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Density Functional Theory (DFT) is the standard formalism to study the electronic structure of
matter at the atomic scale. The balance between accuracy and computational cost that DFT-based
simulations provide allows researchers to understand the structural and dynamical properties of
increasingly large and complex systems at the quantum mechanical level. In Kohn-Sham DFT, this
balance depends on the choice of exchange and correlation functional, which only exists in approxi-
mate form. Increasing the non-locality of this functional and climbing the figurative Jacob’s ladder
of DFT, one can systematically reduce the amount of approximation involved and thus approach the
exact functional. Doing this, however, comes at the price of increased computational cost, and so,
for extensive systems, the predominant methods of choice can still be found within the lower-rung
approximations. Here we propose a framework to create highly accurate density functionals by using
supervised machine learning, termed NeuralXC. These machine-learned functionals are designed to
lift the accuracy of local and semilocal functionals to that provided by more accurate methods while
maintaining their efficiency. We show that the functionals learn a meaningful representation of the
physical information contained in the training data, making them transferable across systems. We
further demonstrate how a functional optimized on water can reproduce experimental results when
used in molecular dynamics simulations. Finally, we discuss the effects that our method has on
self-consistent electron densities by comparing these densities to benchmark coupled-cluster results.

For many years, density functional theory (DFT) has
served as the standard tool to study the electronic struc-
ture of materials and condensed systems. Striking an op-
timal balance between accuracy and computational cost
[1], DFT makes a first-principles description of complex
and large systems possible that is otherwise out of reach
for more accurate ab initio approaches. To achieve this
balance, DFT is mapped onto a mean-field single electron
description within the Kohn-Sham (KS)[2] approach. In
KS-DFT, all the complexities of the many-body electron-
electron interaction are reduced within a functional of
the density. This functional consists of an exchange (X)
and a correlation (C) part, the former capturing effects
from Pauli-exchange, and the latter approximating corre-
lations of electrons within the many-body wavefunction.

There is a well-defined roadmap to creating more ac-
curate XC functional formulations, the so-called Jacob’s
ladder of John Perdew [3, 4], with each rung represent-
ing increasing levels of complexity and decreasing levels
of approximation to the exact XC functional. Following
this roadmap, the simplest approximation to the XC den-
sity functional is the local density approximation (LDA)
[5]. The next rung, known as the generalized gradient ap-
proximations (GGAs) [6], adds a functional dependence
on the gradient of the density. In meta-GGA (MGGA)
functionals, the kinetic energy density and possibly the
Laplacian of the density are introduced in the parameter-
ization of the functional. The construction of functionals
following this map allows to incorporate the added com-
plexities in a controlled and physically motivated way,
imposing the necessary constraints that these formula-
tions should satisfy to correctly and universally describe

the underlying physics. As an example of the success of
this approach, the MGGA functional SCAN [7] is consid-
ered to be one of the most accurate and efficient methods
to simulate both solids [8] and molecular systems [9]. Hy-
brid functionals move one step closer to the exact solution
by using a fixed fraction of Hartree-Fock exchange. In-
cluding this ”exact exchange” particularly helps correct
the well known band-gap problem [10] that local (LDA)
and semilocal (GGA) KS-DFT exhibits. Both hybrid
and MGGA functionals no longer explicitly depend on
the electronic density. Therefore, their corresponding XC
potentials are not computed as functional derivatives of
the density, but as derivatives of the KS wavefunctions in-
stead [10], and hence are non-multiplicative (each orbital
experiences a different XC potential), and more expen-
sive to compute.

A completely different approach to obtaining more ac-
curate functionals is to replace the physically motivated
path by a data-driven search. Functionals created fol-
lowing this approach are often referred to as semiem-
pirical [11], and versions of these functionals implement
all the previously described levels of approximations. In
recent years, unprecedented computational capacity has
made the calculation of physical properties of molecules
and solids with ab initio fully correlated accuracy possi-
ble. Such developments have allowed researchers to take
the semiempirical approach to the extreme, inaugurat-
ing an era of machine learning (ML) methods in density
functional development. This path produced the recent
ωB97M-V [12], a range-separated hybrid meta-GGA with
non-local correlation. It was designed using a combinato-
rial technique taking Becke’s B97 family of semiempirical
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functionals [13], augmented with hybrid and non-local
correlation components as primary ingredients. The fit
was done using a database of accurate single-point cal-
culations on a few thousand molecules. Similarly, using
a simple mathematical formulation coined data projec-
tion on the parameter subspace (DPPS), Fritz et al.[14]
showed that it was possible to optimize a GGA functional
with non-local correlations for liquid water. This func-
tional was fitted to highly accurate data from coupled-
cluster calculations that was also used to optimize the
water force field MB-POL[15].

