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Abstract: An ensemble-docking of 50,000 natural products on a supercomputer has been performed against the 
papain-like protease, the main protease and the spike protein of the SARS-CoV-2 virus. The top compounds 
predicted to bind specifically to these protein targets are analyzed to identify common pharmacophore features. 
The functional groups more likely to lead to target engagement of these viral proteins are described and feature 
hydrophobic/resonant cores surrounded by hydrogen bonding capacities at specific locations. This work identifies 
natural products for immediate testing and suggests structural elements for anti COVID-19 drug development and 
screening.  
 

Introduction 

The fight against COVID-19 has led to an 
unprecedentedly large-scale effort to discover 
pharmaceuticals that are active against the virus or 
that cure or mitigate the ill health effects of the SARS-
CoV-2 infection. This endeavor has been so far mostly 
following a strategy of repurposing existing drugs, in 
the hope that existing pharmaceuticals will prove 
efficient against the disease. This repurposing 
approach is powerful and can help accelerate the 
availability of efficient pharmaceuticals. These existing 
pharmaceuticals have known safety profiles and are 
therefore largely “de-risked”. This approach not only 
speeds up the drug discovery process, but also limits 
its cost, by bypassing a large part of the development 
of new chemical entities (NCEs). In non-crisis, “normal” 
times, however, repurposing/repositioning efforts can 
still be lengthy processes, and typically take 1-6 years 
of preclinical and clinical research to get FDA approval 
for drugs already in use. And getting the licensing for 
the novel use of repurposed drugs can tack on as 
many as two years on the front end. It is expected and 
hoped that the approval of new drugs against COVID-
19 will be expedited by the regulatory agencies 
without, naturally, sacrificing the quality and safety of 
the drug approval process. Repurposing is, however, 
not the only approach to drug discovery against 
COVID-19. New chemical entities are likely to be 
needed, even if the repurposing effort is successful. 
Repurposed drugs may be active against the virus 
itself but may not be as efficient as against the more 
traditional targets they were developed against. In fact, 
relatively few drugs have been successfully used in 

repurposed indications1. On the other hand, NCEs, 
even if they represent the vast majority of current 
drugs, are notoriously time-consuming and expensive 
to develop. The process also suffers from a very low 
success rate (contributing to both development time 
and cost) as most NCEs are found to fail in later-stage 
pre-clinical and clinical stages of drug development 
because of unfavorable chemical profiles and their 
incompatibility with the necessary biological balance 
between efficacy and safety of biochemicals.   

This present work aims to accelerate the discovery of 
novel pharmaceutical approaches to the COVID-19 
crisis by minimizing the issues of repurposing existing 
pharmaceuticals (very few efficient drugs originate 
from repurposing) and of developing NCEs (very long 
development times and very high cost). We aim to 
identify molecules that are targeting important and 
likely druggable proteins from the SARS-CoV-2 
proteome. Our strategy is to work with natural product 
(NP) compounds, as represented by plant and animal 
secondary metabolites, and with chemical that are 
minor synthetic modifications of natural compounds. 
Natural products have chemical structures that have 
been subjected to long periods of biosynthetic natural 
selection in order to perform highly selective functions 
and have been the source of most of the known drug 
compounds leading into the last century. The 
development of synthetic drugs to treat disease, 
culminating in the introduction of rational drug design, 
has been one of the crowning achievements of modern 
scientific advancement. Despite this progress, 
compounds that result from the combined efforts of de 
novo design and synthesis and combinatorial 
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chemistry in modern drug discovery typically suffer 
problems with toxicity, off-target interactions, ADME 
(Absorption, Distribution, Metabolism and Excretion), 
and pharmacokinetic/pharmacodynamics. Natural 
product structures provide a substantially large and 
chemically diverse pool of biologically active 
compounds that have been fit to purpose through 
natural selection. As such, these compounds 
represent structures that frequently avoid many of the 
adverse biological effects observed with synthetic 
compounds. Furthermore, in periods of relative 
drought in terms of newly developed synthetic drug 
compounds, natural products periodically see a 
resurgence in popularity for drug discovery. With the 
number of new drug approvals (NDAs) and biologics 
license applications (BLAs) by the Food and Drug 
Administration in steady decline over the past several 
years (taken together, these were down 19% in 20192), 
natural products are in an ever more significant 
position in the drug discovery and development 
process. 

There are quite a number of examples of natural 
products being used in experimental screens of the 
other coronaviruses that induce deadly pneumonias in 
humans, such as SARS-CoV and MERS-CoV. For 
instance, lycorine, found in the red spider lily, Lycoris 
radiata, was reported to be a nanomolar inducer of 
virally-induced cytopathy of SARS-CoV in a high 
throughput screen of 200 plant extracts3. And some 
low-micromolar natural product inhibitors of SARS-
CoV papain-like protease, such as tanshinones4 and 
geranylated flavonoids5, have also been reported. 
Natural products were most recently used in a small 
virtual screen against human Heat Shock Protein A5 
substrate-binding domain β6, which was considered at 
the time to be one of the sites used by the SARS-CoV-
2 spike protein as a recognition site, to prevent viral 
attachment to the host cell.  

Structure-based drug discovery and docking. 
A powerful approach to develop drug candidates that 
are potent and efficient is to work from knowledge of 
the three-dimensional structure of the protein targets 
of importance in a particular disease and to identify 
small molecules that exhibit the desired chemical 
features needed to bind, or ‘dock’, to the proteins of 
interest. These molecular docking calculations 
essentially predict or estimate the binding free energy 
of a chemical in a protein. This involves computer 
programs that position a small molecule in the binding 
site of the target and evaluate an interaction energy 
between the small molecule and its protein 
environment. Traditionally, a structure-based drug 
design approach uses an X-ray crystal structure for in 
silico screening (i.e. docking). A recent application of 

this approach using chemicals from plants has 
identified already interesting potential modulators of 
SARS-CoV-2’s main protease7. However, a growing 
body of evidence indicates that small molecules bind 
to a specific conformation dynamically sampled by the 
protein at ambient temperatures, a concept known as 
“conformational selection” (the chemical selects a 
conformation of the protein to bind to, among a diverse 
ensemble of protein substructures). The computational 
equivalent to conformational selection is called 
“ensemble docking”, in which one uses several 
structures of a target to give small molecules the 
opportunity to bind to different protein target 
conformations. Generating multiple conformations of 
these macromolecules is computationally intensive 
and benefits from parallelized and docking software. 
This approach has been successfully used in our 
laboratory in the discovery of new molecular effectors 
against a variety of targets8,9, and in particular to inhibit 
protein:protein complexes10, and the superiority of 
ensemble docking over using a single crystal structure-
based docking as has been described11,12. A recent 
use of this approach has suggested possible 
repurposing against the SARS-CoV-2’s spike 
protein13. Simulating in silico such a conformational 
selection mechanism is much more computationally 
expensive than what is required for using a single 
structure, but contemporary massively parallel 
supercomputers are allowing this approach to become 
used in drug discovery campaigns. This work uses 
such a supercomputer – an HPW Cray XC50 
supercomputer – to facilitate NP-based drug 
discovery.  
 
