneracy is especially important in nonadiabatic photochemical dynamics where population

transfer between adiabatic potential surfaces is often mediated by these seams of conical

intersection. A prototypical example of such an intersection can be accessed through torsion and

pyramidalization degrees of freedom in ethylene; this particular case has previously been used as

a model system for assessing the ability of electronic structure methods to describe statically 

correlated character and ground-excited state degeneracies.2  

Typical low-cost single reference excited state methods, such as CIS and TDDFT, suffer

from instability related to HOMO-LUMO orbital degeneracies as an MECI involving the ground 

state and an excited state is approached. As a result, these methods cannot properly describe the

twisted-pyramidalized MECI in ethylene. By contrast, hh-TDA is well-suited to describing conical

intersection topologies, as demonstrated in combination with the wB97X functional in Figure 5a,

in which the double cone topology characterizes the vicinity of the S0/S1 MECI. Here, the potential

energy surfaces are plotted along torsion and pyramidalization coordinates, which are the

branching plane coordinates corresponding to the twisted-pyramidalized minimum energy conical

intersection (MECI) between the S0 ground state and the pp* excited state. 

Moreover, CIS and TDDFT cannot describe double excitations, which then leads to a 

description of the S1 minimum at a purely twisted geometry (90° torsion, no pyramidalization).2

Methods that incorporate doubly excited states describe the S1 minimum as simultaneously twisted 

(90° torsion) and pyramidalized. hh-TDA captures this feature of the S1 potential energy surface

(PES), as demonstrated by the appearance of the minimum at a twisted (90°) and pyramidalized
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(60°) geometry that lies 4.76 eV above the ground state minimum. This is detailed in Figure 5b.

The S1 minimum computed by the 3-state-averaged, extended multi-state complete active space

second-order perturbation method (SA3-XMS-CAS(2,2)PT2)93 on the same set of ethylene

coordinates is found at 90° torsion and 72° pyramidalization and lies 5.46 eV above the ground

state minimum (additional information regarding the SA3-XMS-CAS(2,2)PT2 comparison can be

found in the SI; these potential energy surfaces can be compared to previous results obtained with 

quasidegenerate multi-reference perturbation theory2). These results indicate that hh-TDA

describes the potential energy surfaces reasonably well, and thus, is a promising candidate for

applications in efficient nonadiabatic dynamics simulations. This finding complements earlier

studies on H3 and NH3, which showed that pp-TDA is able to describe conical interactions.53 

2. Thymine 

The thymine molecule is a biologically relevant prototype for internal conversion dynamics

between nπ* and ππ* states. At the Franck-Condon point, highly accurate coupled cluster (CC)

computations predict that thymine has nearly degenerate S1 and S2 states of nπ* and ππ* character,

respectively.86 Further, accurate CC-based methods predict a reaction coordinate from the Franck-

Condon point to the MECI between the S1 and S2 states without barriers or the presence of minima

on the S2 state.86 At lower levels of theory – particularly those that do not include dynamic electron

correlation, such as CASSCF – it is common to find a larger (greater than 1 eV) splitting between 

the S1 and S2 states at the Franck-Condon point as well as a minimum on the S2 state.94-95 It remains

unclear how these properties of the thymine PES affect its photodynamics; highly efficient

electronic structure methods that agree more closely with the accurate CC-based methods would

be required to answer these questions. We find hh-TDA to be a promising candidate for use in 

nonadiabatic dynamics simulations of thymine.  

The relative excited state energies computed with hh-TDA with the wPBE(w=0.2 au)

functional and EOM-CCSD (see Section III) at three different thymine structures are shown in

Figure 6. The vertical excitation energies to the S1 and S2 states are underestimated by about 0.5–

0.8 eV by hh-TDA-wPBE(w=0.2 a.u.) compared to EOM-CCSD. The latter themselves are,

however, higher by about 0.2–0.3 eV compared to higher-level CC3 data.86 The S1/S2 splittings

are reproduced to within 0.17–0.22 eV by hh-TDA. As a result, hh-TDA does a particularly good

job describing the relative energetics of the S1 and S2 states at stationary points relevant to the

photodynamics of thymine. The stabilization of the S1 (nπ*) minimum is correct to 0.04 eV
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compared to both the Franck-Condon point and S1/S2 MECI. Further, no minimum is present on

the S2 PES of thymine between the Franck-Condon point and S1/S2 MECI. The relative energy of

that intersection with respect to the S2 energy at the Franck-Condon point is also in good agreement

with EOM-CCSD. Remembering that the computational cost of hh-TDA scales formally as O(N4) 

but in practice as O(N2) with system size (see Section IV. D), while EOM-CCSD formally scales

as O(N6), the agreement between these methods is quite remarkable. What remains to be done in 

future studies is to apply hh-TDA directly in a nonadiabatic dynamics simulation of thymine and 

assess the performance against experimental ultrafast spectroscopic observables.  

3. Malonaldehyde 

Malonaldehyde is a molecule that is a prototype for excited-state proton transfer, nπ*/ππ* 

internal conversion dynamics, and photoisomerization. Here, we apply hh-TDA with the wB9776

functional and compare to results obtained with multireference configuration interaction methods

including single and double excitations (MRSDCI, see Figure 7).87 Again, we find good agreement

in the absolute excitation energies and in the splitting between nπ* and ππ* states at the Franck-

Condon point. However, the relative energetics of the S1 and S2 states at important stationary points

show some potential problems. The minimum on the S1 (nπ*) state is a bit too stable relative to

both the Franck-Condon point and the S0/S1 MECI. This indicates that population may become

spuriously trapped on the S1 state leading to longer excited-state lifetimes and perhaps increased

involvement of triplet states (in view of the El-Sayed rules and the fact that the electronic 

wavefunction has nπ* character in the region). Also, the S1/S2 MECI reached by proton transfer is

energetically unfavorable. This may indicate that the proton transfer reaction will play a different

role in the internal conversion dynamics than MRSDCI would predict. The issues encountered by 

hh-TDA for malonaldehyde seem to be related to the restriction on the orbital space to include

only one π* orbital. For this molecule, a second π* orbital may be essential to an accurate

description of the photodynamics. Although we expect that malonaldehyde is not an ideal

application of the hh-TDA method, nonadiabatic dynamics simulations, in which the molecular

symmetry is lifted, would provide a more definitive assessment of the performance of hh-TDA for

this molecule.  

D. Computational cost of hh-TDA 

In Figure 8, we report the computational time required to solve for the ground and first

excited state of the Nile blue chromophore in aqueous solution using the hh-TDA and TDA-
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TDDFT methods with the Cartesian def2-SVP basis set and the ωPBE functional with ω=0.8 a.u.

The principal conclusions that should be drawn from these timings are that the hh-TDA and TDA-

TDDFT methods are of similar computational cost and exhibit similar scaling behavior with

system size, i.e., O(N2) in our AO direct implementation (see below). In TDDFT, the solution of

the KS equations defines the ground state, whereas in hh-TDA, both the ground and excited states

are obtained as eigenvectors of the TDA response matrix. We find that multiplication of trial

vectors against the response matrix is less expensive in the hh-TDA method (because there are no 

contributions from the Coulomb-type integrals or derivatives of the exchange-correlation

potential). In cases where only one or two excited states are required, it should be expected that

the cost of TDA-TDDFT and hh-TDA will be quite similar with the particulars of a given molecule

determining which method will be faster. For example, in the present case, TDDFT required extra

guess vectors in the Davidson diagonalization in order to avoid solving for higher-lying charge

transfer excited states rather than the locally excited state of Nile blue. 

Formally, the hh-TDA method appears to scale as O(o6), where o represents the number of

occupied orbitals. However, since only a few electronic states are actually of interest, the full

diagonalization of the response matrix can be avoided and the scaling of the method would be

O(o4) – the cost of the multiplication of a trial vector by the response matrix. However, this ignores

the cost of forming the response matrix in the molecular orbital basis. In practice, our

implementation of hh-TDA is fully AO integral direct and scales, formally, as O(N4), where N is

the number of AO basis functions. The advantage of the AO formulation of hh-TDA is that sparsity 

can be exploited and the contractions between trial vectors and the response matrix scale more like

O(N2). This is clearly demonstrated in Figure 8, where the apparent quadratic scaling of the method 

allows us to apply it to systems with more than 2100 atoms in a polarized double-ζ basis set

(roughly 18000 basis functions). It should be noted that the underlying SCF procedure costs

approximately the same as the solution of the eigenvalue problem (for two states) and the SCF

procedure scales slightly worse with system size. 

E. The unbound orbital problem and basis set requirements 

Following the remarks above on the basis set requirements for hh-TDA due to the (N+2)-

electron reference, all calculations in this paper used double- and triple-zeta basis sets without

diffuse functions. In order to explore the basis set dependence more thoroughly, we collect the
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lowest excitation energies computed with hh-TDA-ωB97X and different basis sets STO-3G, def2-

SVP, def2-SVPD, def2-TZVP, and def2-QZVP (the latter two without f and g functions) for a few

molecular systems (acetamide, p-benzoquinone, butadiene, ethylene, formaldehyde,

norbornadiene, uracil, and water) in Table S11 of the SI. As could be expected, these results show

that excitation energies obtained with the STO-3G basis set are widely disparate from larger basis

sets. However, with the exception of acetamide, the excitation energies vary by less than 0.2eV

over the other choices of basis sets without diffuse functions. This indicates that the presence of

unbound orbitals need not be a significant problem (as long as diffuse basis sets are avoided, see

results for def2-SVPD). 

Acetamide was among the problematic systems mentioned in Section IV.A, where DFAs

with insufficient exact exchange populated an incorrect orbital in the (N+2)-electron reference.

Similar occupation problems are observed for the def2 basis sets considered here, leading to strong

basis set dependence of the excitation energy. However, this seems to be distinct from the unbound

orbital problem and is instead related to the limited active space in hh-TDA.  

Based on this assessment and the promising results obtained in this work, we therefore

recommend the use of hh-TDA in combination with asymptotically correct range-separated hybrid 

DFAs and double- and triple-zeta basis sets without diffuse basis functions. The latter can be added

if the excited states to be probed by hh-TDA are actually of Rydberg character (cf. results for

water). In the future, the unbound orbital issue could be addressed by using an N-electron reference

in the orbital generation. Such an approach was already applied in one of the early works on pp-

RPA.49 We plan to investigate this issue in order to facilitate the routine use of hh-TDA in

geometry optimizations and nonadiabatic dynamics simulations.  