While these latter functionals can already be consid-
ered to belong to the machine learning (ML) family, mod-
ern ML regression methods make use of algorithms such
as artificial neural networks (ANN), kernel ridge regres-
sion (KRR) and gaussian process regression (GPR). Gri-
fasi et al. [16] have shown that the electron density for
small hydrocarbons can be directly predicted from struc-
tural information and Fabrizio et al. [17] have been able
to extend this work to non-covalently bonded systems.
Chandrasekaran et al. were able to achieve the same goal
for solid-state systems by introducing a grid-based struc-
ture to electron density mapping using an ANN. Both ap-
proaches show great promise to significantly speed up ab-
initio calculations as they completely circumvent solving
the cubic-scaling self-consistent field (SCF) equations.
Other works, including the one presented here, have at-
tempted to parametrize an xc-functional with ML, and
we will discuss related methods in detail, below.

In this manuscript, we propose a pathway to construct
fully machine-learned functionals that depend explicitly
on the electronic density. Our method is an evolution
of our recent work [18], in which we proposed a method
to correct XC density functionals by learning from the
density. This method, which we called machine-learned
correcting functionals (MLCF) allowed us to obtain ac-
curate total energies from a converged electronic density
obtained from a KS DFT calculation. Building on it,
in this manuscript, we show that it is possible to ob-
tain the functional derivatives of MLCFs. We continue
by demonstrating that the XC potential thus obtained
can be used in SCF total energy KS calculations, hence
obtaining fully self-consistent semilocal ML KS density
functionals. We call this overall method NeuralXC. We
show that these functionals encode meaningful chemical
information that extends beyond the training set, hence
making the functionals very transferable. In addition,
the resulting self-consistent densities are shown to ap-
proach the ”exact” (at the CCSD(T) level) densities in
certain cases, despite not using the density as a target
in the training process. The paper is structured as fol-
lows: in section (i), we compare our method to other rel-
evant approaches that share ideas similar to ours, section
(ii) outlines the theory and methods behind NeuralXC,
iii) presents results regarding accuracy and transferabil-
ity and section iv) summarizes our findings and provides
an outlook on future work.

I. RELATED WORK

Bogojeski et al. [19] construct a density functional
on top of a reasonably cheap baseline DFT calculation
(GGA) that can achieve accuracies close to coupled-
cluster results. The main difference between our ap-
proaches lies in the choice of basis functions, and the way
symmetries are encoded. In their method, the molecule is
first aligned with a global coordinate system, which is de-
fined through some molecular axes. The electron density
is subsequently expanded in a Fourier basis. These design
choices seem to restrict their method to systems of fixed
size and limit its transferability. Furthermore, instead of
obtaining a potential from the energy regressor, an en-
ergy correction is added to the baseline results, similar to
earlier work by the authors [18]. Thus, to compute forces,
their method relies on an auxiliary model that predicts
the electron density, whereas we can directly calculate
forces using the Hellmann-Feynman [20] theorem.

Nagai et al. [21] propose a more traditional ap-
proach of optimizing the functional form of the exchange-
correlation (xc) energy. Being defined on a grid without
the need for an additional basis set, it is similar in its form
to approaches such as DPPS [14], the main difference be-
ing the use of a neural network to flexibly parametrize the
functional. The neural network is trained by alternating
Monte-Carlo updates on the weights with self-consistent
calculations, rather than back-propagation. This enables
the authors to include densities in their loss-function but
limits training set sizes to a few small systems.

Lei and Medford [22] propose a similar, grid-based
approach that uses Maxwell-Cartesian spherical har-
monic kernels to construct features for their machine-
learned functional. However, instead of using total en-
ergies as response variables, they rely on a spatial de-
composition of the xc-energy, allowing them to decouple
grid-points during training but limiting their method to
instances for which such decomposition is available.

Apart from approaches rooted in DFT, others have
proposed wave-function based methods that try to pre-
dict post-Hartree-Fock energies. Welborn et al. [23] and
Cheng et al. [24] use molecular-orbital-based machine
learning to predict MP2 and coupled-cluster correlation
energies with GPR. Nudejima [25] et al. use grid-based
descriptors to learn a regression model that can predict
the CCSD(T) correlation energy density using densities
obtained from Hartree-Fock calculations as input.

