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Abstract 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that does not 

currently have a robust clinical diagnostic test. Non-motor symptoms such as skin disorders 

have long since been associated with the disease and more recently a characteristic odour 

emanating from the skin of people with Parkinson’s has been identified. Here, dynamic head 

space (DHS) thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS is 

implemented to directly measure the volatile components of sebum on swabs sampled from 

people with Parkinson’s – both drug naïve and those on PD medications (n= 100) and control 

subjects (n= 29). Supervised multivariate analyses of data showed 84.4 % correct classification 

of PD cases using all detected volatile compounds. Variable importance in projection (VIP) 

scores were generated from these data, which revealed eight features with VIP > 1 and p < 

0.05 which all presented a downregulation within the control cohorts. Purified standards 

based on previously annotated biomarkers eicosane and octadecanal did not match to clinical 

data, although multiple metabolite features are annotated with these compounds all with 

high spectral matches indicating the presence of a series of similar structured species. DHS-
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TD-GC-MS analysis of a range of lipid standards has revealed the presence of common 

hydrocarbon species rather than differentiated intact compounds which are hypothesised to 

be breakdown products of lipids. This replication study validates that a differential volatile 

profile between control and PD cohorts can be measured using an analytical method that 

measures volatile compounds directly from skin swabs. 

 

Introduction 

The use of scent as an indicator for physical (and mental) biological functions has been 

associated with many disease states, such as diabetes mellitus, tuberculosis, liver and kidney 

disease and cancer.1 Although odour can be linked to many diseases it is not a commonly 

applied approach to define biomarkers in clinical diagnostic tests. The application of canine 

detection within the medical field has progressed since a pioneering report of Melanoma 

detection by Williams and Pembroke in 1989.2–4 Some characteristic odours released in bodily 

secretions and excretions can occur before many other symptoms of the disease have 

developed as previously reported in Parkinson’s disease (PD).5,6  

Odorous skin secretions are most frequently related to areas of high sweat excretion and its 

subsequent bacterial degradation. However, sebaceous gland excretion is an alternative 

process that produces a biological matrix with a signature due to volatile organic compound(s) 

(VOC(s)).7 The production of sebum from these glands occurs everywhere on the body, with 

the exception of the palms of hands and soles of feet and is most evident on the face and 

upper trunk of the body which are categorised as sebum rich locations.8  

A noteworthy non-motor symptom of PD is the development of skin related disorders such 

as seborrheic dermatitis (SD), which occurs in up to 60 % of PD patients and manifests as an 

increase in sebum production.9,10 The analysis of volatile species from skin secretions such as 

sebum and sweat is an underdeveloped methodology for clinical applications and hence there 

is no recognised standard procedure for its sampling.11,12 Gauze swabs,13 

polydimethylsiloxane (PDMS) patches,14 cigarette papers15, glass rollers or beads16,17 and 

more advanced methods such as wearable iontophoresis biosensors18 have been previously 

reported, all of which have associated advantages and disadvantages in application.19 These 
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methods have primarily been directed to the collection of sweat rather than sebum, the waxy 

lipid-rich component.  

The chemicals associated with these odorous profiles belong to the VOC class. There has been 

a rise in the development of analytical techniques to measure VOCs for clinical applications, 

most notably in the advancement of ‘electronic noses’ and within the field of breathomics.20–

24 Analysis of VOCs using gas chromatography-mass spectrometry (GC-MS) is a popular non-

selective analytical technique in which complex mixtures are separated prior to m/z detection 

of molecular and corresponding fragment ions to aid in structural elucidation. Headspace 

analysis, either dynamic or static, is a technique which promotes the volatile components of 

a sample to enter the gaseous ‘headspace’ of an enclosed vessel by the partition of a 

concentration gradient, often using a temperature incubation prior to sampling to enhance 

the process.25,26 Whilst both techniques are effective, dynamic headspace (DHS) analysis has 

the benefit of concentrating volatile species through the continuous collection of the 

headspace which is an obvious benefit for untargeted metabolomics.25  

This study leads on from earlier work which demonstrated that there was a differential 

VOC signature in Parkinson’s disease patients.5 This subsequent study provides a completely 

independent validation set of data using a different instrument alongside new patient 

samples. 