V. Conclusions 

We have shown that the hole-hole Tamm-Dancoff approximation (hh-TDA) to the particle-

particle random-phase approximation (pp-RPA) represents an efficient DFT-based electronic

structure scheme for the electronic ground and low-lying excited states. The method shares

similarities with the previously presented particle-particle (pp-TDA) approach. We find some

advantages of the hh-TDA scheme, particularly in its ability to describe different low-lying 

excitation types (np*, sp*, and pp*). Starting from an (N+2)-electron reference determinant, the

ground and the low-lying excited states of the N-electron target system are obtained by a double
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annihilation of two electrons. Since the ground and excited states are obtained from the same

eigenvalue problem, static correlation cases can be handled. Dynamic correlation is included in

the orbitals by virtue of the density functional. We have also introduced an alternative choice for

the response kernel that differs from the functional-independent Hartree-Fock-type kernel

employed in the previous works on pp-RPA and pp-TDA.54 Our choice is functional-dependent

and in line with the response kernels appearing in particle-hole linear response theory. 

To avoid SCF convergence problems of the (N+2)-electron reference, the method should

be combined with range-separated density functionals that have 100% asymptotic Fock exchange.

We recommend avoidance of diffuse atom-centered basis sets, since these can lead to continuum-

like orbitals in the (N+2)-electron reference. We then do not observe any SCF convergence

problems and find that the hh-TDA can describe low-lying excited states reasonably well at a

computational complexity comparable to a configuration interaction singles (CIS) calculation. As

with any density functional approximation-based method, case-specific functional assessment is

recommended. The range-separation parameter and amount of short-range Fock exchange can be

viewed as parameters to optimize the method performance for a specific molecule (as is often done

by variation of the active space in CAS methods).  

On the other hand, the main limitation of the hh-TDA is the restricted “virtual” orbital

space, which formally consists exclusively of the lowest unoccupied orbital (with respect to the N-

electron system). This precludes its application to systems with degenerate LUMOs, such as

benzene. In spite of this shortcoming, the hh-TDA method is well-suited for the calculation of

ground and low-lying excited states for many organic molecules. It offers an inexpensive 

alternative to existing and widely used CASSCF methods, with the advantage that dynamic

correlation effects are included at the orbital level by means of the used density functional. 

The method is implemented in the GPU-accelerated electronic structure code TeraChem.

Future directions will include the computation of nonadiabatic couplings and testing the method

in nonadiabatic dynamics simulations. In this context, it will be important to address the problem

of potentially occupying unbound orbitals in the (N+2)-electron SCF calculation. Generating

orbitals for an N-electron reference with fractional orbital occupation and using them in an (N+2)-

electron-type hh-TDA procedure could remove this issue entirely, while guaranteeing stability in 

nonadiabatic dynamics simulations. This will be explored in future work. 
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Data Availability: The data that support the findings of this study are available from the

corresponding author upon reasonable request. 

Supplemental Material

Detailed results on the DFA assessment (Section IV.A) and the pp/hh-TDA benchmarks (Section 

IV.B), and a potential curve of ethylene (at 90° torsion) are given in a separate pdf. 
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Figure 1: Graphical representation of the pp-TDA (left) and hh-TDA (right) methods to obtain the

N-electron ground state and excited states. In the pp-TDA case (left), the orbitals are obtained from

a SCF calculation on the (N–2)-electron system. Addition (green) of two electrons into the virtual

space recovers the N-electron ground and excited states. The closed-shell N-electron ground state

obtained from pp-TDA is dominated by the configuration that corresponds to a double creation in 

the LUMO (with respect to the (N–2)-electron system). In the hh-TDA case (right), the orbitals

are obtained from a SCF calculation on the (N+2)-electron system. Annihilation (blue) of the two

electrons in the occupied orbital space then recovers the N-electron ground and excited states. 

Here, the N-electron ground state is dominated by the configuration that corresponds to a double

annihilation in the HOMO (with respect to the (N+2)-electron reference). 
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Figure 2: Schematic representation of the excitation types generated in hh-TDA with respect to the

N-electron ground state. The “LUMO” and “HOMO” orbitals define this N-electron state.

Figure 3: Gaussian error distribution functions for hh-TDA with different density functional

approximations in the calculation of vertical excitation energies (VEEs). The spherical def2-

SV(P)78-79 basis set and the LR kernel in the hh-TDA calculation have been used throughout. The

centers of the Gaussians correspond to the mean deviation (MD), whereas the width of the

Gaussian corresponds to the standard deviation (SD), both in eV. (a) Lowest vertical excitations

of single molecules with no or little intramolecular CT character. The individual MDs and SDs in

eV are: B3LYP (–0.27, 0.47), BHLYP (0.33, 0.40), HF (1.03, 0.75), and wB97X-D3 (0.24, 0.37),

with N = 27. (b) Intermolecular CT excitations of organic bimolecular complexes. The individual

MDs and SDs in eV are: B3LYP (1.15, 0.46), BHLYP (0.54, 0.13), HF (–0.87, 0.12), and wB97X-

D3 (0.52, 0.11), with N = 6. See SI for details on the benchmark sets and results with other

functionals. 
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Figure 4: Energetic splitting between a low-lying pp* and another (usually np*) excited state. The

excitation energies were computed at the hh-TDA level of theory (LR kernel) employing the

spherical def2-SV(P) basis set. A p-system is classified as “aromatic,” if a near-degeneracy of the

N-electron system LUMO orbital can be expected, due to the symmetry of the molecule (cf. Frost

circle representation). An asterisk marks missing data, due to an incorrect LUMO (with respect to

the N-electron system) occupation in the (N+2)-electron SCF calculation. The reference values are

taken from Ref. 81 (aspirin from Ref. 90). The respective state symmetries are given in the SI. 
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Table 1: Statistical data for excitation energies (in eV) computed with hh-TDA and pp-TDA using 

either the linear response (LR) type response kernel (this work) or the Hartree-Fock (HF) response

kernel employed by Yang and coworkers. Particle-hole TD-DFT (Tamm-Dancoff approximated, 

TDA) calculations and EOM-CCSD calculations are provided for comparison. All calculations use

the spherical TZVP basis set. We chose DFAs which we expect to perform best for both schemes,

i.e., a range-separated one for hh-TDA and a GGA for pp-TDA. The structures and reference

values are taken from Ref. 81. If states could not be described by a method, they were discarded

from the statistical analysis. The preceding PBE SCF calculations for the (N–2)-electron reference

failed to converge for eight systems, precluding a total of 23 states to be considered for pp-TDA-

PBE (see SI for details). 

EOM-CCSD TDA-wB97X 
hh-TDA-wB97X 

(LR) 

hh-TDA-wB97X 

(HF) 
pp-TDA-PBE (LR) pp-TDA-PBE (HF)

MD
a 

0.43 0.38 0.36 0.43 -0.25 -0.30 

STDb
 0.32 0.30 0.59 0.69 1.14 0.69 

MADc 
0.44 0.40 0.54 0.67 0.98 0.59 

Statesd  51 48 48 48 18 18 

a Mean deviation. b Standard deviation. c Mean absolute deviation. d Number of states included in the statistical data. 
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Figure 5: (a) Global features of the S0 ground (red) and S1 excited (blue) state PESs of ethylene

computed at the hh-TDA-wB97X/def2-SVP level in a rigid scan over the branching plane

coordinates of pyramidalization and torsion (visualized in the inset). The linear response-type

kernel has been employed. hh-TDA describes the S0/S1 degeneracy in ethylene, as demonstrated 

here with the appearance of the double cone feature. Ethylene reaches the conical intersection

geometry once distorted to 90 degrees torsion and at 60 degrees pyramidalization. This point

coincides with the predicted S1 minimum, lying 4.76 eV above the ground state minimum. (b) The

S1 PES from (a) represented as a contour plot. The shape of the S1 PES is relatively well-described

by hh-TDA-wB97X compared to previously reported quasidegenerate multi-reference

perturbation theory results.2 The S1 minimum appears at a simultaneously twisted and

pyramidalized geometry. For comparison, the location of the S1 minimum obtained from SA3-

XMS-CAS(2,2)PT2 (see SI for details) that lies 5.46 eV above the S0 ground state is marked by a

light-yellow X.  
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Figure 6: Relative energies (in eV) of the lowest three singlet electronic states of thymine

computed at the hh-TDA-wPBE(ω=0.2 a.u.)/6-31G** (blue) and EOM-CCSD/aug-cc-pVDZ (red)

levels of theory. Energies are computed at three critical points relevant to the excited state

dynamics of thymine: the S0 minimum (FC), the minimum energy conical intersection between 

the S1 and S2 states (S1/S2 MECI), and the S1 minimum (S1 min). The arrows indicate vertical

excitations to S2 (solid) and S1 (dashed). Geometries are optimized for hh-TDA and taken from

Ref. 86 for EOM-CCSD (see Section III for technical details). All energies are given relative to the

respective S0 energy at the Franck-Condon point. Higher level vertical excitation energies at the

CC3 level of theory are 0.20–0.26 eV lower compared to our EOM-CCSD/aug-cc-pVDZ (cf. Ref.
86), and thus in better agreement with the hh-TDA-wPBE(ω=0.2 a.u.)/6-31G** results. 



Bannwarth, Yu, Hohenstein, Martínez – hh-TDA – Page 31 

 

Figure 7: Relative energies (in eV) of the lowest three singlet electronic states of malonaldehyde

for critical geometries computed at the hh-TDA-wB97/6-31G** (blue normal print) and

MRSDCI/6-31G*//SA3-CAS(4,4)SCF/6-31G* (black italics, taken from Ref. 87) levels of theory.

In the latter, all configurations generated in a (4,4) active space served as references in the

MRSDCI calculations. The Franck-Condon, S1 minimum, and S0/S1 minimum energy conical

intersection geometries are optimized without constraints. The S2 C2v minimum and S1/S2 MECI

are minima in the C2v and Cs point groups, respectively. Only the energy levels computed at the

hh-TDA-wB97/6-31G** level of theory are plotted and the vertical excitations at the Franck-

Condon point to S2 and S1 are illustrated as solid and dashed arrows, respectively. 
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Figure 8: Timings of hh-TDA/def2-SVP and TDA-TDDFT/def2-SVP computations of the ground

and first excited state of Nile blue including microsolvation by 50 to 700 water molecules. The hh-

TDA/def2-SVP computation is decomposed into the time spent in the KS SCF for the (N+2)-

electron system and the “post-SCF” portion of the computation that comprises the Davidson 

diagonalization to obtain the lowest two eigenpairs as defined in Eq. 18. The largest system

considered contained more than 2100 atoms and nearly 18000 basis functions. The timings were

performed using 8 NVIDIA V100 GPUs and 8 Intel Xeon E5-2698 CPU cores clocked at 2.2 GHz.

