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Abstract

According to WHO, the current Coronavirus disease situation is 8,506,107 confirmed and
455,231 death cases in approx 216 Countries, areas, or territories. For the treatment of
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drug repurposing seems to
be an effective strategy as it could shorten the time and reduce the cost compared to de novo
drug discovery. For that, we need to identify target binding sites. Thus, we have reported for
the first time structural druggability assessment for SARS-CoV-2 proteome a pan-
druggability prediction based on the open-source pocket detection code fpocket and rank
them on the basis of druggability score. We have identified in a total of 433 pockets on the
SARS-CoV-2 proteome and characterized by physicochemical descriptors. In which, 47
pockets identified as druggable and 71 as potential drug-binding pockets. Further, Docking of
antiviral & antimicrobial phytomolecules against druggable pockets identifies potential
SARS-CoV-2 inhibitors eg. Theaflavin, Baicalin, Menthol, Eugenol, Catechin.

Keywords: SARS-CoV-2 Pocketome, drug repurposing, Virtual screening, Target-based
drug discovery, druggability

1. Introduction

Corona Virus Disease 2019 (COVID-19) has become a global pandemic. This COVID-19
disease caused by a novel new member of the betacorona virus genus and is closely related to
severe acute respiratory syndrome coronavirus (SARS-CoV) [1-3]. This is a positive-sense,
single-stranded RNA, named as a SARS-CoV-2 [4]. People get easily infected with this virus
in close contact with infected person through droplet infection produced from coughs or
sneezes that resulted in millions of people demise around the world. So there is an urgent
need to identify molecules that inhibit or kill the SARS-CoV-2 via targeting essential target of
the virus life cycle.

However, experimental approaches for drug repurposing are costly and time-consuming.
Computational approaches such as structure based virtual screening (SBVS) offer novel
testable hypotheses for systematic drug repositioning. SBVS, specifically based on the
identification of candidate pockets in protein structures [5]. However, limited information is
available on SARS-CoV-2 structure and their binding sites and limited structures are
available in PDB (SF:1). In this work, a combination of in silico tools and an in-house script
was primarily used to predict the binding pockets of SARS-CoV-2 proteome and further rank
them on the basis of druggability score (DS). Druggability is the probability of small drug-
like molecules binding to a given target protein with high affinity. We report for the first time
the structural druggability assessment for SARS-CoV-2 proteome a pan-druggability
prediction based on the open source pocket detection code “fpocket”[6]. This method
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calculate several physicochemical descriptors like hydrophobicity score (HS), polarity
score(PS), total, polar and apolar solvent accessible surface area (SASA) to characterize each
pocket. These physicochemical properties will guide more focused screening against the
SARS-CoV-2. SARS-CoV-2 Pocketome (A pocketome representing the entire
druggable/binding sites of an organism) can be efficiently utilized for drug repurposing and
inhibitor screening to accelerate drug design processes. To show the applicability of this work
in SARS-CoV-2 inhibitors identification, we have docked known antiviral phytomolecuels to
these 118 pockets.

2. Materials and Methods
2.1. Modelling of SARS-CoV-2 proteome

SARS-CoV-2 proteome was modelled at SWISS-MODEL based on the NCBI reference
sequence NC_045512 as SARS-CoV-2 proteome as repository
(https://swissmodel.expasy.org/repository/species/2697049) [7]. In this study, SARS-CoV-2
proteome divided into two part, i) Model that have generated from experimental structure of
SARS-CoV-2 present in PDB and 1i) part in which template structure were not from the
SARS-CoV-2, model was generated from remote homologue.

2.2. Pocket prediction of SARS-CoV-2 proteome

Fpocket is an open source pocket detection package based on Voronoi tessellation and alpha
spheres [6]. As an output fpocket will return all atoms used for pocket detection from the
input PDB file. A python script was written to retrieve the 3D coordinate of amino acid from
the atom file and write into pdb format with their pocket number. Physicochemical properties
for each pocket plotted as a bar plot to compare and understand the nature of the pockets.

2.3. Docking of antiviral drug and natural antiviral molecules

We have selected phytomolecules reported against influenza virus and other essential oil
individual component (ST:1) from selected Umbelliferae and Labiatae plants that have
antimicrobial and antiviral activity. These molecules were docked against 118 pockets that
have been selected on the basis of DS (=0.1) and Volume (=400A) with the help of
Autodock4.2. We have considered pockets with volume =2 400A because this has been
suggested that size of drug molecules shows that the median number of “heavy” (i.e.,
nonhydrogen) atoms is 24 with a typical envelope of around 400 A [8]. Grid was place at the
centre of the each pocket and the grid size was set to 60AX60AX60A. Other parameters were
set to default.