Material and Methods 
Database of natural products 
The COlleCtion of Open NatUral producTs 
(COCONUT, version 4) database14 is a curated 
database of 423,706 unique natural products 
compounds, as well as possibly synthetic variations of 
natural products, assembled from 117 other natural 
products databases cited in scientific literature since 
the year 2000. It contains annotations of molecular 
weight, atom and bond counts, source database, logP, 
polarizability, polar surface area and an index of 
natural product likeness15,16 for each compound. The 
current version (4) of the COCONUT database was 
downloaded as a single SD file from the Zenodo 
website and split into 423,706 individual SD files. The 
2D structure files were then converted to 3D structures 
using Open Babel 2.4.117. All of the 3D SD files were 
then loaded into an MDB database using MOE 
2019.0118 and compounds with molecular weights 
greater than 600 a.u. filtered out, yielding a set of 
340,413 structures. The resulting filtered database 
was clustered by molecular weight and NPL score (an 
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index of natural product likeness)16, descriptors then 
used to select a diverse subset of 49,977 compounds 
from among the 200 clusters. These structures were 
then converted to PDBQT files with AutoDockTools 
(MGLTools 1.5.6)19,20 in preparation for molecular 
docking. 
 
Protein targets. 
The proteases in SARS-CoV-2 are targets of choice in 
the search for treatments for COVID-19, as there are 
known HIV-1 and Hepatitis C protease inhibitors in 
use, indicating the druggability of these targets. The 
interactions between these inhibitors and the active 
sites of their target proteases are highly specific and 
the active sites, themselves, are highly conserved 
among viral families. The enzyme that cleaves the viral 
polypeptide into its component non-structural proteins 
is referred to as the main protease (Mpro) and is 
essential for viral replication. It is a homodimer with 
catalytic sites facing away from each other, and away 
from the dimer interface region. It is highly similar in 
sequence to the other 3-chymotrypsin-like proteases 
(3CLpro) found in other coronaviruses, such as SARS-
CoV (96% identity)21, MERS, and porcine epidemic 
diarrhea virus (PEDV). The main proteases in 
Coronaviridae all possess catalytic sites composed of 
a dyad of cysteine and histidine that work in concert to 
cleave peptide chains at specific sites, residing in a 
groove that selectively interacts with primarily aromatic 
side chains – in much the same way chymotrypsin 
performs the same function, although using a catalytic 
triad. 
Along with the main protease, the papain-like protease 
(PLpro) is an essential enzyme in SARS-Co This work 
uses such a powerful supercomputer to facilitate NP-
based discovery, the Cray/HPE Sentinel -2 that lies in 
the N-terminal region of the much larger multidomain 
NSP3, and is flanked by other catalytic sites that 
perform several functions, such as the nearby ADP-
ribose-1″-phosphatase. The crystal structure used in 
this present work is this N-terminal region that contains 
the protease and two ubiquitin binding sites involved in 
the de-ubiquitinylation of host recognition receptors 
that look for pathogenic macromolecules, interfering 
with the innate immune response. innate immune 
response22. The catalytic site is that of a classic 
cysteine protease, consisting of a cysteine-histidine-
aspartate triad, which resides at the junction of the 
“palm” and the “thumb” of the larger “hand” domain. 

In addition to these two enzymes, we are also targeting 
in this work the so-called ‘spike protein’. This protein 
studs the surface of the coronavirus membrane and 
gives the virus the appearance of a crown, or corona, 
under the electron microscope – hence the name 
coronavirus. It functions to anchor the virus to the 

angiotensin-converting enzyme 2 (ACE2) on host cell 
membranes to start the membrane fusion process and 
so invade the host cell. The spike protein is also the 
primary viral feature targeted by host cell antibodies. In 
order to evade recognition by host immune systems, 
this protein is partially glycosylated. Since the process 
of this glycosylation occurs within the host cell and 
some amount of serendipity is involved in the process, 
the pattern of glycosylation is not the same for every 
newly-constructed spike protein. This results in each 
viral coat looking slightly different to the host immune 
system, so that one type of antibody may not recognize 
the same virus twice because of variations in spike 
glycoslation23,24. 

Protein target conformational ensembles 
Structures for the spike protein, main protease and 
papain-like protease were obtained from the freely 
available molecular dynamics simulation coordinate 
files from the Oak Ridge National Laboratory & 
collaborating laboratories SARS-CoV-2 webpage 
(https://coronavirus-hpc.ornl.gov/data/). These 
structures are representative conformations clustered 
from the trajectories of 100 ns restrained temperature 
replica exchange molecular dynamics simulations of 
the proteins13 using GROMACS 4.525, and starting 
from the Protein Databank Bank entries 6Y2E (main 
protease), 6W41 (spike protein) and 6W9C (papain-
like protease). The ten most populated conformations 
from each set of clustered structures were used as an 
ensemble for molecular docking, with each structure 
being prepared as individual PDBQT files using 
MGLTools 1.5.6.  

Molecular Docking 
The docking code used in this study was AutoDock 
Vina26 1.1.2, which was compiled from source for use 
on the Sentinel system in a massively parallel manner. 
Docking boxes were constructed using the AutoDock 
plugin for Open Source PyMOL27 1.8.4.0. In the case 
of the spike protein, a large box containing the entire 
ACE2 receptor binding domain (RBD), referencing 
PDB ID: 6VW1, was constructed. For the two 
proteases, smaller boxes were located around their 
catalytic sites, with a larger region including the S1 and 
S2 sites in the binding groove of the main protease. 
Scripts were used to submit large numbers of 
individual docking jobs to the Sentinel queue with a 
Vina exhaustiveness value of 10 and a maximum 
number of returned poses per docking run of 10. 