To our knowledge, none of the above mentioned meth-
ods, except for that of Nagai et al., is used in self-
consistent calculations.

II. METHODS

Charge density representation. The charge den-
sity is represented following our earlier work [18] by pro-
jecting it onto a set of atom-centered basis functions.
Throughout this work the inner cutoff radius was set to
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zero, resulting in radial basis functions defined as

ζ̃n(r) =

{
1
N r

2(ro − r)n+2 for r < ro
0 else

(1)

with an outer cutoff radius ro and a normalization fac-
tor N . The full basis is then given as ψnlm(~r) =
Y ml (θ, φ)ζn(r), where Y ml (θ, φ) are spherical harmonics
and ζn the orthogonalized radial basis functions (for de-
tails see Ref. 18).

The descriptors cα,Inlm for atom I of species α at position
~rI are obtained by projecting the electron density ρ onto
the corresponding basis functions ψαnlm.

cα,Inlm =

∫
~r

ρ(~r − ~rα,I)ψ
α
nlm(~r). (2)

We found it beneficial for certain models to use the mod-
ified electron density δρ instead of ρ in Eq. 2. This δρ
is defined as the difference between the full electron den-
sity and atomic electron density ρatm the latter being
constructed by filling the basis functions with appropri-
ate valence charges (see Ref. 26 for details):

δρ(~r) = ρ(~r) − ρatm(~r) (3)

Using this ’neutral’ density has the advantage that it
is generally smoother than ρ, as peaks around the ion
cores cancel out. Moreover, δρ always integrates to
zero, regardless of the atomic species involved, suggesting
that models trained on it will show better transferability
across chemical environments. We have used δρ in all
models introduced below except for the one trained on
water clusters. Here, cross-validation has determined ρ
to produce lower generalization errors.

To avoid erroneous behavior during deployment, the
model must respect all physical symmetries. These sym-
metries include permutation of atoms of the same species,
rotations, and reflections. One way to achieve invariance
is by data augmentation. During this procedure, sym-
metry operations are repeatedly applied to the original
dataset, and the resulting data is included during train-
ing. The idea is that by providing the ML model with
invariant data, the underlying symmetries are learned
automatically. However, especially in regions in feature
space where data is sparse, the model is not guaranteed
to be invariant. We opted to solve this problem in two
ways: permutational invariance is imposed by the archi-
tecture of our neural network as discussed below, whereas
rotational invariance and invariance under reflection is
encoded in the features themselves.

Starting from our original descriptors cnlm, we can
obtain a rotationally invariant version by applying the
transformation

dnl =

l∑
m=−l

c∗nlmcnlm. (4)

In contrast to our previous work [18] it is not necessary
to pick a local coordinate system as the forces are being

obtained by taking derivatives of the rotationally invari-
ant energy model and therefore transform covariantly by
design.

Machine learned functional. As in our Ref. 18,
the permutationally invariant Behler-Parrinello networks
[27] were used to parametrize the energy functional. Be-
fore passing the symmetrized descriptors d(0) through
the neural network, three additional preprocessing steps
were employed. First, a variance filter was used, disre-
garding all features whose variance across the training
set was below a threshold value equal to 10−10, effec-
tively de-noising the dataset. Second, the features were
projected onto their principal components, only keeping
enough components so that an explained variance of γ
was achieved, with values of ranging from 0.95 to 1. This
step has a regularizing effect and decreases the risk of
overfitting. As a final step, all features are scaled so that
their values are normally distributed across the training
set with zero mean and variance one, a step common in
machine learning to ensure fast convergence of the op-
timization algorithm used to train the neural network.
All models were implemented in Tensorflow [28] and
trained using the Adam [29] optimizer with training rate
α = 0.001 and decay rates β1 = 0.9 and β2 = 0.999 and
the sigmoid function was chosen as activation. Hyperpa-
rameters such as the learning rate and l2-regularization
were determined through cross-validation. However, it
should be noted that the final depth (i.e., the number
of layers) for each network was dependent on the conver-
gence of the iterative training procedure described below.