3. Result & Discussion
3.1. SARS-CoV-2 proteome and pockets

This study emphasize on comprehensive analysis of the pocketome of SARS-CoV-2. The
properties like DS, HS, PS, volume and SASA of identified pockets indicate that particular
pocket able to accommodate what kind of a ligand i.e. size of a ligand, polarity, charge and
hydrophobicity. Pockets with good druggability are identified and selected for docking with
natural antiviral and antimicrobial activity.
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3.2. Papain-like proteinase (PL-PRO) or Nsp3

PL-PRO is responsible for the cleavages of N-terminus of the replicasepolyprotein to release
Nspl, Nsp2 and Nsp3, which is essential for correcting virus replication [9]. In total we
have identified 25 pockets (SF:2a) in Nsp3. Among these, only pocket 1 have DS of 0.201
and rest showed less than <0.06 score.

Pocket 1 has largest volume (1146.59A) and highest PS with charge score of — 2. (SF:2b)
Polar SASA of pocket 1 (113.16;&) is greater than the Apolar sasa (59.171&) indicates the
polar nature of the pocket 1. The amino acid residues in Nsp3 pocket 1 are ALA99I,
ASN1012, ASP909, ASP1047, GLN1014, GLU906, GLU912, GLY908, GLY 1011, LEU907,
LYS902, MET953, PR0O992, PR0O993, SER990, THR1046, TYR1009, TYR1013 and
TYR1018. Four pockets have volume = 400A, pocket 3, pocket 7, pocket 9 and pocket 21.

3.3. 3C-like proteinase (3CL-PRO) or M""

3C-like proteinase also called a viral main protease (M"°)/ Nsp 5. The M, is first
automatically cleaved from poly-proteins to produce mature enzymes, then further cleaved
downstream Nsps at 11 sites to release Nsp4—Nspl6[10]. M exists as monomer and
homodimer but only the homodimer shows catalytic activity and essential in the life cycle of
the virus. M™™ predicted to have 13 pockets (Fig:1). Pocket 2, predicted to has the highest DS
of 0.187, highest PS 12 and volume 1094.7A. Other pockets have DS less than
0.01(SF:2a;2b). Pocket 2, of MP™® is polar in nature and 2 charge score similar to papain
pocket 1. The amino acid residue involve in MP™ Pocket 2 are ALA255, ALA260, ASP263,
GLY251, LEU262, SER 254, THR 224 , VAL247, VAL261 . In this case Fpocket correctly
predicted the ligand binding pocket e.g. when we aligned pocket 2 on 6lu7, bound ligand
N3, sits in pocket 2. Pocket7 is the only pocket has volume greater than 400A.
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Fig:1 Identified SARS-CoV-2 MP™ pockets visualization, bar chart showed properties for
each pocket and one of the druggable M"™ pocket, pocket 2 interaction with theaflavin (ball
& stick).

3.4. Non-structural protein 7 (Nsp7)

Nsp7 interact with Nsp8 and may participate in viral replication by acting as a primase and
might help in activate RNA-synthesizing activity of Pol [11]. Five pockets were identified in
Nsp7. Pocket 2 has highest DS (0.632) followed by Pocket 4 (0.178) and pocket 5 (0.109)
(SF:3a; 3b). Other pockets have DS less than 0.1. Pocket 2 has volume 243.26A, apolar sasa
85.74, and polar sasa 24.64, HS of 63 and one negative charge score. Amino acid residues of
pocket 2 are ASP67, GLN63, ILE68, LEUS6, LEUS9, LEU60, LEU71, MET62, and VALG66.
Pocket 2 seems to have smaller volume but have largest total SASA make it easily exposed
and accessible.

Pocket 4 has highest HS 72.16 but its volume is smaller than pocket 2 and have zero score for
charge and polar sasa. Result showed that Pocket 4 have small hydrophobic pocket with no
polar residue. Amino acid residues in pocket 4 are THR9, VAL12, LEU13, VAL16, METS52,
LEUS56. Among druggable pocket 2, 4 and 5, pocket 5 has highest volume (320.39 A) and
residues ALA 30, GLN31, GLN34, LEU35, VAL58 with low hydrophobicity, polar and
charge score. Given properties indicated these pockets are smaller in nature and will not able
to accommodate larger ligands.

3.5. Non-structural protein 8 (Nsp8)

Similar to Nsp7, Nsp8 forms a hexadecamer with Nsp7 (8 subunits of each) that may
participate in viral replication by acting as a primase. Alternatively, might be able
tosynthesize substantially longer products than oligonucleotide primers. The Nsp7_Nsp8
complex increases the binding of Nsp12 to RNA and enhances the RdRps enzyme activity of
Nspl2 [11].

Four pockets were identified in Nsp8 (SF:4a) out of which, only pocket 1 showed DS of
0.279, have highest HS (53.778) and zero charge score (SF:4b). The residue involve in pocket
1 are ASN140, LEU128, MET129, PHE147, THR141, THR148, TYR149, VAL130, and
VAL131. Polar and apolar sasa is equally distributed in pocket 1 and its volume is 303.62A.
These results indicate it can accommodate only small sized hydrophobic ligand.