Best fit power series are given for each of the methods. For both methods, the ωPBE functional

with a range-separation parameter of 0.8 a.u. was used. 
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1 Connection between spin-flip configuration interac-

tion singles and hh-TDA

To see the connection between the spin-flip configuration interaction singles (SF-CIS) or

spin-flip Tamm-Dancoff approximated particle-hole time-dependent density functional the-

ory (SF-TDDFT) and hh-TDA, we start from a Hartree-Fock wavefunction as reference and

look at the two-electron operator matrix element for two determinants generated from exci-

tation and double annihilation. We look at the single particle-hole excitations first. In the

following, i, j, k, l, refer to occupied, a, b, c, d to virtual, and p, q, r, s to either kind of orbitals.

|0〉 refers to the occupation vector corresponding to the Hartree-Fock reference determinant.

[pq|rs] refers to a two-electron integral between spin-MOs and (pq|rs) refers to a two-electron

integral between spatial MOs both in chemists’ notation.

〈

Φb
j |ĝpqrs| Φa

i

〉

=
1

2

∑

pq,rs

[pq|rs] 〈0| a
†
jab{a†

pa†
raqas}a†

aai |0〉

=
1

2

∑

pq,rs

[pq|rs] (δpbδqjδriδsa − δpiδqjδrbδsa − δpbδqaδriδsj + δpiδqaδrbδsj)

=
1

2
([bj|ia] − [ij|ba] − [ba|ij] + [ia|bj]) = [ia|bj] − [ij|ba]

(1)

In the spin-flip variant, i, j ∈ {↑}, a, b ≡ a, b ∈ {↓}, i.e., we get from Eq.1:

〈

Φb
j |ĝpqrs| Φa

i

〉

= −
(

ij|ba
)

(2)

If we now look at the hole-hole case, we have

〈Φjl |ĝpqrs| Φik〉 =
1

2

∑

pq,rs

[pq|rs] 〈0| a
†
ja

†
l {a†

pa†
raqas}aiak |0〉

=
1

2

∑

pq,rs

[pq|rs] (δpkδqlδriδsj − δpiδqlδrkδsj − δpkδqjδriδsl + δpiδqjδrkδsl)

=
1

2
([kl|ij] − [il|kj] − [kj|il] + [ij|kl]) = [ij|kl] − [il|kj] .

(3)
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In hh-TDA, we are annihilating two electrons of opposite spin, i.e., i, j ∈ {↑}, k, l ≡ k, l ∈

{↓}. Hence, Eq.3 becomes
〈

Φjl |ĝpqrs| Φik

〉

=
(

ij|kl
)

. (4)

Consequently, the matrix elements in hh-TDA-HF are of opposite sign, but otherwise equiv-

alent to the ones in spin-flip configuration interaction singles (SF-CIS). The latter – and

its density functional theory (DFT) counterpart – can be derived from linear-response the-

ory and by applying the Tamm-Dancoff approximation. In that case, the non-vanishing

two-electron integral in Eq.2 originates from the response of the Fock exchange term in the

ground stateS1 and, in commonly used density functional approximations (DFAs), occurs in

its modified variant, i.e., with global scaling or range separation.

Due to the established connection between hh-TDA and SF-CIS on the one hand and the

modification of the two-electron integral in collinear SF-TDDFT on the other, we choose

to use accordingly modified two-electron integrals in DFT-based hh-TDA (and possibly pp-

TDA).

We call this the linear response-type kernel, which enters the matrix elements with negative

sign (see manuscript for a discussion). This kernel has been used in this functional assessment

throughout:

Lik,jl = −aFR
X (ij|kl) − aLR

X (ij|kl)LR. (5)
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2 Equivalence of FCI/STO-3G, pp-TDA-HF/STO-3G,

and hh-TDA-HF/STO-3G for H2

Table S1: Total energies (in Hartree) for H2 (RH−H = 0.776775 Å) in an STO-3G basis with
Hartree-Fock (HF), Full CI (FCI), pp-TDA-HF, and hh-TDA-HF.

State HF FCI pp-TDA hh-TDA
11A1g −1.1137477 −1.1359353 −1.1359353 −1.1359353
11A2u – −0.2064462 −0.2064462 −0.2064462
21A1g – 0.4004024 0.4004024 0.4004024

3 Benchmarking vertical excitation energies at the Franck-

Condon point with hh-TDA

The performance of different density functionals for the calculation of vertical excitation

energies in the linear-response time-dependent density functional theory framework is well

knownS2 and the role of Fock exchange is well understood.S3 This is different for hh-TDA,

where the impact of global and range-separated Fock exchange on the lowest vertical excita-

tion energies is not known. Hence we benchmark different literature-known density functional

approximations (DFAs) along with Hartree-Fock (HF) in the calculation of vertical excita-

tion energies for different excitation types (see below). The used functionals are given in

Table S2.

Table S2: Mean field electronic structure methods considered here along with the amount of
short- and long-range Fock exchange and range-sparation parameter ω (if applicable).

Method cHF (r12 = 0) cHF (r12 = ∞) ω
Hartree-Fock (HF) 1.00 1.00 n.a.
B3LYP 0.20 0.20 n.a.
PBE0 0.25 0.25 n.a.
BHLYP 0.50 0.50 n.a.
CAM-B3LYP 0.19 0.65 0.33
ωB97 0.00 1.00 0.40
ωB97X 0.157706 1.00 0.30
ωB97X-D3 0.195728 1.00 0.25
ωPBEh 0.20 1.00 0.20
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We consider previously published benchmark setsS4–S6 that were re-grouped into intermolec-

ular charge-transfer (CT), intramolecular CT (mostly push-pull systems), non-CT, as well

as a local state-ordering set (mostly based on Ref. S6). The sets are discussed individu-

ally below. All hh-TDA calculations were carried out with a development version of the

GPU-accelerated electronic structure code TeraChem.S7,S8

3.1 Intermolecular charge-transfer set

For charge-transfer excitations, we use the non-covalent complexes in the set from Ref.

S4. Here, the lowest vertical excitations correspond to intermolecular charge transfer (CT)

excitations with the reference method, i.e., approximate coupled-cluster with singles and

doubles (CC2). The considered molecules are given in Fig. S1. To identify the CT states,

which are often not the lowest states with DFA-based hh-TDA, we checked for changes in

the static dipole moments. Excitations with static dipole changes larger than 8 Debye were

classified as CT states.

Table S3: Vertical excitations computed with hh-TDA for different molecules with charge-
transfer-type excitations (set taken from Ref. S4). Hartree Fock and different global hybrid
functionals are considered and the spherical def2-SV(P)S9,S10 basis set is used throughout.
The values are given in eV (dimensionless oscillator strength in parentheses). If the state of
interest is not S1, it is also denoted in parentheses.

system B3LYP PBE0 BHLYP HF ref.a

Chloranil-diphenylene 3.14 (0.034, S3) 3.20 (0.035, S2) 3.26 (0.057) 1.90 (0.140) 2.81
Chloranil-hexamethylbenzene 4.15 (0.028, S5) 2.72 (0.000, S5) 3.21 (0.000) 2.15 (0.000) 2.87
TCNE-benzene 5.13 (0.000, S4) 5.04 (0.000, S3) 4.34 (0.000) 2.86 (0.000) 3.78
TCNE-diphenylene –b 3.12 (0.008) 3.00 (0.014) 1.22 (0.045) 2.28
TCNE-hexamethylbenzene 3.73 (0.001, S2) 3.61 (0.001) 2.94 (0.000) 1.59 (0.000) 2.36
TCNE-o-xylene 4.57 (0.012, S2) 4.46 (0.011, S2) 3.77 (0.011) 2.31 (0.017) 3.17
MD: 1.15 1.03 0.54 −0.87 –
MAD: 1.15 1.03 0.54 0.87 –
RMSD: 1.22 1.08 0.55 0.88 –
SD: 0.46 0.36 0.13 0.12 –
MAX: 1.40 1.29 0.72 1.06 –

a SCS-CC2/def2-TZVP(-f) from Ref. S4. b SCF not converged. TCNE: Tetracyanoethylene.
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Figure S1: Molecules considered in the intermolecular charge-transfer set. TCNE = tetra-
cyanoethylene.

Table S4: Vertical excitations computed with hh-TDA for different molecules with charge-
transfer-type excitations (set taken from Ref. S4). Different range-separated hybrid func-
tionals are considered and the spherical def2-SV(P)S9,S10 basis set is used throughout. The
values are given in eV (dimensionless oscillator strength in parentheses). If the state of
interest is not S1, it is also denoted in parentheses.

system CAM-B3LYP ωPBEh ωB97 ωB97X ωB97X-D3 ref.a

Chloranil-diphenylene 3.49 (0.054, S4) 3.39 (0.053, S4) 3.05 (0.076, S2) 3.09 (0.069, S2) 3.17 (0.063, S3) 2.81
Chloranil-hexamethylbenzene 3.56 (0.039, S4) 3.47 (0.038, S4) 3.04 (0.000, S2) 3.05 (0.000, S2) 3.28 (0.045, S4) 2.87
TCNE-benzene 4.63 (0.000, S2) 4.60 (0.000, S2) 4.25 (0.000) 4.30 (0.000) 4.37 (0.000, S2) 3.78
TCNE-diphenylene 3.27 (0.013) 3.20 (0.014) 2.71 (0.020) 2.80 (0.018) 2.91 (0.017) 2.28
TCNE-hexamethylbenzene 3.17 (0.001) 3.15 (0.001) 2.78 (0.000) 2.84 (0.000) 2.92 (0.000) 2.36
TCNE-o-xylene –b 3.99 (0.012) 3.62 (0.014) 3.68 (0.013) 3.76 (0.013) 3.17
MD: 0.80 0.76 0.36 0.41 0.52 –
MAD: 0.80 0.76 0.36 0.41 0.52 –
RMSD: 0.81 0.76 0.38 0.43 0.53 –
SD: 0.13 0.14 0.12 0.15 0.11 –
MAX: 0.99 0.92 0.47 0.52 0.63 –

a SCS-CC2/def2-TZVP(-f) from Ref. S4. b SCF not converged. TCNE: Tetracyanoethylene.
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Lowest vertical charge-transfer-type excitation energies in non-covalent organic complexes
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Figure S2: Gaussian error distribution functions for hh-TDA with different standard density
functionals in the calculation of intermolecular charge-transfer (CT) excitation energies.
The spherical def2-SV(P)S9,S10 basis set is used throughout. The centers of the Gaussians
correspond to the mean deviation (MD) and the width of the Gaussian corresponds to the
standard deviation (SD) for the vertical excitation energies on the CT set (see Tables S3 and
S4 for details).

3.2 Push-pull-type set

For monomolecular systems with dipole-allowed excitations, that have some intramolecular

charge-transfer character, we use the monomolecular systems from the set in Ref. S4 and

added a few large molecules (> 20 atoms) from the set presented in Ref. S5. From the latter

set, such systems were chosen if the TDA-PBE0/def2-SV(P) were lower than the reference

value, i.e., we take this underestimation as a measure for CT character in that excitation.