 

Experimental Methods 

Sample Participants: The participants included within this study were part of a nationwide 

recruitment process taking place at 25 different NHS clinics. This study consists of a subset of 

129 participants from three subject groups; independent controls (n=29), drug naïve 

Parkinson’s disease participants (n=17) and medicated Parkinson’s disease participants 

(n=83). Patient demographics are reported in Table S1. Ethical approval for this project (IRAS 

project ID 191917) was obtained by the NHS Research Authority (REC references: 

15/SW/0354). 

Sample Collection: Each participant was swabbed on the upper back with cotton-based sterile 

medical gauze (7.5 cm x 7.5 cm) to collect sebum present on the skin. Participants were asked 
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not to wash 24 hrs before sebum collection. The patient sampled gauze was sealed in 

background-inert plastic bags and transported to the central facility at the University of 

Manchester, where they were stored at -80 ⁰C until analysis.  

Chemicals and Materials: The chemicals and materials used in this study were: gauze swabs 

(Arco, UK), sterile sample bags (GE Healthcare WhatmanTM
, UK), 20 mL glass vials (GERSTEL, 

Germany), TENAX TA thermal desorption tubes and liners packed with TENAX TA for CIS 4/6 

liner for TDU (GERSTEL, Germany), Optima® LC-MS grade methanol (Fisher Scientific), 

HiPerSolv CHROMANORM® absolute ethanol 99.8 % purity (VWR Chemicals). The QC sample 

was comprised of a mixture of seven compounds, each sourced from Sigma Aldrich; L(-)-

carvone (27.0 µM), δ-decalactone (96.4 µM), ethyl butyrate (150.5 µM), ethyl hexanoate 

(30.5 µM), hexadecane (43.7 µM), nonane (83.07 µM), vanillin (100.8 µM), all in MeOH:EtOH 

(9:1). Octadecanal (Apollo Scientific) and eicosane (Sigma Aldrich) standards were both 99 % 

purity.  

DHS-TD-GC-MS Analytical Method: Thawed gauze swabs were aseptically transferred into 20 

mL glass vials and analysed by DHS-TD-GC-MS. During DHS pre-concentration the samples 

were incubated at 80 °C for 10 minutes to promote concentration of VOCs in the vial 

headspace. Trapping was initiated with dry nitrogen as the purge gas at a flow rate of 70 

mL.min-1 for a total gas volume of 1 L. The volatile compounds were captured on a TENAX TA 

adsorbent tube (GERSTEL, Germany) held at 40 °C. The adsorbent tube was transferred from 

the DHS unit to the TD unit (TDU) using an automated GERSTEL MPS dual head workstation, 

at which time the captured VOCs were desorbed from the TENAX sorbent. The TDU was 

operated in splitless mode and was held at 30 °C for one min before the application of a 12 

°C.s-1 temperature ramp and held at 280 °C for five min. The desorbed analytes were focused 

in a cooled injection system (CIS) which was operated in solvent vent mode, using a vent flow 

of 80 mL.min-1. The CIS was held at 10 °C for two minutes before a second 12 °C.s-1 

temperature ramp and maintained at 280 °C for five min. The CIS vent valve (and flow) was 

not initiated until three min after analyte release on the GC column and can therefore be 

classed as a splitless method. The GC analysis was performed on an Agilent GC 7890A coupled 

to an Agilent MSD 5975 interfaced by an electron impact (EI) source. Separation was induced 

by an Agilent VF-5MS column (30 m x 0.25 mm x 0.25 µm). The column flow was kept at 1 

mL.min-1. The oven ramp was programmed as follows: 40 °C held for one min, 25 °C.min-1 to 
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180 °C, 8 °C.min-1 to 240 °C and held for one min, 20 °C.min-1 to 300 °C held for 2.9 min for a 

total run time of 21 min. The transfer line to the MS was maintained at 300 °C, the EI source 

at 230°C and the Quadrupole at 150°C. The MSD operated in scan mode for a mass range 

between 30 and 800 m/z. The GC-MS system is fitted with a GERSTEL olfactory detection port 

(ODP3) using Agilent Technologies capillary flow technology (three-way splitter plate 

equipped with makeup gas). This was controlled as a 1:1 (v:v) split between MSD and ODP 

and therefore the GC eluent was diluted by a factor of two with helium makeup gas. 