Supercomputing 
This work was performed on Sentinel, an HPE Cray 
XC50 single cabinet supercomputer located in the 
Microsoft Azure public cloud data center. Sentinel is a 
48-node system, featuring 1920 physical Intel Skylake 
cores operating at 2.4GHz with 192GB ram per node. 
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The XC50 utilizes the Aries interconnect28 in a 
Dragonfly topology. These systems have SMT/HT 
enabled, resulting in 3840 effective CPU cores. A 
shared 612 TB Cray HPE ClusterStor-based parallel 
file system is mounted on every node. The Altair PBS 
Pro scheduler is used for workload distribution. 

Autodock Vina 1.1.2 was obtained from the download 
site (http://vina.scripps.edu/download.html). The code 
was updated to use the C++ Boost library 
(https://www.boost.org), version 1.65. Autodock Vina 
was statically compiled on an Ubuntu 18.04 Linux 
system utilizing the GCC 8.4.0-1ubuntu1 compiler. The 
Makefile C_OPTIONS variable, specifying the 
compiler options, was set to  

-O3 -DNDEBUG -fpermissive -march=skylake 
-mtune=skylake -mavx2 -malign-
data=cacheline 

 

Pharmacophore analysis 
The top 500 unique natural product poses for each 
protein target were retained for further evaluation. In 
each case, the docking scores for the top 500 poses 
showed no correlation with molecular weight, which 
indicates no particular bias of the score with respect to 
the size of the chemicals. Compounds that appeared 
more than once in the top 500 unique compound lists 
for Mpro, PLpro and spike protein were considered 
promiscuous and removed from each list. In addition, 
compounds that exhibited more than one violation of 
the Lipinski “drug-likeness” criteria, as calculated with 
the MOE “drug-like” molecular descriptor, were not 
included in the final lists of results. The number of 
compounds that fulfilled the above criteria, i.e., i) 
appeared in the top 500 docking scores of only one of 
the three proteins and ii) predicted to be “drug-like” is: 
204 compounds for papain-like protease, 232 
compounds for the spike protein, and 164 compounds 
for the main protease. Of these, the top 100 natural 
products were superimposed on their respective 
predicted protein targets binding locations in which 
they were predicted to bind. The compounds that were 
found to dock to the correct binding site (i.e., in the 
active sites of the main protease and of the papain-like 
protease, and on the ACE2/spike protein interface) 
were kept for pharmacophoric analysis. This analysis 
was performed using the program MOE and identified 
the chemical features that at least 25% of the natural 
products exhibited in common in corresponding 
binding sites.  
 

Results and Discussion 

Performance of Vina on Sentinel 

A preparation and an initial run script were written that 
enabled users to create and enqueue jobs. Each Vina 
calculation required less than 90 seconds to run on a 
single processor. With a test set of 12,000 calculations, 
running these jobs serially would have required 
approximately 1.08 x 106 seconds, approximately 12.5 
days. Running across 10 CPU cores, we did see on 
average, an 8x speedup over a single CPU core. This 
parallelism combined with the above updated options, 
enabled us to complete a single calculation in 
approximately 6 seconds. For the 12,000 calculations, 
this would require approximately 72,000 seconds or 20 
hours of wall clock time to complete on a single node. 
Over 48 nodes, we measured approximately 271 
seconds for a 1% sample, or 120 runs. Typical 
supercomputing workloads are long running, parallel 
calculations, for a single large distributed task. Given 
that the Autodock Vina code required so few resources 
per calculation, yet there were many of the 
calculations, we adapted the supercomputer run 
environment to enable multiple simultaneous 
calculation runs per node. After this alteration, and 
using a modified calculation launch code, we were able 
to complete all 12,000 calculations in 468 seconds, or 
approximately 7 minutes, 48 seconds wall clock. This 
would work out to 25.6 calculations completed per 
second across the Sentinel XC50 machine. Over the 
course of 1 day of run time, this could provide 
approximately 2.22 x 106 calculations per wall clock 
day. With around 20 protein targets, running 20,000 
ligand compounds against these targets would require 
about 4 x 105 calculations. This approach would 
require approximately 4.33 wall clock hours, or 15,600 
seconds. In comparison with the original calculation 
mechanism provided by the UAH team, this would 
have required roughly 3.6 x 107 seconds, or slightly 
more than a single CPU-year of calculation time. 
Running on 10 processor cores, this would have 
reduced the original run mechanism to 4.5 x 106 
seconds, or 1.7 months of run time. This work was 
faster by about 288 times. There is room for additional 
improvement, not simply in optimizing Vina, but 
environmental optimization, algorithmic shifts, and 
work with additional tools to reduce the search space, 
but these improvements were not needed to achieve 
the desired calculations in time and will be developed 
in the future.  
 
Docking results. 
The docking outputs against each set of target 
conformations were combined and ranked by docking 
score. Duplicate instances of each compound were 
removed from the pose list, retaining only the poses 
with the best docking score for each compound. 
Computational approaches to describing 
physicochemical and structural properties that are 
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common to natural product compounds, or those that 
distinguish them from other classes of compounds - in 
a manner similar to drug-likeness - have been 
described in the literature over the past couple of 
decades. One such description of natural-product-
likeness that appears in the COCONUT database 
derives from common chemical substructures and 
atom-centered fragments among the compounds in 
the Dictionary of Natural Products29. The resulting NP-
likeness score15 ranges from a value of -5 to one of +5, 
with +5 being the most structurally similar to 
compounds in the DNP. The use of such a score was 
suggested by the authors to be useful in the virtual 
screening of large chemical databases. Here, we used 
this score as a descriptor for clustering our diverse 
subset of the COCONUT database into classes of 
natural products (SI tables). In our diverse subset, 
these values range from -3.1 to 4.7, which covers the 
same range of values found in the complete 
database. The natural products predicted to be the 
most promising potential hits against the protein 
targets in the desired binding sites (see below) have 
NP-likeness scores that range between -0.8 to +2.9, 
with a distribution centered about an NP likeness 
score of 0.5. 
 

Papain-like protease 
Figure 1 shows the location of the top 100 
compounds fulfilling the criteria above in the papain-
like protease target. The compounds can be divided 
in two clusters, shown respectively in green (40 
compounds) and blue (60 compounds) in Figure 1. 
These two clusters are located on two different sides 
of the protein, separated by a beta-sheet that is 
roughly between Asp164 and ALA249 on one side 
(green cluster), and that incorporates the binding site 
residues Cys111 and His272 on the other side (blue 
cluster). The active site of this target corresponds to 
the location populated by the blue cluster of docked 
natural products.  