These dipole-allowed, intramolecular CT excitations are commonly found in so-called push-

pull systems, hence, we refer to this set as the “push-pull-type” excitations in the following.

The considered molecules are given in Fig. S1.
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Figure S3: Molecules considered in the push-pull-type excitation set. DANS: 4-
Dimethylamino-4’-nitrostilbene, DCS: 4-Dimethylamino-4’-cyanostilbene, S0904: (E)-1-(2-
Carbazyl)-2-(2-benzoxazyl)-ethylene , S2127: 4-Diphenylamino-4’-fluorostilbene.

Table S5: Vertical excitations computed with hh-TDA for push-pull-type molecules with
partial intramolecular charge-transfer-type excitations (systems taken from Ref. S4 and S5).
Hartree Fock and different global hybrid functionals are considered and the spherical def2-
SV(P)S9,S10 basis set is used throughout. The values are given in eV (dimensionless oscillator
strength in parentheses). If not denoted otherwise, the reference values are taken from Ref.
S4.

system B3LYP PBE0 BHLYP HF ref.a

B(C6F6)3 4.02 (0.109) 4.07 (0.108) 4.44 (0.107) 4.82 (0.093) 4.10b

Coumarin-152 3.52 (1.167) 3.64 (1.236) 4.10 (1.423) 4.75 (1.611) 3.69
DANS 2.85 (2.093) 2.97 (2.231) 3.46 (2.719) 3.89 (2.930) 3.42
DCS 2.93 (2.258) 3.06 (2.395) 3.58 (2.914) 4.16 (3.250) 3.56
S0904 3.24 (1.491) 3.39 (1.666) 3.93 (2.535) 4.26 (3.407) 3.81b

S2127 3.12 (1.647) 3.27 (1.852) 3.94 (2.698) 4.50 (2.683) 3.66b

MD: −0.43 −0.31 0.20 0.69 –
MAD: 0.43 0.31 0.20 0.69 –
RMSD: 0.48 0.36 0.25 0.72 –
SD: 0.23 0.21 0.16 0.23 –
MAX: 0.63 0.50 0.41 1.06 –
a SCS-CC2/def2-TZVP(-f) from Ref. S4. b SCS-CC2/aug-cc-pVDZ from Ref. S5. DANS:
4-Dimethylamino-4’-nitrostilbene, DCS: 4-Dimethylamino-4’-cyanostilbene, S0904:
(E)-1-(2-Carbazyl)-2-(2-benzoxazyl)-ethylene , S2127: 4-Diphenylamino-4’-fluorostilbene.S-10



Lowest vertical excitation energies in push-pull-type molecules
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Figure S4: Gaussian error distribution functions for hh-TDA with different standard density
functionals in the calculation of vertical push-pull-type excitation energies. The spherical
def2-SV(P)S9,S10 basis set is used throughout. The center of the Gaussian corresponds to the
mean deviation (MD) and the width of the Gaussian corresponds to the standard deviation
(SD) for the vertical excitation energies on the push-pull set (see Tables S5 and S6 for
details).

Table S6: Vertical excitations computed with hh-TDA for push-pull-type molecules with
partial intramolecular charge-transfer-type excitations (set taken from Ref. S4 and S5). Dif-
ferent range-separated hybrid functionals are considered and the spherical def2-SV(P)S9,S10

basis set is used throughout. The values are given in eV (dimensionless oscillator strength
in parentheses). If not denoted otherwise, the reference values are taken from Ref. S4.

system CAM-B3LYP ωPBEh ωB97 ωB97X ωB97X-D3 ref.a

B(C6F6)3 4.29 (0.103) 4.22 (0.096) 4.42 (0.094) 4.37 (0.094) 4.32 (0.095) 4.10b

Coumarin-152 3.98 (1.447) 3.97 (1.468) 4.26 (1.569) 4.16 (1.529) 4.08 (1.503) 3.69
DANS 3.43 (2.784) 3.47 (2.815) 3.67 (2.954) 3.60 (2.877) 3.55 (2.843) 3.42
DCS 3.49 (2.979) 3.53 (3.018) 3.73 (3.235) 3.67 (3.137) 3.62 (3.082) 3.56
S0904 3.85 (2.583) 3.88 (2.768) 4.04 (3.116) 3.99 (3.011) 3.95 (2.928) 3.81b

S2127 3.85 (2.859) 3.91 (3.039) 4.11 (3.135) 4.07 (3.090) 4.02 (3.077) 3.66b

MD: 0.11 0.12 0.33 0.27 0.22 –
MAD: 0.13 0.13 0.33 0.27 0.22 –
RMSD: 0.57 0.17 0.36 0.30 0.25 –
SD: 0.14 0.12 0.15 0.14 0.13 –
MAX: 0.29 0.28 0.57 0.47 0.39 –
a SCS-CC2/def2-TZVP(-f) from Ref. S4. b SCS-CC2/aug-cc-pVDZ from Ref. S5. DANS:
4-Dimethylamino-4’-nitrostilbene, DCS: 4-Dimethylamino-4’-cyanostilbene, S0904:
(E)-1-(2-Carbazyl)-2-(2-benzoxazyl)-ethylene , S2127: 4-Diphenylamino-4’-fluorostilbene.

3.3 Local excitation set
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Figure S5: Molecules considered in the local excitation set. S2408: 7-diethylamino-2-
oxo-2H-chromene-3-carboxylic acid. S0491: 1-methyl-indole based Cy3 dye. S2153: 7-
diethylamino-3-thiophen-2-yl-chromen-2-one S2084: 1,3-bis[4-amino-2-hydroxyphenyl]-2,4-
dioxy-cyclobutene

Lowest vertical excitation energies for excitations of non-CT type
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Figure S6: Gaussian error distribution functions for hh-TDA with different standard density
functionals in the calculation of lowest vertical excitation energies with no (or little) charge-
transfer character. The spherical def2-SV(P)S9,S10 basis set is used throughout. The center
of the Gaussian corresponds to the mean deviation (MD) and the width of the Gaussian
corresponds to the standard deviation (SD) for the vertical excitation energies on the non-
CT set (see Tables S7 and S8 for details).
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Table S7: Lowest vertical excitations computed with hh-TDA for different molecules with
predominantly local lowest vertical excitations (unless noted otherwise, systems are taken
from Ref. S5). Hartree Fock and different global hybrid functionals are considered and
the spherical def2-SV(P)S9,S10 basis set is used throughout. The values are given in eV
(dimensionless oscillator strength in parentheses).

system B3LYP PBE0 BHLYP HF ref.a

Acenaphthylene 3.02 (0.071) 3.13 (0.066) 3.54 (0.040) 4.26 (0.021) 3.65 (0.000)
Bisthiophen 3.59 (1.033) 3.76 (1.091) 4.39 (1.329) 5.48 (1.738) 4.48 (0.395)
CF3COOH 6.21 (0.040) 6.39 (0.039) 6.34 (0.007) 6.72 (0.006) 5.95 (0.000)
Cyclopropenon 4.77 (0.008) 4.73 (0.008) 4.61 (0.006) 4.47 (0.004) 4.42 (0.000)
Dithiacyclohexan 4.88 (0.077) 5.04 (0.077) 5.58 (0.105) 5.86 (0.045) 4.52 (0.009)
Ethylene 6.31 (0.563) 6.60 (0.578) 7.94 (0.622) 10.69 (0.714)c 7.80 (0.410)b

Fluorisochinolin 4.16 (0.432) 4.32 (0.444) 4.97 (0.486) 5.98 (0.504) 4.50 (0.028)
Furan 5.65 (0.208) 5.69 (0.367) 6.43 (0.387) 8.11 (0.466) 6.32 (0.159)b

HCSOH 4.22 (0.001) 4.21 (0.001) 3.77 (0.000) 3.43 (0.000) 3.57 (0.000)
Hexatriyne 4.13 (0.000) 4.22 (0.000) 4.38 (0.000) 4.73 (0.000) 4.85 (0.000)
MePC2H4 7.05 (0.047) 7.24 (0.054) 8.13 (0.051) 8.92 (0.224) 6.53 (0.040)
P2H4 6.21 (0.027) 6.38 (0.028) 6.94 (0.763) 7.48 (0.021) 6.25 (0.050)
Proflavin 3.01 (0.177) 3.11 (0.175) 3.56 (0.176) 4.23 (0.151) 3.54 (0.234)
Purine 4.52 (0.002) 4.63 (0.002) 5.39 (0.002) 6.77 (0.004) 4.69 (0.003)
S0491 2.61 (1.964) 2.73 (2.088) 3.03 (2.350) 2.82 (2.191) 2.70 (1.548)
S2084 2.22 (1.902) 2.31 (2.022) 2.69 (2.470) 3.40 (2.705) 2.37 (1.423)
S2153 3.04 (1.671) 3.17 (1.783) 3.61 (2.162) 4.18 (2.606) 3.48 (1.004)
S2408 3.48 (1.464) 3.61 (1.543) 4.12 (1.798) 4.98 (2.151) 3.64 (0.838)
Saccharin 4.56 (0.002) 4.69 (0.002) 5.37 (0.002) 6.46 (0.003) 4.91 (0.004)
Si4H8 5.10 (0.000) 5.14 (0.000) 5.51 (0.000) 6.13 (0.000) 5.22 (0.000)
Silabenzene 4.19 (0.559) 4.82 (0.550) 5.00 (0.653) 6.27 (0.793) 4.23 (0.059)
MD: −0.22 −0.08 0.37 1.13 –
MAD: 0.43 0.40 0.43 1.15 –
RMSD: 0.54 0.50 0.57 1.39 –
SD: 0.51 0.51 0.44 0.82 –
MAX: 1.49 1.20 1.60 2.89 –
a Structures and reference values (SCS-CC2/aug-cc-pVXZ (X=D,T)) from Ref. S5. b Best estimate energy value
from Ref. S6 (CCSD value for oscillator strength). c Second lowest excited state.
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Table S8: Lowest vertical excitations computed with hh-TDA for different molecules with
predominantly local lowest vertical excitations (unless noted otherwise, systems are taken
from Ref. S5). Different range-sparated hybrid functionals are considered and the spherical
def2-SV(P)S9,S10 basis set is used throughout. The values are given in eV (dimensionless
oscillator strength in parentheses).