3.6. Non-structural protein 9 (Nsp9)

Nsp9 may be act as an important target being involved in viral replication as an sSRNA-
binding protein. Total 5 pockets were identified in Nsp9, pocket 1 and pocket 2 have high DS
of 0.581 and 0.482 respectively (SF:5a). Pocket 1, is largest pocket (volume 587.33A) with
and total SASA 158.37 in which major portion is apolar sasa 111.10 and has HS of 28.73
(SF:5b). Amino acid residues involve in this pocket are ARG39, ASP60, GLY37, GLY38,
ILE6S, ILE91, LYS58, MET12, PHE40, PHES6, PRO57, SER59, THR64, THR67, VALA41.
Pocket 2 is second highest druggable pocket, volume of 546.17A and has larger hydrophobic
area with highest HS of 78.11 and large total sasa (178.34). Pocket 2 is consist of amino acid
residues CYS73, GLN113, LEU88, LEU103, LEU106, LEU112, PHE75, PHE90, VAL76.



3.7. Non-structural protein 10 (Nsp10)

Nspl0O, plays a pivotal role in viral transcription by stimulating both Nspl4 3'-5'
exoribonuclease and Nspl6 2'-O-methyltransferase activities. Therefore plays an essential
role in viral mRNAs cap methylation. Nsp10 form hetero-oligomeric complexes with both
Nspl4 and Nsp16.

Total 6 pockets were identified in NsplO (SF:6a), in which pocket 5 and pocket 1 has DS
0.573 and 0.14 respectively. Pocket 5 has highest volume (528.67&), total sasa (169.97) and
HS (39.33) among other pockets with one positive charge score (SF:6b). Amino Acid in
pocket 5 are ALA23, ALA26, ARG78, CYS79, GLN36, ILE38, LEU75, PRO37,
THR39,TYR27, TYR30, VAL21.Pocket 1 has small (volume 271.39A) hydrophobic pocket
(HS 37) and zero charge score. Amino acids in this pocket are ASN114, ASP91, ILESS,
LEU92, THR111, THR115, TRP123, and VAL116. Pocket 2 is the biggest pocket (volume
656.831&) in Nsp10 however, the DS(0.002) is very low.

3.8. RNA-directed RNA polymerase (Pol/RdRp)

Nspl2, a conserved protein in coronavirus, is an RNA-dependent RNA polymerase (RdRp)
and the vital enzyme of coronavirus replication/transcription complex [11]. In the study of
SARS-CoV and MERS-CoV inhibitors, Nsp12-RdRp has been used as a very important drug
target. In principle, targeted inhibition of Nsp12-RdRp could not cause significant toxicity
and side effects on host cells [12]. Responsible for replication and transcription of the viral
RNA genome. Fpocket predicted total 63 pockets in RdRp (SF:7a). Pocket 1, 2, 3, 6, 9, 17
and 47 showed DS of 0.867, 0.799, 0.13, 0.189, 0.314, 0.156, and 0.76 respectively.
Physicochemical properties for these pockets are motioned in (SF:7b). Other than these high
druggable pockets, there are fifteen pockets, which have volume = 400A. These pockets are
1,4, 10, 11, 16, 18, 22, 30, 46, 47, 55 and pocket 60(SF:7b).

3.9. Uridylate-specific endoribonuclease (NendoU/Nspl5)

Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the
cleaved bond. In Nspl5, pockets 3, pocket 1 and pocket 10 showed DS of 0.702 0.624 and
0.271 respectively among twenty-one pockets identified (SF:8a).

Pocket 3 comprises of amino acid LYS46, THR47,THR 48, LEU49, LYS89, ARG90, ASPI1,
ALA92, PRO93, HIS95, ILE96, and PRO270. Pocket 3 has a volume of 482.97A with low
HS (5.33), high PS (7), and 3 charge score, showed the polar nature of the pocket. Total sasa
of pocket 3 is 161.07 suggested that pocket is exposed.

Pocket 1 is largest pocket (volume 667.65A) in Nspl5 and also had large total sasa indicate
that it also exposed to solvent with larger polar sasa (SF:8b). Pocket 1 also showed low HS
(10) and highest PS (16). These results indicate pocket 1 is most polar pocket in Nsp 15 with
zero charge score. Amino acid residues in pocket 1 are ARG198, ASN199, ASP267, ASP272,
ASP296, GLN201, GLU68, LEU200, LEU251, LEU265, LYS70, LYS89, LYS276, MET271,
SER197, THR166, TYR278, VAL294.

Pocket 10 has a volume 402.83,&, HS 15.41, PS 8 and 3 charge score. Amino acid involve in
pocket 10 are ASP239, GLN244, GLY246, GLY247, HIS234, HIS242, HIS249, LEU245,
LYS289, THR340, TYR342, VAL291.



Other than pocket 1, 3 and 10 there are three pockets, have volume greater then 400A and
may accommodate drug lilge molecules. These pockets are Pokcet 2, Pocket 14 and pocket 20
and have a volume 509.81A, 482.61A, 637.76A respectively.