Clinical samples analysis: Gauze samples from 129 subjects were analysed across seven 

stratified, randomised and blinded analytical batches. Quality Control (QC) samples were 

injected at the beginning (n=3), after every 5th injection and at the end (n=3) of each batch 

analysis. QC samples (5 µL) were used to gauge the analytical reproducibility in batch-to-batch 

analyses, which were analysed on a shorter DHS-TD-GC-MS method to enable a faster analysis 

time per analysis batch.  

Candidate biomarker standards analysis: Octadecanal and eicosane standards were run on an 

identical DHS-TD-GC-MS method to clinical samples. Headspace sampling was performed 

with 10 µL of octadecanal (37.4 µM) and eicosane (35.4 µM) in MeOH and were individually 

analysed in 20 mL vials. 

Lipid standards analysis: Lipid standards were purchased from Avanti Polar Lipids; L-α-

phosphatidylethanolamine (Brain, Porcine) (PE), L-α-phosphatidylserine (brain, porcine) 

(sodium salt) (PS) and 1',3'-bis[1,2-dioleoyl-sn-glycero-3-phospho]-glycerol (sodium salt) 

(18:1 cardiolipin) (CL) and were diluted in CHCl3 whilst L-α-phosphatidylcholine (brain, 

porcine) (PC) was diluted in MeOH. Glucosylsphingosine (GlcSph) (Sigma Aldrich) and was 

diluted in MeOH. All standards were analysed using a slightly varied analytical method to that 

of the clinical samples, the changes were as follows: a five-minute solvent vent was applied 

in addition to a further four-minute-high temperature hold at the end of the GC temperature 

gradient. The analytical method was 25 minutes in total. From a standard solution of 100 µM 

total, 20µL were analysed in separate headspace vials. Lipid standards were measured in 

triplicate alongside blank headspace vials and blank solvent analyses (both MeOH and CHCl3) 

which were measured both prior to and post lipid standard analysis. 
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Data Pre-Processing and Deconvolution: All TD−GC−MS clinical and lipid standards data were 

converted to open source mzML format using ProteoWizard.27 The dataset was deconvolved 

using in-house script using eRah package for R.28 The deconvolved analytes were assigned 

putative identifications by matching fragment spectra with compound spectra using the Golm 

database. The resulting matrices comprised of variables and their corresponding peak areas 

per sample. The clinical dataset comprised 671 features and these were further refined by 

the removal of features absent in more that 5 % of all samples, which generated a reduced 

dataset of 520 features. 

Features present in lipid standards data were filtered based upon a set of further criteria: (a) 

match factor (MF) > 75, (b) detection only in lipid sample analysis and not present in either 

blank headspace vial or solvent-only analyses, (c) abundance > 1000 counts and (d) each 

feature was present in at least two of three triplicate analyses. 

Statistical Analysis: We used a two-pronged approach with statistical investigation of data. A 

data-driven multivariate approach was used to validate if there was a differential VOC 

signature associated with PD. Further, a targeted approach was used to verify selective 

biomarker peaks.  Data were auto-scaled and all missing values replaced using spline 

interpolation prior to statistical analysis. Synthetic minority over-sampling technique 

(SMOTE) was implemented to balance the sample numbers within each class and hence 

remove possible bias to the majority class.29 Partial least squares-discriminant analysis (PLS-

DA) was executed in MATLAB (2019a) for classification and prediction of classes within 

data.30,31 Models were validated by resampling bootstrapping (n=250). Multivariate Receiver 

Operating Characteristic (ROC) analysis was performed using MetaboAnalyst Biomarker 

Analysis (Version 4.0)32, PLS-DA was implemented for classification and feature ranking with 

a two latent variable input. ROC curves were generated by balanced Monte Carlo cross 

validations (MCCV) in which two thirds of the samples were used to evaluate feature 

performance and the remaining one third were used to validate the classification. Iterations 

of this process (n=30) were performed to calculate model performance and calculate 

confidence intervals for area under the curve (AUC) for each model.33  

 