system CAM-B3LYP ωPBEh ωB97 ωB97X ωB97X-D3 ref.a

Acenaphthylene 3.45 (0.067) 3.45 (0.066) 3.78 (0.076) 3.68 (0.068) 3.59 (0.065) 3.65 (0.000)
Bisthiophen 4.22 (1.326) 4.27 (1.355) 4.69 (1.564) 4.57 (1.491) 4.45 (1.435) 4.48 (0.395)
CF3COOH 6.17 (0.009) 6.15 (0.010) 6.29 (0.010) 6.23 (0.009) 6.20 (0.009) 5.95 (0.000)
Cyclopropenon 4.50 (0.006) 4.53 (0.007) 4.25 (0.006) 4.34 (0.006) 4.42 (0.006) 4.42 (0.000)
Dithiacyclohexan 5.39 (0.111) 5.18 (0.094) 5.59 (0.079) 5.53 (0.092) 5.38 (0.092) 4.52 (0.009)
Ethylene 7.03 (0.602) 6.85 (0.597) 7.51 (0.643) 7.32 (0.623) 7.13 (0.611) 7.80 (0.410)b

Fluorisochinolin 4.70 (0.474) 4.65 (0.467) 5.10 (0.504) 4.97 (0.489) 4.84 (0.480) 4.50 (0.028)
Furan 5.98 (0.381) 5.90 (0.381) 6.37 (0.412) 6.20 (0.397) 6.07 (0.389) 6.32 (0.159)b

HCSOH 4.09 (0.001) 4.21 (0.001) 4.25 (0.001) 4.13 (0.001) 4.12 (0.001) 3.57 (0.000)
Hexatriyne 4.39 (0.000) 4.41 (0.000) 4.65 (0.000) 4.54 (0.000) 4.47 (0.000) 4.85 (0.000)
MePC2H4 8.08 (0.059) 8.06 (0.106) 7.87 (0.231) 7.65 (0.219) 7.47 (0.209) 6.53 (0.040)
P2H4 6.76 (0.813) 6.70 (0.842) 7.07 (0.014) 7.01 (0.017) 6.89 (0.800) 6.25 (0.050)
Proflavin 3.40 (0.163) 3.35 (0.138) 3.65 (0.140) 3.55 (0.136) 3.47 (0.137) 3.54 (0.234)
Purine 5.02 (0.002) 4.87 (0.002) 5.36 (0.003) 5.20 (0.003) 5.08 (0.002) 4.69 (0.003)
S0491 3.09 (2.401) 3.13 (2.451) 3.19 (2.418) 3.16 (2.415) 3.15 (2.425) 2.70 (1.548)
S2084 2.70 (2.479) 2.82 (2.693) 3.07 (2.853) 2.98 (2.829) 2.92 (2.790) 2.37 (1.423)
S2153 3.53 (2.169) 3.56 (2.248) 3.82 (2.509) 3.74 (2.418) 3.66 (2.347) 3.48 (1.004)
S2408 4.02 (1.822) 4.02 (1.864) 4.38 (2.029) 4.25 (1.974) 4.16 (1.928) 3.64 (0.838)
Saccharin 4.86 (0.002) 4.70 (0.002) 4.94 (0.002) 4.88 (0.002) 4.83 (0.002) 4.91 (0.004)
Si4H8 5.53 (0.000) 5.46 (0.000) 5.81 (0.000) 5.70 (0.000) 5.61 (0.000) 5.22 (0.000)
Silabenzene 4.76 (0.647) 4.71 (0.644) 5.22 (0.729) 5.06 (0.697) 4.92 (0.675) 4.23 (0.059)
MD: 0.19 0.16 0.44 0.34 0.25 –
MAD: 0.40 0.41 0.50 0.43 0.40 –
RMSD: 0.52 0.52 0.61 0.54 0.48 –
SD: 0.50 0.51 0.44 0.43 0.42 –
MAX: 1.55 1.53 1.34 1.12 0.94 –
a Structures and reference values (SCS-CC2/aug-cc-pVXZ (X=D,T)) from Ref. S5. b Best estimate energy value
from Ref. S6 (CCSD value for oscillator strength).

3.4 State-splittings

Except for aspirin (taken from Ref. S5), the systems considered in this set are taken from

Thiel’s 2008 benchmark set.S6 From these, problematic systems and states were discarded:

aromatic systems, where the population of the LUMO in the (N + 2) reference is not clear

(i.e., benzene, naphthalene, pyrrole, s-triazine) or if the excited states cannot predominantly

be described by a occupied orbital-to-LUMO transition, according to TD-BHLYP/TZVP

calculations (i.e., if (X2 − Y 2)i→LUMO < 0.50) . Furthermore, butadiene, hexatriene, and

octatetraene are not considered here, because we are interested in the state splitting between

singly excited states. It is noted here, that hh-TDA can describe the doubly excited states,
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but that these are blue-shifted in the linear-response-type response kernel formulation with

any hh-TDA functional combination (i.e., the state ordering for hexatriene and octatetraene

is incorrect). Ethylene and furan (lowest state) in Thiel’s set have been moved to the lowest

vertical local excitation set (see above).

In the state-splitting set below, two states are included for each molecule. The only exception

is pyrimidine where four states are considered. The states were selected by means of TD-

BHLYP/TZVP calculations and identified to be dominated by excitations to the π∗ LUMO.

The latter calculations were done in TurbomoleS11–S13 and also used to confirm the state

characters.
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Table S9: Vertical excitation energies computed with hh-TDA for different states on small
molecule. Unless noted otherwise, systems are taken from Ref. S6. Hartree Fock and different
global hybrid functionals are considered and the spherical def2-SV(P)S9,S10 basis set is used
throughout. The values are given in eV (dimensionless oscillator strength in parentheses).

system state B3LYP PBE0 BHLYP HF ref.a

Acetamide 11A” n → π∗ –c –c –c 8.11 (0.018) 5.80 (0.001)
21A′ π → π∗ –c –c –c 10.10 (0.370) 7.27 (0.223)

Acetone 11A2 n → π∗ –c –c –c 6.67 (0.000) 4.40 (0.000)
21A1 π → π∗ –c –c –c 11.51 (1.093) 9.40 (0.256)

Adenine 11A” n → π∗ 5.25 (0.000) 5.40 (0.000) 6.24 (0.000) 7.87 (0.001) 5.12 (0.001)
31A′ π → π∗ 4.75 (0.811) 4.94 (0.839) 5.71 (0.941) 7.15 (1.123) 5.25 (0.297)

Aspirin 21A π → π∗ 4.84 (0.318) 5.01 (0.303) 5.65 (0.371) 6.63 (0.454) 4.80 (0.022)b

31A n/π → π∗ 5.03 (0.149) 5.19 (0.141) 6.03 (0.030) 7.10 (0.019) 5.36 (0.001)b

Cyclopentadiene 11B2 π → π∗ 4.24 (0.191) 4.45 (0.203) 5.30 (0.238) 6.96 (0.328) 5.55 (0.097)
21A1 π → π∗ 6.54 (0.696) 6.76 (0.711) 7.52 (0.663) 8.78 (0.562) 6.31 (0.648)

Cyclopropene 11B1 σ → π∗ 7.18 (0.025) 7.32 (0.004) 7.23 (0.004) 7.21 (0.003) 6.76 (0.001)
11B2 π → π∗ 6.03 (0.247) 6.19 (0.359) 6.98 (0.302) 7.90 (0.140) 7.06 (0.083)

Cytosine 21A′ π → π∗ 4.91 (0.235) 4.89 (0.278) 5.10 (0.170) 5.32 (0.083) 4.66 (0.058)
11A” n → π∗ 5.54 (0.023) 5.42 (0.001) 5.58 (0.000) 5.80 (0.000) 4.87 (0.002)

Formaldehyde 11A2 n → π∗ 4.34 (0.000) 4.32 (0.000) 4.16 (0.000) 3.93 (0.000) 3.88 (0.000)
21A1 π → π∗ 8.03 (0.490) 8.37 (0.493) 9.61 (0.269) 10.10 (0.002) 9.30 (0.374)

Formamide 11A” n → π∗ 6.80 (0.003) 6.99 (0.004) 7.83 (0.004) 5.92 (0.005) 5.63 (0.001)
21A′ π → π∗ 7.02 (0.171) 7.19 (0.174) 8.18 (0.168) 9.26 (0.612) 7.44 (0.371)

Imidazole 21A′ π → π∗ –c –c –c 8.57 (0.577) 6.19 (0.088)
11A” n → π∗ –c –c –c 8.96 (0.005) 6.81 (0.005)

Norbornadiene 11A2 π → π∗ 4.43 (0.000) 4.60 (0.000) 5.45 (0.000) 7.00 (0.000) 5.34 (0.000)
11B2 π → π∗ 5.52 (0.366) 5.71 (0.367) 6.67 (0.383) 8.37 (0.368) 6.11 (0.029)

p-Benzoquinone 11B1g n → π∗ 2.31 (0.000) 2.78 (0.000) 2.96 (0.000) 3.96 (0.000) 2.78 (0.000)
11B1u π → π∗ 4.10 (1.300) 4.33 (1.339) 5.31 (1.498) 7.00 (1.808) 5.29 (0.558)

Propanamide 11A” n → π∗ –c –c –c 8.47 (0.020) 5.72 (0.001)
21A′ π → π∗ –c –c –c 10.18 (0.296) 7.20 (0.108)

Pyrazine 11B3u n → π∗ 4.04 (0.011) 4.08 (0.010) 4.47 (0.011) 5.19 (0.012) 3.95 (0.008)
11B2u π → π∗ 5.50 (0.503) 5.60 (0.518) 5.87 (0.557) 6.61 (0.631) 4.64 (0.067)

Pyridazine 11B1 n → π∗ 3.52 (0.010) 3.62 (0.010) 4.18 (0.011) 5.07 (0.013) 3.78 (0.007)
21A1 π → π∗ 5.83 (0.544) 5.99 (0.561) 6.54 (0.618) 7.75 (0.740) 5.18 (0.014)

Pyridine 11B1 n → π∗ 4.76 (0.007) 4.86 (0.007) 5.36 (0.008) 6.21 (0.009) 4.59 (0.006)
11B2 π → π∗ 5.76 (0.523) 5.89 (0.538) 6.28 (0.583) 7.16 (0.673) 4.85 (0.022)

Pyrimidine 11B1 n → π∗ 4.45 (0.011) 4.53 (0.011) 5.02 (0.012) 5.84 (0.014) 4.55 (0.007)
11A2 n → π∗ 5.80 (0.000) 5.91 (0.000) 6.41 (0.000) 7.26 (0.000) 4.91 (0.000)
11B2 π → π∗ 5.97 (0.548) 6.13 (0.566) 6.67 (0.625) 7.88 (0.751) 5.44 (0.022)
21A1 π → π∗ 6.40 (0.520) 6.64 (0.531) 7.47 (0.563) 8.96 (0.628) 6.95 (0.038)

s-Tetrazine 11B3u n → π∗ 2.38 (0.015) 2.42 (0.015) 2.82 (0.017) 3.41 (0.019) 2.24 (0.009)
11Au π → π∗ 5.44 (0.000) 5.50 (0.000) 5.76 (0.000) 6.17 (0.000) 3.48 (0.000)