3.10. 2'-O-ribose methyltransferase (Nsp16)

Functional annotation of Nsp16 says it’s a methyltransferase that mediates mRNA cap 2'-O-
ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a
prerequisite for binding of Nspl6. Therefore plays an essential role in viral mRNAs cap
methylation which is essential to evade immune system.” So targeting pockets of Nspl6
might be very useful. Nsp16 also forms a hetero-oligomeric complex with Nsp10.

Total 20 pockets were identified in Nspl6 (SF:9a). Among these, pocket 4, pocket 3 and
pocket 7 showed highest DS of 0.174, 0.147 and 0.125 respectively. Amino acid involve in
pocket 4 are ASN101, ASP 99, ASP114, ASP130, ASP133, CYS115, GLY71, GLY73,
GLY113, LEU100, LYS135, MET131, PHE70, PHE149, PRO134, SER98, TYR132. Pocket
4 has low HS (9.47), high PS (8) and negative charge score of -3, indicating that its large
(665.31A), polar negatively charge pocket (SF:9b).

Pocket 7 has 2™ largest in size and has volume 977.82A with a HS 20.23, PS 13 and charge
score -4 and has largest total sasa, indicating that pocket is exposed, both hydrophobic and
polar residues are present in the pocket. The residues in pocket 7 are ALA121, ARG66,
ARG283, ARG287, ASN122, ASN286, GLN158, GLU264, GLU284, GLY213, ILE267,
ILE282, LEU163, LEU212, LEU262, LYS123, LYS160, LYS214, SER261, TYR21I,
VAL289.

Pocket 13 smaller in size as compared to pocket 4 and 7. It has volume of 299.68A, HS
49.39, PS 2 and zero charge score. It a small hydrophobic pocket surrounded by ALA45,
GLN&7, ILE40, LEU244, MET247, PHE245, PRO37, THR48, VAL44 amino acid residue.
Other than pocket 4, 7 and 13 there are three pockets, have volume greater then 400A and
may accommodate drug like molecules. Pocket 1 biggest pocket in Nsp16 with a volume of
1090.08A. Pocket 11 and pocket 19 has a volume of 415.88A and 478.67A respectively.

3.11. Protein 7a

Fpocket identified four pockets in protein 7a (SF:10a). Highest DS (0.275) was observed in
Pocket 1 which is surrounded by amino acid residues GLN21, GLN76, HIS19, LEU31,
LEU77, LYS32, TYR20, TYR75. Pocket 1 also showed highest HS (35.62), PS (6) and
charge score (2) in comparison to other pockets. However, pocket 1 occupy small volume of
242.43A and total sasa of 74.31(SF:10b). Protein 7a is Non-structural protein and dispensable
for virus replication in cell culture.

3.12. Nucleoprotein (NC)

Uniport functional annotation says, NC “packages the positive strand viral genome RNA into
a helical ribonucleocapsid (RNP) and plays a fundamental role during virion assembly
through its interactions with the viral genome and membrane protein M and also plays an
important role in enhancing the efficiency of subgenomic viral RNA transcription as well as
viral replication”.



In total 8 pockets were identified (SF:11a). Pocket 5 showed highest DS with negative HS -
4.16, PS 3, charge score 2 and volume 302.77A (SF:11b). These properties of pocket 5
exhibit its highly polar nature. Amino acid residues involve in pocket 5 are LYS65, PHE66,
PRO67, PRO168, THR166, LYS169. Two other pockets, Pocket 1 and 2 have volume greater
than 400A.

3.13. Helicase

Helicase (Nspl3), a multi-functional protein. N-terminal structure contains 26 cysteine
residues to form a Zn2+ binding domain and helicase domain with a conserved motif at the
C-terminus. Importantly, it has been reported that the SARS-Nspl3 sequence is conserved
and indispensable, and is a necessary component for the replication of coronavirus.
Therefore, it has been identified as a target for anti-viral drug discovery, but there are few
reports about Nsp13 inhibitors [12].

Total 39 pockets (SF:12a) were identified in Nsp13 in which only pocket 32 showed DS
greater than 0.1. Volume (2029.96) and total sasa (630.63) suggested that pocket 32 is biggest
accessible pocket in Nsp13 with major apolar residues and few polar residues (SF:12b). The
residues are ALA509, ALAS522, ARG502, ARG507, ARG594, ARGS595, ASN503, ASN596,
CYS471, GLU498, GLUS91, GLYS527, ILE493, ILES25, ILES45, ILES7S, ILES92, LEUS00,
LEUS526, LEU28, LEUS573, LEU590, LYS473, MET474, PHE475, PHE499, PHESI11,
PROS504, PRO593, THR501, THR547, TRP506, TYR476, TYRS543, VAL495, and VAL496.
Pocket 25, 30, 33, 35, 36, 37, 38, 39 has volume 2 400A.