 



7 
 

Results and Discussion 

Validating Changes within VOC Profiles with the Onset of PD 

To assess and validate if there are measurable discriminant VOCs in sebum, PLS-DA models 

were generated from new independent data. Models were generated to analyse (i) the 

classification accuracy between PD (drug naïve and medicated) and control samples and (ii) 

drug naïve PD against medicated PD participants to investigate differences in the disease 

phenotype alongside any possible effects of medication on this measured phenotype. An 

average correct classification rate (CCR) of 84.4 % was obtained by combining the drug naïve 

and medicated PD cohorts in which the CCR was validated via bootstrapping (n=250) (Figure 

1). This prediction rate is similar to the average CCR (86 %) achieved by PLS-DA with 5-fold 

cross validation reported in our pilot study.5 Patient demographics were assessed to 

determine if they impacted the classification accuracy within the model. This is discussed in 

detail within the Supplementary Information alongside significance tests for metadata 

parameters (Table S2). In summary, no significant confounding effects were observed on PLS-

DA classification due to gender (Figure S1), BMI, alcohol intake or smoking (Figure S2) or age.  

 

 

Figure 1: PLS-DA classification model for a two-class input using combined drug naïve and 

medicated PD cohorts vs. controls. (A) Histogram reporting the distribution of the correct 

classification rate for the null (grey) and observed (blue) distributions obtained from 
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bootstrap validation (n=250) of the PLS-DA classification model. (B) A chart displaying the true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) classification rates. 

This classification validates findings from our initial TD-GC-MS study which revealed a unique 

VOC signature that can be associated to PD patients and be measured by the headspace 

sampling of sebum collected non-invasively. It is noted that the measured VOC profiles 

between drug naïve PD and medicated PD cohorts did not classify well, with a CCR of 66.7 % 

and had poor validation by permutation testing (Figure 2). This indicates that the sampled 

VOCs do not have sufficient discriminatory power to classify between drug naïve and 

medicated PD but can distinguish PD from control, indicating that the associated odour profile 

is fundamental to PD. It can therefore be hypothesised that there is minimal change within 

the VOC profile after the onset of PD, with treatment, and/or that our classification of the 

disease based on drug naïve vs. medication does not translate well to clinical PD staging.  

 

 

Figure 2: PLS-DA classification of drug naïve PD vs. medicated PD in which medicated PD was 

the positive predictive class (A) Histogram reporting the distribution of Correct Classification 

Rates (CCR) for the null (grey) and observed (blue) distributions obtained from bootstrap 

validation (n=250) of the PLS-DA classification model. (B) A chart reporting the classification 

rates from the PLS-DA model.  
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Discriminatory Features in PLS-DA Classification Modelling 

Variable importance in projection (VIP) scores were calculated for the two-class PLS-

DA model: combined PD vs. controls. A multivariate ROC analysis was performed for 

compounds (n=12) with VIP score > 1 (Figure 3A). The area under the curve (AUC) values 

increase as the number of features included in the model increases, in conjunction with a 

reduction in the confidence interval (CI) range. The predictive power of model increases going 

from a two-variable classifier up to seven-variable classifier, however, begins to plateau 

following this threshold. The compounds that had high VIP scores (top 10 %) were further 

selected (n=50)  and ROC analysis was performed, showing the same trend of increasing AUC 

values until a plateau between the five-variable and ten-variable models, which is consistent 

with the previous ROC analysis (VIP > 1). This is presented in Supplementary Figure S3.  

Figure 3: Multivariate ROC curve analyses to evaluate the performance of VIP compounds in 

biomarker models. Resampling was used to calculate 95 % confidence intervals (CI) using a 

Monte Carlo Cross Validation (MCCV) approach. (A) Each coloured line represents the ROC 

curve using a specific number of variables, these are listed in the bottom right hand corner 

from red (two-variable) to yellow (12-variable), generated from all compounds with VIP > 1. 