Once the energy functional EML[n(~r)] = EML(c[n(~r)])
has been fitted, the potential VML, which is required
to perform self-consistent calculations, can be obtained
through

VML[n(~r)] =
δEML[n]

δn(~r)
. (5)

Together with Eq. 2 this translates to

VML[n(~r)] =
∑
β

∂EML

∂cβ

δcβ [n]

δn(~r)
=
∑
β

∂EML

∂cβ
ψβ(~r). (6)

The resulting potential is therefore a linear combination
of the original basis functions, with coefficients being de-
termined by the derivatives of the machine learned energy
functional. These derivatives are usually implemented in
machine learning software packages and thus straightfor-
ward to obtain. The machine learned potential and en-
ergy are both added back to their baseline counterparts

ENXC [n] = Ebase[n] + EML[n] (7)

VNXC [n] = Vbase[n] + VML[n] (8)

and the combined functionals (NXC for NeuralXC) can in
principle be used in any DFT code. Caution is warranted
when calculating forces, as the function has an implicit
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dependency on the atomic positions. The force contri-
butions from the machine-learned functional are defined
as

∂EML

∂rI,i
=
∑
β

∂EML

∂cβ

∂cβ [n]

∂rI,i
= (9)

∑
β

∂EML

∂cβ

∫
~r

(
∂ρ(~r)

∂rI,i
ψβ(~r) +

∂ψβ(~r)

∂rI,i
ρ(~r)) = (10)

∫
~r

∂ρ(~r)

∂rI,i
VML(~r) +

∑
β

∂EML

∂cβ

∫
~r

∂ψβ(~r)

∂rI,i
ρ(~r). (11)

The first term also appears in standard DFT calculations
and is automatically taken care of by recombining the
machine learned with the baseline functional. However,
the second term, which derives from the fact that the
expansion basis was centered around atoms, has to be
explicitly calculated.

Iterative training. By altering the xc-functional, the
self-consistent electron densities change as well. This fact
causes the actual accuracy of the ML functional, defined
as the accuracy of the energies and forces obtained by
self-consistent calculations with the modified functional,
to be lower than the accuracy obtained during the fitting
procedure. To remedy this, we employed what we call
iterative training: The electron densities and corrected
energies obtained with the first iteration of the ML func-

tional E
(1)
ML are used to train a new iteration which is

then in turn used to calculate new densities. This pro-
cedure is continued until the accuracy of the obtained
functional remains unchanged across two subsequent it-
erations. The topology of the neural network used in
iteration n + 1 is obtained by freezing the hidden lay-
ers of iteration n and adding new hidden layers to the
network that are then optimized on the nth iteration of
the training densities. This technique is reminiscent of a
procedure commonly known as greedy layer-wise train-
ing in the deep learning community [30], although with
a different goal set.

Datasets. To test the data efficiency of NeuralXC, we
made use of a dataset by Chmiela et al. [31], which was
created to evaluate the symmetric gradient-domain ma-
chine learning (sGDML) force field model. The dataset
contains total energies calculated for benzene, toluene,
ethanol, and malonaldehyde at the coupled cluster with
singles doubles and perturbative triples (CCSD(T)) level
with a cc-pVDZ (cc-pVTZ for ethanol) basis set. We
further included a set of 1000 water geometries and their
associated CCSD(T) total energies calculated with a cc-
pVTZ basis set used in [24] and obtainable at [32]. The
test sets consist of 500 geometries (1000 for ethanol)
whereas the maximum training set size was 1000 for the
sGDML data and 500 for water. The reduced training
sets were sampled from the full set by employing a k-
means clustering algorithm in feature space.

The transferability of our functionals was evaluated by
making use of Cheng et al.’s publicly available dataset
[32], which contains structures sampled from molecular

dynamics simulation at 350 K and their associated to-
tal energies calculated at a CCSD(T) level (for details
see [24]). We further augmented their dataset with our
calculations of 100 structures of ethylene, acetylene, and
propene each, all sampled from a 5 ps MD trajectory
at 350 K and calculated with CCSD(T) using the cc-
pVTZ basis [33]. The calculations were conducted with
PySCF [34] using density fitting and the frozen core ap-
proximation following the methods employed to create
the original dataset by Cheng et al.

The dataset used to train a functional optimized for
water contained 400 water monomers, 500 dimers, and
250 trimers. The structures and their corresponding en-
ergies were all sampled from the data that was used to
fit the MB-pol force-field [15, 35, 36]. In particular, for
dimers and trimers, the sampling consisted of two steps:
half the samples were obtained by first binning the struc-
tures by their corresponding two and three-body energies
and then uniformly sampling from these bins. The other
half was obtained by randomly sampling the full datasets.
This was done to give more weight to the tails of the data
distribution and to capture extreme cases which might
contain valuable information for our ML model. As the
MB-pol dataset only contained dimers and trimers, we
randomly sampled monomers from the dimer structures
as well. For the energies, we followed Babin et al. [37]
and used the highly accurate Partridge-Schwenke poten-
tial energy surface for the monomers and the one-body
energies of the dimers. Two and three-body energies were
extracted from the MB-pol dataset, where CCSD(T) at
the complete basis set limit was used to obtain these en-
ergies (see Refs. [35, 36] for details).