 

Spike protein  
Figure 2 shows the location of the docked compounds 
in the spike protein target. As in the case of docking in 
the papain-like protease, two clusters of compound 
locations were obtained, located on two different sides 
of the loop that interacts with the ACE2 receptor: the 
blue cluster (24 compounds), located in a region 
roughly defined as between Glu144 and Lys216, and 

Figure 1. Top-scoring docked natural products on 
the papain-like protease.  

Figure 2. Top-scoring docked natural products on 
the spike protein. 

Figure 3. Cluster of of docked molecules from Figure 
2 shown on top of the spike protein (cyan) : ACE2 
protein (purple) complex. 
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the green/yellow cluster (73 compounds), located on 
the other side of the loop, in a region roughly defined 
by the residues Tyr119 and Val151. Figure 3 shows the 
interface between the spike protein (cyan protein 
backbone) and the ACE2 receptor (purple protein 
backbone). The blue cluster of docked compounds 
shown on Figure 2 is located between the two proteins 
of the spike:ACE2 receptor complex, and hence is 
likely to disrupt the protein-protein interactions 
between the two. On the other hand, the green/yellow 
cluster does not exhibit any molecule that would lead 
to steric clashes between the spike and the ACE2 
proteins. 
  
Main protease 
Figure 4 shows the locations of the docked compounds 
in the main protease target. In contrast to the docked 
positions in the spike and papain-like protein targets, 
the docking locations in the main protease exhibit 
several different potential docking locations of the 
natural products (colored greed, blue, yellow, pink and 
orange on Figure 4). The green cluster (41 molecules) 
is located the closest to the catalytic site CYS145, and 
compounds binding in that location would potentially 
act as inhibitor of the enzyme by blocking or hindering 
substrate access.  

 

 
Pharmacophore analysis 

The compounds binding to the desired locations in the 
proteins, as shown in the figures above, were analyzed 
to identify common pharmacophore features using the 
program MOE as described in Methods.  

 
Papain-like protease 
A pharmacophore analysis of the commonalities 
between the compounds docked in the active site of 
the papain-like protease is shown in Figure 5a. There 
are relatively few common regions identified as 
common between the compounds: a large region 
(orange wireframe sphere labeled “A” in Figure 5a) 
represents a resonant and/or hydrophobic group 
present within that sphere in 45% of the natural 
products predicted to bind well in the protein’s active 
site. A region (orange solid sphere labeled “B” on 
Figure 5a) indicates the perpendicular to the resonant 
plane found in 29% of the binding natural products. 
The other perpendicular to that resonant plane of 
region A would be the HIS 272 residue, suggesting that 
resonant-resonant interactions between this histidine 
residue and ligands are important for binding of natural 
products in this active site. Another 
hydrophobic/resonant region, indicated by the red solid 
sphere in Figure 5a, is found in 42% of the natural 
products binding in the site. The perpendiculars to the 
resonant plane, labelled C and D in Figure 5a, and 
present in 29% and 47% of the   ligands, respectively, 
are also common features of the natural products 
predicted to be potential ligands and inhibitors of that 
protein. These commonalities of resonant / 
hydrophobic moieties found in ligands does not mean 
that the natural products predicted to bind well in that 
protein regions must be entirely hydrophobic, and 
indeed they are not.  

Figure 5a. Pharmacophore features of the natural 
compounds predicted to bind to the papain-like 
protease’s active site and corresponding to the blue 
cluster of molecules on Figure 1. 

Figure 4. Top-scoring docked natural products in the 
main protease.  
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Figure 5b shows an example of a top-scoring natural 
product in the binding site of the papain-like protease 
active site. This compound, tetraorcinol A, is found in 
the coral-associated fungus Aspergilus versicolor LCJ-
5-4 and has been reported to be a free radical 
scavenger30. Tetraorcinol A fits the pharmacophore 
description of Figure 5a, with a resonant-resonant 
interaction between the central benzene of the natural 
compound and Trp106 from the enzyme, with the 
location of the second benzene ring and of its 
perpendicular in the other resonant orange 
pharmacophore / normal to the resonant plane regions. 
In addition, this compound has two terminal hydroxyl 
groups, one of them making a hydrogen bond with the 
backbone’s carbonyl of Asn109.  
 
Spike protein 
Figure 6a shows the most common pharmacophore 
features of the compounds predicted to bind well on 
the spike protein’s regions corresponding to the blue 

cluster of Figures 2 & 3, i.e., predicted to disturb the 
interactions between the spike protein and the ACE2 
receptor. As in the case of the papain-like protease 
results, a large region (orange wireframe sphere in 

Figure 6a) represents a resonant and/or hydrophobic 
group present within that sphere in 96% of the 
compounds. Inside that large region, 4 spheres (solid 
orange sphere on Figure 6a) contain the 
perpendiculars to resonant rings of the compounds (of 
83% of the compounds for the larger orange solid 
sphere in Figure 6a, and 79%, 46% and 29% for the 
three next large orange spheres, respectively.). In 
addition to the resonant/hydrophobic features, 39% of 
the compounds exhibit a hydrogen bond donor or a 
hydrogen bond acceptor within the location of the cyan 
solid sphere, and 26% of the compounds exhibit a 
hydrogen bond acceptor within the location of the 
purple sphere. Figure 6b shows the details of a top-
scoring natural product that fits this pharmacophore 
description. This compound, prekinamycin, belonging 
to the kinamycin class of diazofluorene antitumor 
antibiotics first isolated from the bacteria Streptomyces 
murayamaensis31–34, exhibits hydrogen bonds 
between its diazo moiety and the amine of Lys216, and 
between one of its carbonyls and the amine group of 
Arg122 (Figure 6b, left). Prekinamycin also fulfills the 
hydrophobic pharmacophore regions, making 
resonant interactions with Phe124 and Tyr141, and 
surrounded in a hydrophobic environment defined by 
the residues Leu123, Pro159 and Tyr157.  
 

Main protease 
Figure 7 shows the most common pharmacophore 
features of the compounds predicted to bind well in the 
main protein’s catalytic region (close to CYS145). A 
large region of the binding site corresponds to a large 

Figure 5b. Example of natural products docked to the 
papain-like protease’s active site and fulfilling the 
pharmacophore binding motif of Figure 5a. 