3.14. Spike protein

Spike protein S1 attaches the virion to the cell membrane by interacting with host receptor,
initiating the infection. Binding to human ACE2 and CLEC4M/DC-SIGNR receptors and
internalization of the virus into the endosomes of the host cell induces conformational
changes in the S glycoprotein. Total 91 pockets were identified, pocket 1, 6, 12, 19, 36
showed drugaability score greater than 0.10 (SF:13a). Pocket 5, 10, 12, 19, 26, 52, 54, 57, 58,
76, 82, 85, 87, 90 and 91 has volume = 400A. Physicochemical properties of these pockets
are listed in (SF:13b)

Up till know we have discussed the pockets of SARS-CoV-2 for that partial or whole
structure is available in PDB. Now we have predicted the pocket form the SARS-CoV-2
model structure for those experimental structures still not deposited into the PDB and some of
them are model with their remote homologues. These are low quality models. So we have
treated as a separate category.

3.15. Host translation Inhibitor Nspl (Nspl)

Inhibits host translation by interacting with the 40S ribosomal subunit by suppressing host
gene expression, Nspl facilitates efficient viral gene expression in infected cells and evasion
from host immune response. For Nspl, total 11 pockets were identified in which two pockets,
pocket 1 and 2 have DS of 0.474 and 0.201 respectively (SF:14a). Apart from these pockets,
pocket 7 and pocket 10 has volume above 400A (SF:14b).

3.16. Non-structural protein 2 (Nsp2)



May play a role in the modulation of host cell survival signaling pathway by interacting with
host PHB and PHB2 proteins. In total five pockets predicted (SF:15a). Out of which only
pocket 3 has DS of 0.346, HS 48.4 and zero value for polar and charge score. Indicated that
pocket 3 have hydrophobic in nature however, pocket size is very low 151.314A. There is
another pocket, pocket 1 predicted to have largest volume 948.5 1A (SF:15b).

3.17. Non-structural protein 4 (Nsp4)

Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles
necessary for viral replication. Total 10 pockets were identified in Nsp4 (SF:16a). Pocket 2
has DS 0.432, volume 560.76A (SF:16b) and polar in nature as the pocket have high PS and
low HS. Pocket 4 is largest pocket (volume 714.07A) in Nsp4.

3.18. Non-structural protein 6 (Nsp6)

Only remote homologues were identified as potential template structures. No pockets were
identified.

3.19. Envelope small membrane protein (E protein)

Interacts with the accessory proteins 3a and 7a and plays a central role in virus
morphogenesis and assembly, induction of apoptosis. Acts as a viroporin and self-assembles
in host membranes forming pentameric protein-lipid pores that allow ion transport. In E
protein total 40 pockets were identified in which pocket 2, 7, 20 , 23, 29 37, 39 and 40
predicted to have very good DS (SF:17a;17b). Apart from these pocket, Pocket 24, 25, 32, 33
and 34 have volume greater than 400A might accommodate drug like molecules.

3.20. Membrane Protein (M protein)

Component of the viral envelope that plays a central role in virus morphogenesis and
assembly via its interactions with other viral proteins. Only remote homologues were
identified as potential template structures. Only 1 pocket identified with a DS 0.365 with HS
33.6, PS 2, charge score zero and has volume 382.33A (SF:18a; 18b).

3.21. Non-structural protein 6 (Ns6)

Uniport annotation suggests that it could be a determinant of virus virulence and seems to
stimulate cellular DNA synthesis in vitro. Only remote homologues were identified as
potential template structures. Only 2 pockets were identified in which pocket 1 has DS of
0.256 and pocket 2 has zero DS. However, the pocket is relatively small with volume
161.86A and 234 A respectively (SF:19a; 19b).

3.22. Protein non-structural 7b (Ns7b)

No homologues were identified as potential template structures for modelling.

3.23. Non-structural protein 8 (Ns8)

It might play a role in host-virus interaction. Only remote homologues were identified as
potential template structures. Total eight pockets predicted out of which pocket 4 has good



DS of 0.692, volume 529.66/0%, HS of 38.12, PS 80 and 1 charge score (SF:20a; 20b). Pocket 3
has biggest pocket in Ns8 with volume of 956.52A.

3.24. ORF9b protein

Thirteen pockets were identified in ORF9b in which pocket 1 is the biggest pocket (volume
1011.11&) with highest DS score of 0.98. HS, PS, charge score, and total sasa are 56.94, 4, 2
and 166.85 respectively (SF:21a). Pocket 2, pocket 9 and pocket 13 have volume greater than
400A so selected as potential druggable pockets (SF:21b).