Thymine 11A” n → π∗ 5.13 (0.003) 5.20 (0.002) 5.51 (0.002) 5.94 (0.001) 4.82 (0.000)
21A′ π → π∗ 4.86 (0.745) 5.03 (0.764) 5.70 (0.811) 6.53 (0.421) 5.20 (0.222)

Uracil 11A” n → π∗ 5.02 (0.002) 5.10 (0.002) 5.38 (0.002) 5.78 (0.001) 4.80 (0.000)
21A′ π → π∗ 4.92 (0.693) 5.11 (0.718) 5.80 (0.793) 6.69 (0.356) 5.35 (0.224)

MD: 0.01d 0.14d 0.72d 1.72 –
MAD: 0.58d 0.56d 0.74d 1.72 –

RMSD: 0.73d 0.70d 0.92d 1.87 –
SD: 0.74d 0.70d 0.57d 0.74 –

MAX: 1.96d 2.02d 2.28d 2.98 –
a Best estimate energy value from Ref. S6 (CCSD value for oscillator strength). b Structure and reference values
(SCS-CC2/aug-cc-pVDZ) from Ref. S5. c A σ∗ orbital is populated in the (N + 2) electron reference instead of the π∗

orbital, hence no comparison is made. d Statistical data without acetamide, acetone, imidazole, and propanamide.
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Table S10: Vertical excitation energies computed with hh-TDA for different states on small
molecule. Unless noted otherwise, systems are taken from Ref. S6. Different range-separated
hybrid functionals are considered and the spherical def2-SV(P)S9,S10 basis set is used through-
out. The values are given in eV (dimensionless oscillator strength in parentheses).

system state CAM-B3LYP ωPBEh ωB97 ωB97X ωB97X-D3 ref.a

Acetamide 11A” n → π∗ –c –c 6.79 (0.018) 6.64 (0.018) 6.52 (0.018) 5.80 (0.001)
21A′ π → π∗ –c –c 8.42 (0.439) 8.27 (0.413) 8.12 (0.401) 7.27 (0.223)

Acetone 11A2 n → π∗ –c 5.06 (0.000) 5.53 (0.000) 5.39 (0.000) 5.26 (0.000) 4.40 (0.000)
21A1 π → π∗ –c 8.50 (0.769) 9.11 (0.866) 9.00 (0.831) 8.81 (0.805) 9.40 (0.256)

Adenine 11A” n → π∗ 5.87 (0.000) 5.76 (0.000) 6.35 (0.000) 6.16 (0.000) 6.00 (0.000) 5.12 (0.001)
31A′ π → π∗ 5.46 (0.933) 5.45 (0.933) 6.02 (1.037) 5.84 (0.997) 5.69 (0.971) 5.25 (0.297)

Aspirin 21A π → π∗ 5.59 (0.311) 5.52 (0.409) 6.04 (0.459) 5.86 (0.426) 5.72 (0.414) 4.80 (0.022)b

31A n/π → π∗ 5.44 (0.127) 5.30 (0.028) 5.53 (0.009) 5.49 (0.013) 5.43 (0.020) 5.36 (0.001)b

Cyclopentadiene 11B2 π → π∗ 4.78 (0.225) 4.68 (0.222) 5.16 (0.262) 5.02 (0.245) 4.88 (0.235) 5.55 (0.097)
21A1 π → π∗ 7.22 (0.695) 7.13 (0.713) 7.78 (0.687) 7.54 (0.690) 7.36 (0.698) 6.31 (0.648)

Cyclopropene 11B1 σ → π∗ 7.33 (0.004) 7.35 (0.004) 7.49 (0.003) 7.38 (0.003) 7.34 (0.003) 6.76 (0.001)
11B2 π → π∗ 6.37 (0.347) 6.26 (0.351) 6.55 (0.332) 6.48 (0.335) 6.40 (0.342) 7.06 (0.083)

Cytosine 21A′ π → π∗ 4.88 (0.168) 4.84 (0.170) 4.82 (0.111) 4.82 (0.123) 4.83 (0.140) 4.66 (0.058)
11A” n → π∗ 5.34 (0.000) 5.28 (0.000) 5.10 (0.000) 5.16 (0.000) 5.23 (0.000) 4.87 (0.002)

Formaldehyde 11A2 n → π∗ 4.21 (0.000) 4.23 (0.000) 4.19 (0.000) 4.18 (0.000) 4.20 (0.000) 3.88 (0.000)
21A1 π → π∗ 8.56 (0.502) 8.41 (0.502) 8.66 (0.530) 8.69 (0.496) 8.60 (0.501) 9.30 (0.374)

Formamide 11A” n → π∗ 7.51 (0.004) 6.09 (0.006) 6.06 (0.006) 6.02 (0.006) 6.04 (0.006) 5.63 (0.001)
21A′ π → π∗ 7.58 (0.178) 7.77 (0.548) 8.00 (0.580) 7.96 (0.564) 7.89 (0.556) 7.44 (0.371)

Imidazole 21A′ π → π∗ –c 6.40 (0.484) 6.89 (0.523) 6.72 (0.505) 6.58 (0.495) 6.19 (0.088)
11A” n → π∗ –c 7.22 (0.004) 7.54 (0.004) 7.40 (0.004) 7.33 (0.004) 6.81 (0.005)

Norbornadiene 11A2 π → π∗ 5.01 (0.000) 4.86 (0.000) 5.45 (0.000) 5.26 (0.000) 5.09 (0.000) 5.34 (0.000)
11B2 π → π∗ 6.25 (0.388) 6.10 (0.380) 6.80 (0.396) 6.57 (0.390) 6.38 (0.386) 6.11 (0.029)

p-Benzoquinone 11B1g n → π∗ 2.52 (0.000) 2.33 (0.000) 2.59 (0.000) 2.50 (0.000) 2.44 (0.000) 2.78 (0.000)
11B1u π → π∗ 4.93 (1.523) 4.89 (1.533) 5.51 (1.727) 5.35 (1.651) 5.18 (1.601) 5.29 (0.558)

Propanamide 11A” n → π∗ 6.83 (0.024) –c 7.12 (0.022) 6.99 (0.023) 6.85 (0.023) 5.72 (0.001)
21A′ π → π∗ 8.14 (0.325) –c 8.55 (0.377) 8.41 (0.350) 8.24 (0.340) 7.20 (0.108)

Pyrazine 11B3u n → π∗ 4.17 (0.011) 4.06 (0.011) 4.22 (0.011) 4.17 (0.011) 4.13 (0.011) 3.95 (0.008)
11B2u π → π∗ 5.97 (0.535) 5.92 (0.532) 6.52 (0.567) 6.25 (0.552) 6.08 (0.543) 4.64 (0.067)

Pyridazine 11B1 n → π∗ 3.77 (0.011) 3.65 (0.010) 3.90 (0.011) 3.83 (0.011) 3.77 (0.011) 3.78 (0.007)
21A1 π → π∗ 6.44 (0.609) 6.36 (0.602) 7.05 (0.681) 6.77 (0.647) 6.58 (0.567) 5.18 (0.014)

Pyridine 11B1 n → π∗ 4.97 (0.008) 4.87 (0.008) 5.08 (0.008) 5.01 (0.008) 4.96 (0.008) 4.59 (0.006)
11B2 π → π∗ 6.29 (0.560) 6.24 (0.556) 6.86 (0.597) 6.59 (0.580) 6.42 (0.570) 4.85 (0.022)

Pyrimidine 11B1 n → π∗ 4.69 (0.012) 4.57 (0.011) 4.82 (0.012) 4.74 (0.012) 4.68 (0.012) 4.55 (0.007)
11A2 n → π∗ 6.01 (0.000) 5.93 (0.000) 6.15 (0.000) 6.07 (0.000) 6.03 (0.000) 4.91 (0.000)
11B2 π → π∗ 6.57 (0.613) 6.49 (0.606) 7.19 (0.684) 6.90 (0.651) 6.71 (0.630) 5.44 (0.022)
21A1 π → π∗ 6.92 (0.549) 6.84 (0.546) 7.24 (0.577) 7.14 (0.564) 7.02 (0.556) 6.95 (0.038)

s-Tetrazine 11B3u n → π∗ 2.54 (0.016) 2.43 (0.015) 2.59 (0.016) 2.55 (0.016) 2.51 (0.016) 2.24 (0.009)
11Au π → π∗ 5.52 (0.000) 5.46 (0.000) 5.56 (0.000) 5.52 (0.000) 5.50 (0.000) 3.48 (0.000)

Thymine 11A” n → π∗ 5.14 (0.002) 5.05 (0.002) 5.02 (0.001) 5.03 (0.002) 5.05 (0.002) 4.82 (0.000)
21A′ π → π∗ 5.37 (0.819) 5.30 (0.812) 5.70 (0.788) 5.58 (0.806) 5.47 (0.815) 5.20 (0.222)

Uracil 11A” n → π∗ 5.01 (0.002) 4.93 (0.002) 4.89 (0.001) 4.90 (0.001) 4.92 (0.001) 4.80 (0.000)
21A′ π → π∗ 5.46 (0.796) 5.39 (0.791) 5.84 (0.862) 5.70 (0.838) 5.58 (0.820) 5.35 (0.224)

MD: 0.43d 0.26d 0.66 0.54 0.45 –
MAD: 0.61d 0.53d 0.75 0.66 0.61 –

RMSD: 0.80d 0.69d 0.95 0.84 0.76 –
SD: 0.68d 0.65d 0.70 0.64 0.63 –

MAX: 2.04d 1.98d 2.08 2.04 2.02 –
a Best estimate energy value from Ref. S6 (CCSD value for oscillator strength). b Structure and reference values
(SCS-CC2/aug-cc-pVDZ) from Ref. S5. c A σ∗ orbital is populated in the (N + 2) electron reference instead of the π∗

orbital, hence no comparison is made. d Statistical data without missing data points.
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Energetic splittings between low-lying ππ
∗ and other excited states
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Figure S7: Excited state energy splittings for the excited states given in Tables S9 and S10
(pyrimidine, which has four states, is not included in this figure). Global hybrid functionals
are grouped in a), while range-separated hybrids are in grouped in b). Entries for which
no state assignment could be made, are indicated by an asterisk (see Tables S9 and S10 for
details).
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4 Basis set dependence of hh-TDA

Table S11: Vertical excitation energies computed with hh-TDA-ωB97X with different basis
sets for some small molecules. Geometries are taken from Ref. S6, while the water geometry
is taken from Ref. S14. Oscillator strengths are given in parentheses. If the state ordering
differs, the respective state label is also given in parentheses. The EOM-CCSD energies (for
comparison) are obtained with the TZVPS15 basis set.