(B) ROC curve displaying the sensitivity and specificity of all eight-variables (VIP >1, p <0.05) 

combined; the shaded bands represent the 95 % CI for this model. 
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Mann-Whitney non-parametric U tests between PD and control cohorts were 

performed for selected compounds (VIP > 1) and eight of these compounds were found to be 

statistically significant with p < 0.05.  ROC analysis of these compounds provides an improved 

classification model (Figure 3B) in which the addition of all eight features improves the AUC 

to 0.872 and the lowest CI range (0.801-0.942). Figure S4 displays the individual ROC curve 

for each added compound in this model. Due to limitations of volatile compound 

identification within this study, species are simply referred to as ‘VIP features’ (1-8). Box and 

whiskers plots for these eight compounds are reported in Figure S5 alongside calculated fold 

changes (non-scaled). Each feature is downregulated within the PD cohort with fold changes 

ranging from 0.2 to 0.73 between PD and control cohorts. 

Targeted Analysis of Previously Identified Biomarkers 

The following stage of the study concerned investigating the presence and significance 

of a panel of candidate biomarkers obtained from the results of our previous study.34 A 

targeted data analysis approach was performed for the four target compounds: octadecanal, 

eicosane, hippuric acid and perillaldehyde. The data matrix revealed that multiple features 

were annotated with the same compound identification for each of these targets based upon 

high similarities of their fragmentation pattern signatures. Database spectral matching 

typically returns a match factor (MF), in this case between 1 and 100, which indicates the 

similarity of an experimentally recorded spectrum to that of a database spectrum based on 

the presence of molecular and fragment ion peaks and their relative intensities. Eicosane and 

octadecanal each returned three identification matches, respectively, in which these 

annotations were the primary ID, falling within a two to three-minute retention time (RT) 

window. Standards of eicosane and octadecanal were analysed using an identical analytical 

method and the corresponding reference spectra were matched against these highlighted 

features within the clinical sebum data. Although retention times could not be matched, there 

was a high similarity between mass spectra (MF >90). It can be inferred that these putative 

assignments based on spectra matching result from closely related molecular species that 

have large hydrocarbon chains, for example lipids. Sebum is composed of large number of 

lipid species such as triglycerides, fatty acids and wax esters.35,36 Thus, it is not surprising to 

observe multiple closely related lipid peaks. 
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To corroborate this inference, lipid standards were purchased and analysed to 

investigate the resultant chromatographic spectra from known standards. Evidence from two 

parallel studies analysing PD and control sebum, using liquid chromatography-MS37 and paper 

spray-MS,38 have shown the primary compounds of interest can be putatively assigned to a 

series of lipids. Lipid mixtures were investigated to distinguish the type of species detected in 

(non-derivatised) lipid DHS-TD-GC-MS experiments and to then evaluate their compound 

annotation in the same libraries. Each lipid standard mixture yielded a large number of 

resolvable compound features across each chromatogram that had high database spectral 

MF scores and good reproducibility across replicates. Between 68 % and 87 % of these 

features were annotated as hydrocarbon species assigned to at least two detected variables. 

A list of the hydrocarbon species detected within the lipids standards data is reported in Table 

1, alongside the number of discrete features provided with this annotation. Definitive 

annotation of large, chemically similar hydrocarbons, like lipids is challenging because of the 

obvious similarities expected in their fragment products. This is further confounded by the 

large number of conceivable structural isomers for each hydrocarbon, for example, dodecane 

the most frequently detected species in the data has 355 possible isomers. These experiments 

were repeated using a traditional liquid injection GC-MS experimental setup for the analysis 

of some of these lipid standards (Table S3) and a similar trend in recurring hydrocarbon 

features was noted. We hypothesise that the overlap of compound annotations across 

distinct deconvolved features in our clinical sebum data arises from the decomposition of lipid 

species.  

For example, lipid oxidation is a well-known mechanism for lipid degradation and can 

proceed via an assortment of pathways dependent on the lipid and enzyme in question and 

the type of oxidation. These reactions produce a variety of product species including 

hydrocarbons, alongside aldehydes, ketones, alcohols, esters and acids.39,40 Therefore, the 

multiple instances of hydrocarbon species that are reproducibly detected throughout lipid-

based chromatographic analyses (both clinical and from standards) are due to lipid 

decomposition. Such degradation can lead to an accumulation of large concentrations of 

common hydrocarbon chains of different lengths. Similar products due to the loss of more 

distinctive structural moieties, such a lipid head groups, are readily observed upon collisional 

activation and in source dissociation of these labile compounds. These results provide a vital 
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insight into the expected profile upon analysis of the hydrocarbon rich lipid-based biological 

matrix that is sebum. The identification of pure, large molecular weight lipids standards by 