3.25. Uncharacterized protein 14: May play a role in host-virus interaction
No homologues were identified as potential template structures for modelling.
3.26. ORF 10 protein

No homologues were identified as potential template structures for modelling.
3.27. Docking of antiviral and antimicrobial phytomolecules against 118

Tinosporinone, Theaflavin, Menthol, Eugenol, Curcumin, Coumarin, Catechin, Carvacrol,
Baicalin, Andrographolide were showed high binding affinity with multiple pockets (SF:22-
30). In which Theaflavin shown highest docking binding affinity towards multiple targets
Fig: 2. Docking results showed that these compounds have high binding affinity towards
spike protein, Helicase, MP™, Nsp14, Nsp3 pockets. Theaflavin, and Baicalin showed highest
binding affinity with spike and M , Eugenol, menthol, ajoene, allicin, carvacrol, and
coumarin are predicted to bind well into spike protein pocketl (Table:1) and Ursolic and
Andrographolide showed highest biding affinity towards Nspl4 pocket2. Tinosporinone,
catechin and curcumin showed highest binding affinity towards Nsp3, MP®, helicase
respectively. Top five pockets from the docking of were listed in ST:1. Top pockets for rest of
the phytomolecules listed in ST:2.

Fig: 2 The binding energy interaction network for the SARS-CoV-2 Pockets with theaflavin
(centre). The target node size and colour depend on the binding energy scores, ie. greater the
affinity, larger the node size; darker the colour.



Tablel: Results of molecular

docking of phytomolecules against 118 pockets.
Phytomolecules against influenza virus showed better binding affinity towards SARS-CoV-2

pockets. Best pocket against top hits molecules listed with their docking score.

Natural Compunds Pockets Binding energy kcal/mol
1. Theaflavin spike_pocket19 -16.51
2. Baicalin Mpro_pocket2 -15.02
3. Andrographolide Nspl4_pocket2 -12.42
4. Curcumin Helicase_pocket32 -12.56
5. UrsolicAcid Nspl4_pocket2 -11.85
6. Catechin Mpro_pocket2 -11.19
7. Tinosporinone Nsp3 pocket21 -10.3
8. Geranly ester Helicase Pocket 32 -9.51
9. Farnesol Spike Pocket 10 -8.46
10. | Linalyl Oxide Spike Pocket 10 -8.31
11. | Eugenol spike_pocket10 -7.71
12. | Menthol spike_pocket10 -7.09

4. Conclusion

This study gives us the first look at the all binding site for small ligands in the SARS-CoV-2
Structural proteome. We have identified 433 pockets in total and for these pockets
hydrophobicity, polarity, solvent accessible surface area (SASA), charge, and volume were
calculated that will suggest the nature of pockets and may facilitate the better computational
screening of compounds against SARS-CoV-2. Further, we have docked
antiviral/antimicrobial phytomolecules to 118 druggable pockets to identify SARS-CoV-2
natural inhibitors. Finally, for the first time, we have done the comprehensive druggability
assessment of SARS-CoV-2 for better and effective screening of compounds as well as for
target identification active drug/compounds.
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Non-structural protein 7 (Nsp7)
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Non-structural protein 8 (Nsp8)
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Non-structural protein 9 (Nsp9)
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RNA-directed RNA polymerase (Pol/RdRp)
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Uridylate-specific endoribonuclease (NendoU/Nsp15)
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2'-0O-ribose methyltransferase (Nsp16)
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Nucleoprotein (NC)
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Spike protein
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SF: 13. SARS-CoV-2 spike protein pockets visualization in different colour and bar chart

showed physicochemical properties for each pocket



Host translation Inhibitor Nsp1 (Nspl):
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Non-structural protein 2 (Nsp2)
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Non-structural protein 4 (Nsp4)
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Envelope small membrane protein (E protein)
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17. SARS-CoV-2 Envelope small membrane protein (E protein) pockets visualization in

different colour and bar chart showed physicochemical properties for each pocket
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SF: 18. SARS-CoV-2 Membrane Protein (M protein) pockets visualization in different colour
and bar chart showed physicochemical properties for each pocket
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SF: 19. SARS-CoV-2 Membrane Protein (M protein) pockets visualization in different colour
and bar chart showed physicochemical properties for each pocket
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SF: 20. SARS-CoV-2 Membrane Protein (M protein) pockets visualization in different colour
and bar chart showed physicochemical properties for each pocket
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21. SARS-
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showed physicochemical properties for each pocket
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SF: 22. The binding energy interaction network for the SARS-CoV-2 pockets with
Tinosporinone (centre). The target node size and colour depend on the binding energy scores, i.e.
greater the affinity, larger the node size; darker the colour.
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SF: 23. The binding energy interaction network for the SARS-CoV-2 Pockets with Menthol
(centre). The target node size and colour depend on the binding energy scores, i.e. greater the
affinity, larger the node size; darker the colour.
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SF: 24. The binding energy interaction network for the SARS-CoV-2 Pockets with Eugenol
(centre). The target node size and colour depend on the binding energy scores, i.e. greater the

affinity, larger the node size; darker the colour.
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SF: 25. The binding energy interaction network for the SARS-CoV-2 Pockets with Curcumin
(centre). The target node size and colour depend on the binding energy scores, i.e. greater the
affinity, larger the node size; darker the colour.
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SF: 26. The binding energy interaction network for the SARS-CoV-2 Pockets with Coumarin
(centre). The target node size and colour depend on the binding energy scores, i.e. greater the
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SF: 27. The binding energy interaction network for the SARS-CoV-2 Pockets with Catechin
(centre). The target node size and colour depend on the binding energy scores, ie. greater the