system state STO-3G def2-SVP def2-TZVP(-f) def2-QZVP(-fg) def2-SVPD EOM-CCSD
Acetamide 11A” 5.54 (0.003) 8.11 (0.005)a 7.75 (0.008)a 7.49 (0.010)a 7.79 (0.004)a 5.72 (0.001)

21A′ 9.04 (0.653) 7.78 (0.085)a 7.44 (0.089)a 7.13 (0.086)a 7.40 (0.082)a 7.44 (0.035)c

E-Butadiene 11Bu 7.05 (1.428) 5.89 (1.372) 5.76 (1.451) 5.76 (1.546) 5.82 (1.544) 6.72 (0.801)
21Ag 8.76 (0.000) 7.35 (0.000) 7.33 (0.000) 7.50 (0.000) 7.46 (0.000) 7.41 (0.000)

Ethylene 11B1u 8.98 (0.627) 7.31 (0.632) 7.20 (0.696) 7.32 (0.753) 12.77 (0.221)a 8.51 (0.418)
11B1g 11.73 (0.000) 8.50 (0.000) 8.47 (0.000) 8.66 (0.000) –a,b 8.76 (0.000)

Formaldehyde 11A2 4.61 (0.000) 4.20 (0.005) 4.26 (0.000) 4.60 (0.000) 4.52 (0.000) 3.97 (0.000)
11B1 9.44 (0.030) 9.06 (0.004, S4) 9.26 (0.000, S4) 9.63 (0.001, S3) 9.48 (0.002, S3) 9.26 (0.003)
21A1 10.28 (0.547, S4) 8.72 (0.491, S2) 8.63 (0.496, S2) 8.86 (0.456, S2) 8.92 (0.453, S2) 9.78 (0.029)

Norbornadiene 11A2 6.73 (0.000) 5.26 (0.000) 5.24 (0.000) 5.88 (0.000) –b 5.80 (0.000)
11B2 7.96 (0.449) 6.56 (0.393) 6.52 (0.410) 7.03 (0.395) –b 6.69 (0.031)

Uracil 11A” 4.41 (0.002) 4.89 (0.001) 5.01 (0.000) 5.10 (0.000) 5.14 (0.000) 5.12 (0.000)
21A′ 6.45 (0.972) 5.69 (0.840) 5.58 (0.783) 5.59 (0.763) 5.62 (0.764) 5.70 (0.236)

Water 11B1 11.78 (0.008) 6.96 (0.017) 7.25 (0.044) 7.30 (0.087) 7.64 (0.120) 7.81 (0.036)
21A1 16.43 (0.195) 9.31 (0.108) 9.52 (0.137) 9.51 (0.144) 9.78 (0.156) 10.33 (0.116)

a A σ∗ orbital is populated in the (N + 2) electron reference instead of the π∗ orbital, resulting in a different nature of the excited
states. b Davidson procedure failed due linearly dependent subspaces. The def2-TZVP(-f) and def2-QZVP(-fg) basis sets
correspond to the def2-TZVP and def2-QZVP basis sets S9 without basis functions with angular momenta higher than l = 2. c The
brighter low-lying 1A′ state, which is of ππ∗ character, is S4 with 7.85 (0.231).

5 Comparison of hh-TDA and pp-TDA

Table S12: Excitation energies (in eV) computed with hh-TDA and pp-TDA with the linear
response (LR) type response kernel (this work) and the Hartree-Fock (HF) response kernel
employed by Yang and coworkers (see main text for details). Particle-hole TDDFT (Tamm-
Dancoff approximated, TDA) calculations and EOM-CCSD calculations were conducted for
comparison. All calculations use the spherical TZVPS15 basis set. We chose DFAs, which
we expect to perform best for both schemes, i.e., a range-separated for hh-TDA and a GGA
for pp-TDA. Oscillator strengths and state ordering are denoted in parentheses. The state
labels are taken from Ref. S6. a SCF for the (N-2)-reference calculation did not converge.

Molecule State Ref. EOM-CCSD TDA-ωB97X hh-TDA-ωB97X (LR) hh-TDA-ωB97X (HF) pp-TDA-PBE (LR) pp-TDA-PBE (HF)

Ethene 1B1u (ππ∗) 7.8 8.51 (0.418, S1) 8.30 (0.571, S2) 7.20 (0.694, S1) 9.30 (0.720, S2) 6.64 (0.558, S1) 9.12 (0.512, S2)

Butadiene 1Bu (ππ∗) 6.18 6.72 (0.801, S1) 6.44 (1.053, S1) 5.77 (1.452, S1) 7.07 (1.472, S2) 4.30 (0.969, S1) 6.39 (1.000, S2)

2Ag (ππ∗) 6.55 7.41 (0.000, S2) – 7.35 (0.000, S2) 7.05 (0.000, S1) 7.09 (0.000, S2) 5.98 (0.000, S1)

Hexatriene 1Bu (ππ∗) 5.10 5.72 (1.257, S1) 5.39 (1.613, S1) 4.93 (2.316, S1) 5.74 (2.204, S2) 3.22 (1.374, S1) 4.93 (1.436, S2)

2Ag (ππ∗) 5.09 6.61 (0.000, S2) – 5.95 (0.000, S2) 5.59 (0.000, S1) 5.64 (0.000, S2) 4.33 (0.000, S1)

Octatetraene 2Ag (ππ∗) 4.47 5.98 (0.000, S2) – 5.08 (0.000, S2) 4.77 (0.000, S1) 4.59 (0.000, S2) 3.37 (0.000, S1)

1Bu (ππ∗) 4.66 5.07 (1.727, S1) 4.72 (2.168, S1) 4.34 (3.192, S1) 4.89 (2.961, S2) 2.60 (1.773, S1) 4.09 (1.948, S2)

Cyclopropene 1B1 (σπ∗) 6.76 6.96 (0.087, S1) 6.65 (0.001, S1) 7.24 (0.003, S2) 6.93 (0.002, S1) – –
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1B2 (ππ∗) 7.06 7.24 (0.001, S2) 6.85 (0.122, S2) 6.35 (0.343, S1) 7.08 (0.152, S2) 5.72 (0.284, S1) 7.30 (0.262, S1)

Cyclopentadiene 1B2 (ππ∗) 5.55 5.86 (0.103, S1) 5.62 (0.151, S1) 5.02 (0.280, S1) 6.20 (0.296, S1) 4.49 (0.260, S1) 5.34 (0.161, S1)

2A1 (ππ∗) 6.31 7.05 (0.008, S2) 7.25 (0.015, S2) 7.52 (0.735, S2) 7.58 (0.476, S2) 6.99 (0.473, S2) 6.08 (0.220, S2)

Norbornadiene 1A2 (ππ∗) 5.34 5.80 (0.000, S1) 5.52 (0.000, S1) 5.24 (0.000, S1) 6.11 (0.000, S1) 4.61 (0.000, S1) 5.08 (0.000, S1)

1B2 (ππ∗) 6.11 6.69 (0.031, S2) 6.36 (0.035, S2) 6.53 (0.404, S2) 7.04 (0.307, S2) 5.81 (0.439, S2) 6.90 (0.364, S3)

Pyridine 1B2 (ππ∗) 4.85 5.27 (0.024, S2) 5.72 (0.042, S2) 6.46 (0.624, S2) 6.50 (0.619, S2) –a –a

1B1 (nπ∗) 4.59 5.26 (0.006, S1) 5.25 (0.007, S1) 5.14 (0.011, S1) 4.90 (0.010, S1) –a –a

Formaldehyde 1A2 (nπ∗) 3.88 3.97 (0.000, S1) 3.92 (0.000, S1) 4.26 (0.000, S1) 3.99 (0.000, S1) 5.25 (0.000, S1) 3.72 (0.000, S1)

1B1 (σπ∗) 9.1 9.26 (0.003, S2) 9.14 (0.001, S3) 9.23 (0.000, S4) 9.34 (0.001, S2) – –

2A1 (ππ∗) 9.30 9.78 (0.029, S3) 9.95 (0.052, S5) 8.65 (0.501, S2) 10.65 (0.500, S5) – –

Acetone 1A2 (nπ∗) 4.40 4.44 (0.000, S1) 4.44 (0.000, S1) 5.60 (0.000, S1) 5.70 (0.000, S1) 5.27 (0.000, S1) 4.36 (0.000, S1)

1B1 (σπ∗) 9.1 9.26 (0.000, S4) 9.03 (0.001, S4) 9.96 (0.029, S3) 10.09 (0.067, S3) – –

2A1 (ππ∗) 9.4 9.13 (0.074, S3) 9.34 (0.182, S5) 9.06 (0.858, S2) 10.16 (1.009, S4) – –

Benzoquinone 1Au (nπ∗) 2.8 3.19 (0.000, S2) 3.17 (0.000, S2) 2.71 (0.000, S2) 2.24 (0.000, S2) – –

1B1g (nπ∗) 2.78 3.07 (0.000, S1) 2.98 (0.000, S1) 2.63 (0.000, S1) 2.16 (0.000, S1) 2.33 (0.000, S1) 1.86 (0.000, S1)

1B3g (ππ∗) 4.25 4.93 (0.000, S3) 4.45 (0.000, S3) 4.14 (0.000, S3) 4.70 (0.000, S4) – –

1B1u (ππ∗) 5.29 5.89 (0.596, S4) 5.72 (0.623, S4) 5.31 (1.650, S5) 6.06 (1.560, S6) – –

Formamide 1A” (nπ∗) 5.63 5.66 (0.001, S1) 5.63 (0.001, S1) 6.12 (0.010, S1) 5.71 (0.006, S1) –a –a

2A′ (ππ∗) 7.44 7.52 (0.070, S2) 7.98 (0.086, S3) 7.79 (0.504, S2) 7.93 (0.502, S2) –a –a

Acetamide 1A” (nπ∗) 5.8 5.72 (0.001, S1) 5.71 (0.001, S1) 6.82 (0.011, S1) 6.74 (0.008, S1) –a –a

2A′ (ππ∗) 7.27 7.85 (0.231, S4) 8.29 (0.230, S4) 8.28 (0.405, S2) 8.29 (0.315, S2) –a –a

Propanamide 1A” (nπ∗) 5.72 5.74 (0.000, S1) 5.75 (0.001, S1) 7.13 (0.013, S1) 7.10 (0.010, S1) –a –a

2A′ (ππ∗) 7.2 7.80 (0.186, S4) 7.94 (0.065, S3) 8.37 (0.324, S2) 8.39 (0.246, S2) –a –a

s-Tetrazine 1B3u (nπ∗) 2.24 2.72 (0.009, S1) 2.63 (0.012, S1) 2.60 (0.021, S1) 2.24 (0.017, S1) 2.11 (0.011, S1) 1.96 (0.009, S1)

1Au (ππ∗) 3.48 4.08 (0.000, S2) 4.05 (0.000, S2) 5.01 (0.000, S2) 4.84 (0.000, S4) – –