Figure 6a. pharmacophore features of the natural 
compounds predicted to bind to the spike protein and 
corresponding to the blue cluster on Figure 3. Right 
side is rotated 45 degrees from Left side.  

Figure 7. Pharmacophore features of the natural 
compounds predicted to bind to the main protease 
active site and corresponding to the green cluster on 
Figure 4. 

Figure 6b. Example of natural product docked in the 
spike protein and fulfilling the pharmacophore binding 
motif of Figure 6a. 
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region (largest orange solid sphere in Figure 7) 
representing a resonant and/or hydrophobic group in 
58% of the compounds. Next to that region, another 
region (second largest orange solid sphere in Figure 7) 
contains other resonant and/or hydrophobic groups for 
53% of the natural products predicted to bind in that 
active site. The semi-transparent blue sphere contains 
hydrogen bond acceptors or donors for 47% of the 
natural products binding in the active site, and 34% of 
the compounds are contained in a region 
perpendicular to a resonant ring in the third largest 
orange solid sphere. In addition to the 
resonant/hydrophobic features, 39% of the 
compounds exhibit a hydrogen bond donor or a 
hydrogen bond acceptor within the location of the cyan 
solid sphere, and 26% of the compounds exhibit a 
hydrogen bond acceptor within the location of the 
purple sphere.  
 
Chemical space of the computational hits 

The distribution of NP scores in the 144 hits given in SI 
tables and figures is shown on Figure 8. The 
distribution of scores across all known natural products 
exhibit higher populations in the ~0.5-~1 range of 
scores with the most populated bin of NPL score15 
having a value of 1, with the next most populated bin 
at an NP value of 0.5. This finding is comparable to 
what is seen here, albeit in this work the most 
populated bin is at a NP score of 0.5 and the second 
most populated bin is for NP score value of 1. The NP 
scores for the compounds in the entire COCONUT 
database range from -3.08 to 4.67, (Figure SI-1).  
 
Conclusions 
 
Several compounds from a diverse subset of the 
largest natural products database currently available 
have been identified as potential inhibitors of the three 
most significant targets in the SARS-CoV-2 proteome, 
CLpro, PLpro and the spike protein receptor-binding 
domain. The compounds are within the natural product 

chemical space, are relatively diverse structurally, 
although they share common chemical features as 
described in the pharmacophore analysis. The 
common chemical features suggest that the natural 
product that are predicted to bind the best to the 
protein targets exhibit a largely hydrophobic center, 
with a preference for aromatic moieties, and some 
hydrogen bond acceptors/donors on the periphery of 
this resonant core. Many of the top-scoring compounds 
that fulfill these criteria exhibit a mix of fused rings and 
heterocyclic rings, e.g. (but not limited to) flavonoids, 
and a relatively high diversity of location and nature of 
hydrophilic attachments. We list below some of the 
compounds for which organismal and/or health 
indications could be retrieved from the COCONUT 
database.  
Several structures found in the virtual screen of the 
main protease also matched at least 4 of the 6 features 
of the Mpro pharmacophore. One of these structures 
is Cassiarine E [CNP0328498], which is found in the 
cassia tree Cassia siamea, which is used in traditional 
medicines in Burma and Thailand. The medicinal value 
of the extract of this plant is attributed to a related 
compound, barakol, which has sedative and anxiolytic 
properties35,36. These structures belong to a class of 
pyranoisoquinolines known as Cassiarines (A-J), 
which are also found in the extracts of the Cassia 
family37. Yet another compound predicted to be 
potentially binding to the main protease is 5,6-dihydro, 
5α-chloro-6β-hydroxy-Jaborosalactone 5 
[CNP0252890], one of several jaborosalactones38; 
naturally-occurring Withanolide chlorohydrins found in 
the extracts of species in the genus Jaborosa that have 
been reported to act as insect anti-feedants39. These 
plants are members of the Solanaceae family and are 
widely distributed throughout South America, but 
primarily in the Andes region. 45,3-dichloro-
1(1,2),2(1,4),4,5(1,3)-tetrabenzenacycloheptaphane-
23,44,56-triol [CNP0273258], also known as 12,10’-
dichloroisoplagiochin C40 is found in Japanese 
liverwort Herbertus sakuraii. Kadcoccilactone G 
[CNP0363620] is among several other 
Kadcoccilactones41 found in Kadsura coccinea. This 
genus of climbing plant is found throughout southeast 
Asia, where K. coccinea itself is used in cuisine and 
traditional medicine to treat gastric and duodenal 
ulcers, gastroenteritis, rheumatism, lumbago, and 
dysmenorrhea42. Aspertryptanthrin B [CNP0110880], 
is found in several terrestrial and marine species in the 
genus Aspergillus, but it has not been shown to have 
biological activity, although many other indole 
diketopiperazines from this genus have reported 
cytotoxic effects43. 

Several of the natural products predicted to bind in the 
papain-like protease’s active site possess a 

Figure 8. Distribution of NP scores in the top scoring 
natural products predicted to bind at the desired sites. 
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tetrahydropyran ring. Structures found in the virtual 
screen of the papain-like protease that matched at 
least 3 of the 5 features of the pharmacophore were 
also recovered. In addition to tetraorcinol A, 6-
hydroxystaurosporinone [CNP0301743] is isolated 
from the myxomycete Lycogala Epidendrum, and has 
been reported to be a protein tyrosine kinase 
inhibitor44. Asperlicin D [CNP0245001], isolated from 
the fungus Aspergillus alliaceus, is in the family of 
mycotoxins known as Asperlicins45,46 that have been 
shown to be selective antagonists for the 
cholecystokinin receptor CCKA47,48. 1-hydroxy-4-
phenethyl-2-((3,4,5-trihydroxy-6-(1-
hydroxycyclohexyl)tetrahydro-2H-pyran-2-
yl)oxy)anthracene-9,10-dione [CNP0420259], is a 1,2-
dihydroxyanthraquinone glycoside. Many naturally-
occurring anthraquinone derivatives have been shown 
to exhibit antibacterial and antitumor activity. For 
instance, deoxy-2,3,3'4',6,7-hexahydro-8-(2,2-
dimethyl-2H-benzopyran-6-yl)-5-hydroxy-2,2-
dimethyl-2H,6H-benzo[1,2-b:5,4-b']dipyran-6-one49 
[CNP0292046] is a flavonoid found in the leaf extract 
of Artocarpus fulvicortex, a fruiting tree from Indonesia 
and Malaysia. Flavonoids isolated from this genus 
have been shown to have medicinal properties, such 
as antiplatelet50,51, antimicrobial52, anti-inflammatory53 
and cytotoxic effects54. 