GC-MS is challenging and data shown here yields an array of product species across the 

chromatographic domain, unquestionably the myriad of endogenous and exogenous 

compounds in sebum will offer a greater challenge. Prior to the generation of comprehensive 

annotated databases that reflect this chemical complexity, it is likely that biomarker detection 

will consist of Metabolomics Standards Initiative (MSI) level 2 feature detection rather than 

the verification of compounds. 

Table 1: Putative ID and chemical formula of the hydrocarbon species present within the lipid 

standards data. The number of distinct features that are annotated with this compound ID 

are listed beside. 

    Number of features 
Putative ID Chemical Formula PE  PC PS CL  GlcSph 
Decane C10H22 2 0 2 2 0 
Dodecane C12H26 9 4 6 7 6 
Tridecane C13H28 1 0 0 1 0 
Tetradecane C14H30 2 0 2 0 0 
Pentadecane C15H32 2 0 2 2 2 
Hexadecane C16H34 6 1 2 6 1 
Heptadecane C17H36 2 2 4 3 1 
Nonadecane C19H40 0 0 1 2 0 
Eicosane C20H42 2 2 4 3 0 
Heneicosane C21H44 0 0 0 0 1 
Docosane C22H46 0 1 0 1 0 
Tricosane C23H48 3 0 3 2 0 
Tetracosane C24H50 0 0 0 0 2 

The lipid abbreviations are as follows; PE: Phosphatidylethanolamine; PC: Phosphatidylcholine; PS: 
Phosphatidylserine; CL: Cardiolipin (18:1) and GlcSph: Glucosylsphingosine  
 

The remaining candidate biomarker compounds - hippuric acid and perillaldehyde - 

could only be identified in a derivatised form with trimethylsilyl and methoxime adducts, 

respectively. Again, multiple features were assigned these annotations and they spanned a 

wide chromatographic range, therefore annotation of neither of these prospective 

biomarkers could be reliably verified within this dataset. A direct limitation of analysing a 

biological matrix without derivatisation is the limited compound annotation using commercial 

databases, which comprise majorly of derivatised compounds. The dominating method in GC-

MS analysis for metabolomics approaches uses chemically derivatised sample extracts and 
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therefore biologically relevant compound spectra are often of derivatised forms. Further 

work is needed in the area of database curation for non-derivatised, biologically relevant, 

volatile species present in a sebum as a biological matrix, to enable confident compound 

identification using DHS-GC-TD-MS. 

Conclusion 

Volatile organic compounds from sebum measured using DHS-TD-GC-MS can 

accurately discriminate between PD and control samples.  Our results validate previous 

findings that VOCs measured from skin have a differential profile in Parkinson’s disease that 

can be modelled using PLS-DA analysis. Putatively annotated biomarker candidates from our 

previous study could not be validated within this dataset. However, multiple features were 

putatively annotated as two of these candidates (octadecanal and eicosane) and derivatised 

compound annotations were associated to the remaining two biomarkers (hippuric acid and 

perillaldehyde). Spectral matching to an in-house database of standards viz. octadecanal and 

eicosane yielded high spectral similarity (MF > 90), although retention times did not match.  

This leads us to conclude that these compounds have very similar structures and/or could be 

common breakdown products of larger species in which the discriminatory structural moiety 

was lost as a neutral fragment.  This hypothesis was strengthened with the analysis of lipid 

standard mixtures, which reveal the detection of common hydrocarbon species. Compounds 

selected using VIP scores-based ranking from PLS-DA modelling, performed well in 

multivariate ROC analysis and each metabolite feature showed a fold change relating to a 

lower expression in PD samples. These compounds have not been annotated with putative 

identifications due to poor performance of database matching to available GC-MS mass 

spectra libraries. Future studies will create an in-house GC-MS database for both spectral and 

RT matching that will address current bottleneck in the field for annotation of non-

derivatised, biologically relevant VOCs.  
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