affinity, larger the node size; darker the colour.
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SF: 28. The binding energy interaction network for the SARS-CoV-2 Pockets with Carvacrol
(centre). The target node size and colour depend on the binding energy scores, ie. greater the
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SF: 29. The binding energy interaction network for the SARS-CoV-2 Pockets with Baicalin
(centre). The target node size and colour depend on the binding energy scores, ie. greater the
affinity, larger the node size; darker the colour.
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SF: 30. The binding energy interaction network for the SARS-CoV-2 Pockets with
Andrographolide (centre). The target node size and colour depend on the binding energy scores,
ie. greater the affinity, larger the node size; darker the colour.



Supplementary Tables

Table ST:1 Top five pockets identified for the phytomolecules reported against influenza
virus are listed here with binding energy

Pockets Id Phytomolecules Binding Energy
(kcal/mol)

1 | Spike_Pocket10_Exp_Vol 5386591 | Ajoene -6.89

2 | Nsp3_Papainpocketl_Exp_Ds 5386591 | Ajoene -6.25

3 | Nspl2_Pocket3_Exp_Ds 5386591 | Ajoene -6.21

4 | Nspl4_Pocket2_Exp_Vol 5386591 | Ajoene -6.13

5 | Nsp3_Papainpocket21_Exp_Vol | 5386591 | Ajoene -5.94

6 | Spike_Pocket10_Exp_Vol 65036 Allicin -5.75

7 | Nsp3_Papainpocket21_Exp_Vol | 65036 Allicin -4.94

8 | Nspl4_Pocket2_Exp_Vol 65036 Allicin -4.78

9 | Nsp3_Papainpocketl _Exp_Ds 65036 Allicin -4.76

10 | Spike_Pocket19_Exp_Ds 65036 Allicin -4.7

11 | Nspl4_Pocket2_Exp_Vol 5318517 | Andrographolide | -12.42

12 | Helicase_Pocket32_Exp_Ds 5318517 | Andrographolide | -11.73

13 | Spike_Pocket12_Exp_Ds 5318517 | Andrographolide | -11.63
14 | Mpro_Pocket2_Exp_Ds 5318517 | Andrographolide | -11.62
15 | Orf9b_Pocket]l_Model_Ds 5318517 | Andrographolide | -11.5
16 | Mpro_Pocket2_Exp_Ds 64982 Baicalin -15.02
17 | Nspl4_Pocket2_Exp_Vol 64982 Baicalin -14.97
18 | Orf9b_Pocketl _Model_Ds 64982 Baicalin -14.85
19 | Spike_Pocket12_Exp_Ds 64982 Baicalin -14

20 | Spike_Pocket19_Exp_Ds 64982 Baicalin -13.81
21 | Spike_Pocket10_Exp_Vol 10364 Carvacrol -7.27

22 | Nsp3_Papainpocketl_Exp_Ds 10364 Carvacrol -6.47




23 | Spike_Pocket19_Exp_Ds 10364 Carvacrol -6.43
24 | Nsp3_Papainpocket21_Exp_Vol | 10364 Carvacrol -6.35
25 | Helicase_Pocket32_Exp_Ds 10364 Carvacrol -6.17
26 | Mpro_Pocket2_Exp_Ds 9064 Catechin -11.19
27 | Nspl4_Pocket2_Exp_Vol 9064 Catechin -11.1
28 | Nsp12_Pocketl_Exp_Ds 9064 Catechin -10.65
29 | Nsp3_Papainpocketl_Exp_Ds 9064 Catechin -10.52
30 | Helicase_Pocket25_Exp_Vol 9064 Catechin -10.43
31 | Spike_Pocket10_Exp_Vol 323 Coumarin -7.42
32 | Nsp3_Papainpocket21_Exp_Vol | 323 Coumarin -6.64
33 | Nspl6_Pocket4_Exp_Ds 323 Coumarin -6.48
34 | Spike_Pocket19_Exp_Ds 323 Coumarin -6.47
35 | Nsp3_Papainpocketl_Exp_Ds 323 Coumarin -6.3
36 | Helicase_Pocket32_Exp_Ds 969516 Curcumin -12.56
37 | Orf9b_Pocketl Model Ds 969516 Curcumin -11.33
38 | Spike_Pocketl2_Exp_Ds 969516 Curcumin -11.12
39 | Spike_Pocketl2_Exp_Vol 969516 Curcumin -11.12
40 | Mpro_Pocket2_Exp_Ds 969516 Curcumin -11.06
41 | Spike_Pocket10_Exp_Vol 3314 Eugenol -7.71
42 | Nsp3_Papainpocket21_Exp_Vol | 3314 Eugenol -6.99
43 | Nspl4_Pocket2_Exp_Vol 3314 Eugenol -6.52
44 | Nspl16_Pocketd_Exp_Ds 3314 Eugenol -6.52
45 | Nspl4_Pocket8_Exp_Vol 3314 Eugenol -6.47
46 | Spike_Pocket10_Exp_Vol 1254 Menthol -7.09
47 | Nsp3_Papainpocket] _Exp_Ds 1254 Menthol -6.56
48 | Nspl4_Pocket2_Exp_Vol 1254 Menthol -6.53