Among the natural products predicted to bind to the 
spike protein in a way that would disrupt its interaction 
with ACE2, polyphenols and in particular flavonoids, 
are seen in several computational hits. In particular, 
compounds based at least in part on apigenin scaffolds 
are observed. Apigenin, interestingly, is hypothesized 
to regulate the expression of ACE255. Apigenin is found 
in many plants, and is particularly abundant in the 

flowers of the chamomile plants. In addition to 
prekinamycin A, which has been reported in the 
literature to exhibit cytotoxicity to human leukemia 
cells34, harunganin [CNP0334196], isolated from the 
dragon's blood tree, Harungana madagascariensis, 
from Madagascar and several nearby countries in 
Africa, where the extracts have been used in traditional 
medicines to treat a variety of ailments such as 
dysentery, diarrhea, anemia, typhoid and heart 
ailments56. Beccamarin57,58 [CNP0132136] was also 
found to fit the pharmacophore. This compound is 
found in the bark of the ironwood tree, Mesua 
beccariana, whose extract has been used in traditional 
medicine to treat fever, renal diseases, poultice and 
dyspepsia in Malaysia. Beccamarin has recently been 
shown to inhibit the proliferation of the Raji 
(lymphoma), SK-MEL-28 (malignant melanoma cells) 
and HeLa (cervical cells) human cancer cell lines59.  

This list can be the basis of an experimental validation 
for target engagement and against SARS-CoV-2’s 
three proteins studied here, and  for phenotypic effect. 
The pharmacophore models derived here from the 
docking calculations will be used in a subsequent 
screening of the entire Coconut database, as well as 
for extremely large databases of chemicals outside of 
the natural products space.  
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List and Coconut4 IDs of 19 top natural products predicted to be top binders in the spike protein:ACE2 
interaction surface 
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List and Coconut4 IDs of 58 natural products predicted to be top binders in the PLPRO binding site 

 
 



 18 

 
 



 19 

 
 



 20 

 
Figure SI-1: Distribution of NP scores in the top scoring natural products in the Coconut4 database 

 

PLpro hits matching all pharmacophore features 

Coconut_ID Docking_Score molecular_formula textTaxa NPL_score found_in_databases 
CNP0332080 -8.5 C24H26O9 [notax] 1.83 [supernatural2  unpd] 
CNP0403695 -8.5 C29H24N2O5 [notax] 0.39 [ibs2019mar_nc] 
CNP0110823 -8.5 C31H31N5O5 [notax] 0.44 [zincnp] 
CNP0376441 -8.4 [C26H26N3O5S]- [notax] -0.21 [chembl_np] 
CNP0077894 -8.4 C25H18N2S [notax] -0.69 [supernatural2] 
CNP0382733 -8.3 C22H14N4O3 [notax] -0.10 [ibs2019mar_nc] 
CNP0183607 -8.3 C29H34N4O2 [notax] 1.09 [zincnp] 
CNP0287331 -8.3 C31H31N5O4S [notax] 0.34 [zincnp] 
CNP0356119 -8.2 C21H16N4O [notax] -0.29 [drugbanknp] 
CNP0349877 -8.1 C28H16N2O4 [notax] -0.75 [ibs2019mar_nc  

supernatural2] 
CNP0309003 -8.1 C25H26N4O4 [notax] 0.65 [supernatural2  

zincnp] 
CNP0396391 -8.1 C28H24N4O3 [notax] -0.02 [ibs2019mar_nc  

supernatural2] 
CNP0141831 -8.1 [C30H33N4O2]+ [notax] 0.29 [supernatural2] 
CNP0297541 -8.1 C24H21N3 [notax] 0.16 [ibs2019mar_nc] 

 

PLpro hits that matching at least 3 of 5 pharmacophore features 

Coconut_ID Docking_Score molecular_formula textTaxa NPL_score found_in_databases 
CNP0332080 -8.5 C24H26O9 [notax] 1.83 [supernatural2  unpd] 
CNP0403695 -8.5 C29H24N2O5 [notax] 0.39 [ibs2019mar_nc] 
CNP0408592 -8.5 C23H16N4O3 [notax] -0.03 [ibs2019mar_nc] 
CNP0110823 -8.5 C31H31N5O5 [notax] 0.44 [zincnp] 
CNP0228546 -8.5 C31H24O9 [notax] 1.58 [supernatural2  unpd] 
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CNP0368276 -8.5 C28H20N2O5 [notax] -0.36 [ibs2019mar_nc  
supernatural2] 

CNP0093767 -8.4 C29H25NO7 [plants] 0.06 [tcmdb_taiwan] 
CNP0393385 -8.4 C24H21N3O4 [notax] 0.46 [ibs2019mar_nc] 
CNP0386161 -8.4 C30H25ClN2O7 [notax] 0.57 [ibs2019mar_nc] 
CNP0376441 -8.4 [C26H26N3O5S]- [notax] -0.21 [chembl_np] 
CNP0077894 -8.4 C25H18N2S [notax] -0.69 [supernatural2] 
CNP0420259 -8.3 C33H34O9 [plants] 0.83 [tcmdb_taiwan  

supernatural2  
zincnp] 

CNP0322100 -8.3 C21H20O10 [notax] 1.24 [supernatural2  unpd] 
CNP0382733 -8.3 C22H14N4O3 [notax] -0.10 [ibs2019mar_nc] 
CNP0183607 -8.3 C29H34N4O2 [notax] 1.09 [zincnp] 
CNP0287331 -8.3 C31H31N5O4S [notax] 0.34 [zincnp] 
CNP0273147 -8.3 C33H28O10 [notax] 1.35 [supernatural2  unpd] 
CNP0402381 -8.3 C29H19NO7 [notax] 1.03 [ibs2019mar_nc] 
CNP0198351 -8.3 C25H18N4O3 [notax] 0.28 [ibs2019mar_nc] 
CNP0189790 -8.3 C23H21N3O3 [notax] 0.32 [ibs2019mar_nc] 
CNP0402494 -8.3 C27H22N4O3 [notax] 0.34 [ibs2019mar_nc] 
CNP0150083 -8.3 C21H24O9 [notax] 2.04 [supernatural2  unpd] 
CNP0257622 -8.3 C31H26N4O5 [notax] 0.43 [ibs2019mar_nc] 
CNP0122189 -8.3 C26H20N2 [notax] -0.45 [supernatural2] 
CNP0301743 -8.2 C20H13N3O2 [Fungus  fungi  

epidendrum  
Lycogala] 