Pyridazine 1B1 (nπ∗) 3.78 4.12 (0.007, S1) 4.04 (0.009, S1) 4.01 (0.015, S1) 3.78 (0.013, S1) 4.65 (0.012, S1) 2.49 (0.003, S1)

1A2 (nπ∗) 4.32 4.76 (0.000, S2) 4.75 (0.000, S2) – – 5.89 (0.000, S2) 2.90 (0.000, S2)

2A1 (ππ∗) 5.18 5.35 (0.015, S3) 5.84 (0.025, S3) 6.66 (0.606, S3) 6.89 (0.631, S3) – –

Cytosine 2A′ (ππ∗) 4.66 4.98 (0.062, S1) 5.33 (0.096, S1) 4.86 (0.135, S1) 4.18 (0.050, S2) –a –a

1A” (nπ∗) 4.87 5.45 (0.002, S2) 5.45 (0.002, S2) 5.28 (0.000, S2) 4.11 (0.000, S1) –a –a

2A” (nπ∗) 5.26 6.00 (0.000, S4) 6.05 (0.000, S3) 5.68 (0.005, S3) 4.96 (0.005, S3) –a –a

3A′ (ππ∗) 5.62 5.95 (0.186, S3) 6.33 (0.163, S4) 5.88 (0.644, S4) 5.56 (0.555, S4) –a –a

Thymine 1A” (nπ∗) 4.82 5.15 (0.000, S1) 5.20 (0.000, S1) 5.12 (0.000, S1) 4.41 (0.000, S1) –a –a

2A′ (ππ∗) 5.2 5.60 (0.234, S2) 5.65 (0.268, S2) 5.46 (0.746, S2) 5.30 (0.222, S2) –a –a

3A′ (ππ∗) 6.27 6.78 (0.075, S4) 7.08 (0.081, S4) 6.22 (0.105, S3) 5.90 (0.543, S4) –a –a

2A” (nπ∗) 6.16 6.58 (0.000, S3) 6.53 (0.000, S3) 6.47 (0.000, S4) 5.38 (0.000, S3) –a –a

Uracil 1A” (nπ∗) 4.8 5.12 (0.000, S1) 5.17 (0.000, S1) 5.06 (0.000, S1) 4.29 (0.000, S1) –a –a

2A′ (ππ∗) 5.35 5.70 (0.236, S2) 5.83 (0.258, S2) 5.63 (0.812, S2) 5.84 (0.618, S4) –a –a

3A′ (ππ∗) 6.26 6.76 (0.064, S3) 7.02 (0.079, S4) 6.21 (0.034, S3) 5.46 (0.128, S3) –a –a

Adenine 2A′ (ππ∗) 5.25 5.37 (0.003, S1) 5.66 (0.011, S2) – – –a –a

3A′ (ππ∗) 5.25 5.61 (0.315, S2) 5.74 (0.384, S3) 5.78 (1.002, S1) 5.94 (0.804, S2) –a –a

1A” (nπ∗) 5.12 5.58 (0.001, S3) 5.54 (0.001, S1) 6.22 (0.001, S2) 5.85 (0.001, S1) –a –a

2A” (nπ∗) 5.75 6.19 (0.002, S4) 6.16 (0.002, S4) – – –a –a

Mean deviation (MD) 0.43 0.38 0.36 0.43 -0.25 -0.30

Standard deviation (SD) 0.32 0.30 0.59 0.69 1.14 0.69

Mean absolute deviation (MAD) 0.44 0.40 0.54 0.67 0.98 0.59

Number of data points (N) 51 48 48 48 18 18

In Table S12, we have tabulated the excitation energies computed for a subset of excitations

from the Thiel benchmark setS6 computed with linear response (LR) and HF-type kernels

for hh-TDA-ωB97X and pp-TDA-PBE. We note that our pp-TDA-PBE (HF) results are in
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agreement with the ones presented earlier by Yang and coworkers (note that we are using a

slightly different basis set here).S16 We emphasize furthermore that, due to the lack of Fock

exchange, the pp-TDA-PBE (LR) simply corresponds to orbital energy differences at the PBE

level. A significant difference between the hh-TDA and pp-TDA schemes becomes apparent

when looking at systems that involve both ππ∗ and other types of excitations (i.e., nπ∗ or

σπ∗). Here, we find that hh-TDA typically provides the better option, since the configuration

space in hh-TDA is more suited to describe both excitation types simultaneously. The

nucleobases and carbonyl systems are particularly good cases for hh-TDA, which can describe

most low-lying excitation types reasonably well. For pp-TDA-PBE, we encounter problems

for many of these systems, since the SCF of the double cation fails to converge. In the

amide systems, we find that the lowest state (nπ∗) is properly described by hh-TDA as the

lowest one. But the lack of higher lying virtual orbitals in hh-TDA results in the bright state

being the second lowest state, while it is ranked as S4 in TD-DFT and EOM-CCSD, which

provide the required virtual orbital space. Regarding the choice of the response kernel,

we observe that the HF-type response kernel typically leads to higher excitation energies

of singly excited ππ∗ states, while the other states, i.e., nπ∗, σπ∗ or doubly excited ππ∗

states (i.e., 2Ag in the polyenes) are often lowered. This can improve the state splitting

energies (e.g., hexatriene, octatetraene, formaldehyde, acetone), but can negatively affect

the overall state ordering. This is seen in formaldehyde and acetone, where other states

become lowered such that the ππ∗ then corresponds to S5 and S4, respectively. From the

series of small polyenes (butadiene through octatetraene), we see that the hh-TDA and pp-

TDA schemes are able to describe the 1Bu and 2Ag excited states. Linear-response TDDFT,

which we employ in the Tamm-Dancoff approximated scheme, cannot properly describe the

latter state due to its significant double excitation character. The LR kernel variants of

hh-TDA and pp-TDA lead to underestimated excitation energies for the 1Bu state, while

the 2Ag excited states are somewhat overestimated. The latter can be rationalized by the

insufficient flexibility in the orbital space, since the 2Ag state has contributions from the
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HOMO→(LUMO+1) and (HOMO-1)→LUMO singly excited configurations, which cannot

be described by hh-TDA and pp-TDA, respectively. As mentioned before, the use of the HF-

response kernel raises the 1Bu excitation energies while lowering the 2Ag state. This leads to

improved energy splittings for the excitations in these polyene systems. Here, hh-TDA and

pp-TDA perform equally well, with the latter showing mostly underestimated and the former

mostly overestimated excitation energies compared to the best estimate reference values of

Thiel and coworkers.S6 For the different singly excited ππ∗ states in cyclopentadiene and

norbornadiene, the LR response kernel appears to provide better absolute excitation energies,

whereas the splitting becomes better with the HF-response kernel. In summary, the best

overall performance among the pp-RPA-derived methods is found for hh-TDA-ωB97X in

combination with the LR-type kernel, which provides accuracy that is comparable to ph

TDA-DFT and is applicable to more states/systems than pp-TDA.

6 State positioning of the ethylene singlet ππ∗ state by

the hh-TDA and pp-TDA methods

Table S13: Description of the ethylene singlet ππ∗ state with the hh-TDA and pp-TDA
methods using the linear-response-type kernel (this work) and the Hartree-Fock-type kernel
(Yang and coworkers)S16–S18. Three different functionals with different amounts of Fock
exchange were used. All calculations were performed with the spherical def2-SV(P)S9,S10

basis set. Energies are given in eV, oscillator strengths given in parentheses as well as the
state label indicating the positioning among the other excited states. High-level EOM-CCSD
methods (excluding diffuse or Rydberg orbitals) describe this state to be the lowest excited
state, i.e., as S1 (see Table S12).

functional amount of Fock exchange hh-TDA (LR) hh-TDA (HF) pp-TDA (LR) pp-TDA (HF)
B3LYP 20% 6.32 (0.563, S1) 9.47 (0.565, S2) 7.39 (0.583, S1) 9.32 (0.529, S3)
BHLYP 50% 7.94 (0.622, S1) 9.95 (0.621, S2) 8.16 (0.599, S1) 9.11 (0.555, S4)
HF 100% 10.69 (0.714, S2) 10.69 (0.714, S2) 8.80 (0.589, S4) 8.80 (0.589, S4)
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Figure S8: State energies of the four lowest excited singlet states of ethylene computed
with pp-TDA ((a) and (c)) and hh-TDA ((b) and (d)) with the Hartree-Fock-type kernel of
Yang and coworkersS16–S18 ((c) and (d)) and the linear-response-type kernel ((a) and (b), this
work). Three different functionals with different amounts of Fock exchange (in parentheses)
were used. All calculations were performed with the spherical def2-SV(P)S9,S10 basis set.
The 1 1B1u(ππ∗) state is shown in blue and also labeled in each plot.

7 Twisted-ethylene pyramidalization potential energy

curve

We investigated the potential energy surfaces of the ground and first excited state of ethylene

along the torsion and pyramidalization coordinates (see main text for details and results).
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hh-TDA-ωB97X with a Cartesian def2-SVP basis was used for this purpose. In Figure S9,

we show the potential energy curves for a rigid scan along the pyramidalization angle at a

fixed torsion of 90 degrees. In addition to hh-TDA, we have computed energies with 3-state-

averaged, extended multi-state complete active space second-order perturbation method with

a (2,2) active space (abbreviated as SA3-XMS-CAS(2,2)PT2 in the following). The least-

squares tensor hypercontraction (LS-THC)S19 scheme along with the cc-pVDZ density fitting

basis setS20 was used to accelerate the computation of two-electron integrals.
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Figure S9: Potential energy curves for the S1 (blue) and S0 (red) states of ethylene along
the pyramidalization coordinate at fixed 90 degree torsion computed by hh-TDA-ωB97X
(solid lines) SA3-XMS-CAS(2,2)PT2S21 (dashed lines). The Cartesian def2-SVPS9,S10 basis
set was used for both. This accompanies Figure 5 from the main text, where the full hh-
TDA-ωB97X/def2-SVP potential energy surface computed by for ethylene is shown in the
torsion and pyramidalization coordinates. All energies are given relative to the S0 energy at
the Franck-Condon point.

In Figure S9, it is observed that the SA3-XMS-CAS(2,2)PT2 and hh-TDA-ωB97X potential

energy curves are in reasonably good agreement. In particular, comparison of the states in a

diabatic picture reveals quite some parallelity between the two levels of theory. Compared to

SA3-XMS-CAS(2,2)PT2, hh-TDA-ωB97X produces underestimated energies for the open-

shell ππ∗ and overestimated energies for the closed-shell ππ state, which in summary results
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in a conical intersection at smaller pyramidalization angles. Nevertheless, the shapes of the

both states are well-reproduced by hh-TDA.
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