49 | Nsp3_Papainpocket21_Exp_Vol | 1254 Menthol -6.51

50 | Spike_Pocket19_Exp_Ds 1254 Menthol -6.48

51 | Spike_Pocket19_Exp_Ds 1.35e+08 | Theaflavin -16.51
52 | Spike_Pocket12_Exp_Ds 1.35e+08 | Theaflavin -16.22
53 | Nspl14_Pocket2_Exp_Vol 1.35e+08 | Theaflavin -15.97
54 | Mpro_Pocket2_Exp_Ds 1.35e+08 | Theaflavin -15.74
55 | E_Protein_Pocket29 Model Ds | 1.35e+08 | Theaflavin -15.22
56 | Nsp3_Papainpocket21_Exp_Vol | 42607646 | Tinosporinone -10.3

57 | Orf9b_Pocketl Model Ds 42607646 | Tinosporinone -10.13
58 | Nspl4_Pocket2_Exp_Vol 42607646 | Tinosporinone -10.06
59 | Helicase_Pocket35_Exp_Vol 42607646 | Tinosporinone -9.81

60 | Nsp3_Papainpocketl_Exp_Ds 42607646 | Tinosporinone -9.7

61 | Nspl4_Pocket2_Exp_Vol 64945 Ursolicacid -11.85
62 | Nsp16_Pocket4_Exp_Ds 64945 Ursolicacid -10.77
63 | Mpro_Pocket2_Exp_Ds 64945 Ursolicacid -10.57
64 | Nsp3_Papainpocket21_Exp_Vol | 64945 Ursolicacid -10.56
65 | Spike_Pocketl2_Exp_Ds 64945 Ursolicacid -10.03




Table ST:2. Top pockets identified for the essential oil individual component from selected
Umbelliferae and Labiatae plants compounds are listed here with binding energy

Compunds Pockets Binding Energy (kcal/mol)
1 | (-)-isopulegol spike_pocket10_exp_vol -6.87
2 | 2-decanol spike_pocket10_exp_vol -6.29
3 | 2-heptanol spike_pocket10_exp_vol -5.46
4 | Allylanisole spike_pocket10_exp_vol -6.56
5 | Alpha-pinene Nspl4_pocket2_exp_vol -6.26
6 | Anethole spike_pocket10_exp_vol -6.79
7 | Beta-pinene Nspl4_pocket2_exp_vol -6.29
8 | Borneol Nspl4_pocket2_exp_vol -6.82
9 | Bornylacetate Nspl4_pocket2_exp_vol -7.34
10 | Camphene Nspl4_pocket2_exp_vol -6.2
11 | Carvone spike_pocket10_exp_vol -7.42
12 | Citral spike_pocket10_exp_vol -7.01
13 | Citronellal spike_pocket10_exp_vol -6.81
14 | Citronellol spike_pocket10_exp_vol -6.85
15 | Cuminol spike_pocket10_exp_vol -7.35
16 | Cuminyl_alcohol spike_pocket10_exp_vol -7.35
17 | Cuminyl_aldehyde spike_pocket10_exp_vol -7.18
18 | D-limonene spike_pocket10_exp_vol -6.97
19 | Dihydrocarvone spike_pocket10_exp_vol -7.42
20 | Farnesol spike_pocket10_exp_vol -8.46
21 | Gamma-terpinene spike_pocket10_exp_vol -7.12
22 | Geraniol spike_pocket10_exp_vol -6.62
23 | Geranyl ester Helicase_pocket32_exp_ds -9.51
24 | Isoborneol Nspl4_pocket2_exp_vol -6.82
25 | Isomenthone Nspl16_pocketd_exp_ds -6.37
26 | Linalyl oxide spike_pocket10_exp_vol -8.31
27 | Methylheptane spike_pocket10_exp_vol -5.16
28 | Nerol spike_pocket10_exp_vol -7.01
29 | Piperitone Nspl6_pocket4_exp_ds -6.54
30 | Vanillin spike_pocket10_exp_vol -7.21







Pockets

Pocket 1

Pocket 2

Pocket 3

Pocket6

Pocket 9

Pocket 17

Pocketd7

Volume

488.06

530.62

376.40

560.15

464.84

348.04

443.29

Hydrophobic Polarity

ity Score Score
30.52 6
25.00 7
44.15 5
16.06 7

4.7 13
37.09 8
50.62 3

Charge
Score

30.52
25.00
44.15
16.06
4.7

37.09

50.62

Total Sasa

147.52

136.90

110.82

175.02

162.58

123.12

141.13