0.20 [npatlas  
np_atlas_2019_12  
unpd  npass] 

CNP0292046 -8.2 C25H28O4 [plants] 1.49 [conmednp  cmaup  
supernatural2  tcmid  
unpd  p-anapl] 

CNP0256592 -8.2 C23H25N5O4 [notax] 0.35 [ibs2019mar_nc] 
CNP0356119 -8.2 C21H16N4O [notax] -0.29 [drugbanknp] 
CNP0020386 -8.2 C24H24N6O2 [notax] -0.13 [drugbanknp] 
CNP0411802 -8.2 [C31H32N3O2]+ [notax] 0.72 [ibs2019mar_nc] 
CNP0241792 -8.2 C27H19NO8 [notax] 0.09 [ibs2019mar_nc  

supernatural2] 
CNP0221693 -8.2 C28H24N4O3 [notax] -0.04 [ibs2019mar_nc] 
CNP0409252 -8.2 C25H18N2O4 [notax] -0.06 [ibs2019mar_nc] 
CNP0373611 -8.2 C27H25N3O6 [notax] 0.15 [ibs2019mar_nc] 
CNP0069706 -8.2 C23H10F5NO3S [notax] -0.81 [supernatural2] 
CNP0265390 -8.1 C28H26O5 [Fungus  

Aspergillus  
versicolor LCJ-5  
fungi] 

0.45 [npatlas  
np_atlas_2019_12  
unpd] 

CNP0245001 -8.1 C25H18N4O2 [Fungus  
Aspergillus  
alliaceus ATCC 
20655] 

-0.08 [np_atlas_2019_12  
unpd] 

CNP0338566 -8.1 C24H23N3O2 [notax] 0.30 [npedia  
ibs2019mar_nc] 

CNP0249427 -8.1 C26H16F2O6 [notax] 0.07 [ibs2019mar_nc  
supernatural2] 

CNP0369815 -8.1 C27H27N5O3S [notax] -0.30 [ibs2019mar_nc] 
CNP0029910 -8.1 [C26H25ClNO5]+ [notax] 0.67 [supernatural2] 
CNP0379817 -8.1 C29H27N3O4 [notax] 0.40 [ibs2019mar_nc] 
CNP0349877 -8.1 C28H16N2O4 [notax] -0.75 [ibs2019mar_nc  

supernatural2] 
CNP0387628 -8.1 C29H25NO8 [notax] 1.12 [fooddb  

supernatural2  unpd] 
CNP0309003 -8.1 C25H26N4O4 [notax] 0.65 [supernatural2  

zincnp] 
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CNP0396391 -8.1 C28H24N4O3 [notax] -0.02 [ibs2019mar_nc  
supernatural2] 

CNP0138847 -8.1 C32H33N5O5 [notax] 0.48 [ibs2019mar_nc] 
CNP0048604 -8.1 C22H13N3O6 [notax] -0.81 [supernatural2] 
CNP0141831 -8.1 [C30H33N4O2]+ [notax] 0.29 [supernatural2] 
CNP0375273 -8.1 C29H21NO7 [notax] 0.79 [ibs2019mar_nc  

supernatural2] 
CNP0297541 -8.1 C24H21N3 [notax] 0.16 [ibs2019mar_nc] 
CNP0019832 -8.1 C24H18F3N5O [notax] -0.72 [drugbanknp] 
CNP0041038 -8.1 [C29H35N2O4]+ [notax] 0.80 [supernatural2] 
CNP0080109 -8.1 C25H17NO4 [notax] -0.25 [zincnp] 
CNP0165409 -8.1 C27H21NO4S [notax] -0.16 [supernatural2] 
CNP0057738 -8.1 C26H20Cl2O4 [notax] -0.04 [supernatural2] 
CNP0064085 -8.1 C27H23FO5 [notax] 0.45 [supernatural2] 
CNP0365565 -8.1 C24H24O10 [notax] 0.93 [ibs2019mar_nc  

supernatural2] 

 
 

Spike protein hits matching at least 4 of 7 pharmacophore features (stereochemistry indicated for chiral 
compounds)  

Coconut_ID Docking_Score molecular_formula textTaxa NPL_score found_in_databases 
CNP0113725 -9.4 C18H15N5O [notax] 0.36 [zincnp] 
CNP0285404_s -9.3 C31H26N2O6 [notax] 0.52 [ibs2019mar_nc] 
CNP0409713_s -9.3 C27H20O7 [notax] 0.80 [ibs2019mar_nc] 
CNP0403008 -9.2 C25H26N2O3 [notax] 0.95 [ibs2019mar_nc] 
CNP0132136 -9.2 C24H22O6 [notax] 1.40 [unpd] 
CNP0323621 -9.2 C26H21NO6 [notax] 0.30 [ibs2019mar_nc] 
CNP0212508 -9.1 C24H26N6O2 [notax] 0.30 [zincnp] 
CNP0196493 -9.1 C25H18O5 [notax] 0.77 [ibs2019mar_nc] 
CNP0129938 -9.1 C27H22N2O2 [notax] 0.01 [npass] 
CNP0012180 -9.1 C21H22N8O [notax] 0.27 [zincnp] 
CNP0239713_r -9.0 C28H25NO6 [notax] 0.63 [ibs2019mar_nc] 
CNP0168743_s -9.0 C25H26O5 [notax] 1.56 [supernatural2  unpd] 
CNP0334196 -8.9 C30H36O4 [plants] 1.56 [npact  zincnp  

npcare] 
CNP0233013 -8.9 [C22H17O6]+ [plants] 0.98 [tcmdb_taiwan] 
CNP0125961 -8.9 C25H16O5 [notax] 0.37 [ibs2019mar_nc] 
CNP0224601 -8.9 C20H18O4 [notax] 1.36 [unpd] 
CNP0198440_s -8.9 C34H33N3O7 [notax] 0.56 [ibs2019mar_nc] 
CNP0375993 -8.8 [C18H11N2O4]+ [murayamaensis  

Bacterium  
bacteria  
Streptomyces] 

1.05 [npatlas  
np_atlas_2019_12] 

CNP0230664 -8.8 C26H21ClO5 [notax] 0.24 [supernatural2] 

 
 

Mpro hits matching all pharmacophore features 

Coconut_ID Docking_Score molecular_formula textTaxa NPL_score found_in_databases 

CNP0131030 -9.5 C31H25ClN4O5 [notax] 0.49 [ibs2019mar_nc] 
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CNP0414324 -9.4 C29H24ClN3O7 [notax] 0.68 [ibs2019mar_nc] 

CNP0120445 -9.2 C26H23F2N3O3 [notax] 0.02 [zincnp] 

CNP0061637 -9.1 C26H26BrNO4 [notax] 0.92 [supernatural2] 

CNP0390225 -9.1 C27H28N4O3 [notax] 0.77 [ibs2019mar_nc] 

CNP0352209 -9.0 C28H25N3O7 [Bacterium  
bacteria  
Actinomadura  
melliaura ATCC 
39691] 

-0.06 [npatlas  
np_atlas_2019_12  
npass] 

CNP0390606 -9.0 C30H23ClN4O5 [notax] 0.37 [ibs2019mar_nc] 

CNP0362995 -9.0 C33H36N4O6 [notax] 0.50 [ibs2019mar_nc  
supernatural2] 

CNP0390969 -9.0 C32H30N4O5 [notax] 0.45 [ibs2019mar_nc] 

CNP0374052 -9.0 C21H17ClN4O6 [notax] 1.03 [ibs2019mar_nc] 

CNP0042143 -8.9 [C25H25N2O5]+ [notax] 0.83 [supernatural2] 

CNP0370364 -8.9 [C26H29N4O6]+ [notax] 0.46 [ibs2019mar_nc  
supernatural2] 

CNP0390684 -8.9 C31H29FN4O3 [notax] 0.40 [ibs2019mar_nc] 

CNP0331417 -8.9 C23H18O8 [notax] 1.29 [supernatural2  unpd] 

CNP0373422 -8.9 C32H29ClN4O5 [notax] 0.55 [ibs2019mar_nc] 

 

Mpro hits matchomg at least 3 of 4 pharmacophore features 

Coconut_ID Docking_Score molecular_formula textTaxa NPL_score found_in_databases 

CNP0131030 -9.5 C31H25ClN4O5 [notax] 0.49 [ibs2019mar_nc] 

CNP0228228 -9.5 C29H30N4O4 [notax] 0.78 [ibs2019mar_nc] 

CNP0369441 -9.4 [C34H41FNO5]+ [notax] 1.46 [supernatural2] 

CNP0414324 -9.4 C29H24ClN3O7 [notax] 0.68 [ibs2019mar_nc] 

CNP0037401 -9.4 [C26H19O5]- [notax] 0.90 [supernatural2] 

CNP0380989 -9.3 C27H32N4O4 [notax] 0.90 [ibs2019mar_nc] 

CNP0413646 -9.3 C28H28N4O4 [notax] 0.74 [ibs2019mar_nc] 

CNP0120445 -9.2 C26H23F2N3O3 [notax] 0.03 [zincnp] 

CNP0252890 -9.2 C28H33ClO6 [notax] 2.12 [supernatural2  unpd] 

CNP0328498 -9.1 C26H22N2O4 [plants] 0.70 [cmaup  
supernatural2  unpd  
npass] 

CNP0061637 -9.1 C26H26BrNO4 [notax] 0.92 [supernatural2] 

CNP0293624 -9.1 C24H33N7O5 [notax] 0.90 [supernatural2] 
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CNP0390225 -9.1 C27H28N4O3 [notax] 0.77 [ibs2019mar_nc] 

CNP0055030 -9.1 [C24H12NO5]- [notax] 0.34 [supernatural2] 

CNP0352209 -9.0 C28H25N3O7 [Bacterium  
bacteria  
Actinomadura  
melliaura 
ATCC 39691] 

-0.06 [npatlas  
np_atlas_2019_12  
npass] 

CNP0390606 -9.0 C30H23ClN4O5 [notax] 0.37 [ibs2019mar_nc] 

CNP0201098 -9.0 [C26H20N3O4]- [notax] -0.19 [supernatural2] 

CNP0245259 -9.0 C24H21FN4O2 [notax] 0.13 [zincnp] 

CNP0362995 -9.0 C33H36N4O6 [notax] 0.50 [ibs2019mar_nc  
supernatural2] 

CNP0393487 -9.0 C26H18O10 [notax] 1.35 [ibs2019mar_nc] 

CNP0390629 -9.0 C32H30N4O6 [notax] 0.56 [ibs2019mar_nc] 

CNP0390969 -9.0 C32H30N4O5 [notax] 0.45 [ibs2019mar_nc] 

CNP0401185 -9.0 C25H24N2O5 [notax] 0.94 [ibs2019mar_nc] 

CNP0273258 -9.0 C28H20Cl2O4 [notax] 0.35 [supernatural2  unpd] 

CNP0355623 -9.0 C32H32N4O6 [notax] 0.75 [ibs2019mar_nc] 

CNP0374052 -9.0 C21H17ClN4O6 [notax] 1.02 [ibs2019mar_nc] 

CNP0236086 -8.9 C25H26ClFN4O3 [notax] 0.41 [zincnp] 

CNP0042143 -8.9 [C25H25N2O5]+ [notax] 0.83 [supernatural2] 

CNP0403172 -8.9 C29H23NO7 [notax] 0.77 [ibs2019mar_nc] 

CNP0161959 -8.9 C31H25NO9 [notax] 0.68 [ibs2019mar_nc] 

CNP0370364 -8.9 [C26H29N4O6]+ [notax] 0.46 [ibs2019mar_nc  
supernatural2] 

CNP0390684 -8.9 C31H29FN4O3 [notax] 0.40 [ibs2019mar_nc] 

CNP0363620 -8.9 C29H44O10 [notax] 2.89 [supernatural2  unpd] 

CNP0331417 -8.9 C23H18O8 [notax] 1.29 [supernatural2  unpd] 

CNP0373422 -8.9 C32H29ClN4O5 [notax] 0.54 [ibs2019mar_nc] 

CNP0013026 -8.9 C25H24N4O2 [notax] 0.26 [zincnp] 

CNP0381876 -8.9 C29H33NO5 [notax] 1.03 [ibs2019mar_nc  
supernatural2] 

CNP0353621 -8.8 C19H17N7O3 [notax] -0.49 [ibs2019mar_nc] 

 

 
 