The s66x8 dataset [38], which contains dissocia-
tion curves for 66 non-covalent complexes relevant to
biomolecular structures, was used to evaluate the trans-
ferability of the water model to heterogeneous systems.
Calculations were restricted to a subset of structures that
contained at least one water molecule.

The baseline calculations for all of the datasets above
were conducted with SIESTA [26] using the PBE [6]
exchange-correlation functional with norm-conserving
pseudopotentials, a real-space grid cutoff of 400 Ry and
a cubic unit cell with lattice constant 30 Å. A doubly-
polarized quadruple zeta basis set was used for the water
clusters. All other structures were computed with a po-
larized double zeta basis.

III. RESULTS

Data-efficiency. Frequently, training data is scarce
or, as in our case, expensive to obtain. Due to the un-
favorable scaling of correlated quantum chemistry meth-
ods, the creation of highly accurate datasets for medium
to large-sized molecules remains challenging to this day.
We would, therefore, like to design a machine learning
method that utilizes information contained in the avail-
able training data to its full extent.
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FIG. 1. Training curves for molecules contained in the
sGDML [39] dataset. Top: Mean average error in energy
prediction on test set with respect to training set size. Bot-
tom: Maximum absolute error in energy prediction on test
set. All energy predictions were obtained with self-consistent
DFT calculations using NeuralXC as density functional.

Figure 1 shows how the generalization error changes as
the size of the training set is increased. For each training
set size, a new model was trained from scratch using the
iterative approach described above, and self-consistent
calculations were run on the entire test set. We used two
different metrics for the evaluation: the mean absolute
error (MAE) and the maximum absolute error. It can
be seen that the MAE saturates at values of 0.01 eV or
below at roughly 100 training samples and stays constant
beyond. Some improvement in the maximum error can
be observed as the training set size is increased further.
For malonaldehyde, at least 500 samples are required to
reach a max. error below chemical accuracy (1 kcal/mol
or 0.043 eV), all other molecules pass that threshold at
100 samples or fewer. It should be noted that the er-
ror at which the training curves saturate depends on two
factors: the limited expressiveness of the model together
with its input representation and sources of noise in the
data generation process such as finite grids and super-
cells. To be more specific, by restricting the model only
to use the local electron density expanded in a finite ba-
sis set, we limit the amount of information the network
can use to infer its energy predictions. Using larger basis
sets, and increasing their radial cutoff enables the train-
ing curves to converge to smaller errors. However, this
will most likely harm data-efficiency and transferability.

As we were able to achieve the desired accuracy (max. er-
ror below 43 meV) for all molecules, we did not explicitly
test the effects of using much larger basis sets.
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FIG. 2. Residual plots for the transferability task on small
hydrocarbons. Values on the x-axis correspond to the target
values given by the difference between reference (CCSD(T))
and baseline (PBE) method total energies. Prediction errors
are defined as the difference between the reference total en-
ergies and the ones obtained self-consistently with NeuralXC
optimized on ethane and propane.

Transferability. Beyond being data-efficient, a useful
machine learning model generalizes well to unseen data.
In statistical learning, it is traditionally assumed that
both training and test set are i.i.d. samples of the same
underlying distribution. There is no reason to believe
that a model should extrapolate beyond the population
on which it was trained. A neural network trained to
differentiate between pictures of cats and dogs is not able
to tag those containing birds, for example.

In an apparent contrast to this, we would like to create
a machine-learned functional that, after being exposed
to a small sample of molecules, generalizes to more com-
plex and more extensive systems. However, even though
molecules might differ significantly in their structural
variables from those contained in the training set, lo-
cally, their charge distributions and, therefore, the input
to the network can still be similar as long as the chemical
processes involved do not change too much.

To test the transferability of our functional, we start
by comparing our method to that of Cheng et al. [24].
After being trained on 50 ethane and 20 propane geome-
tries, the model’s capability of correctly reproducing rel-
ative energies for 100 n-butane and isobutane geometries
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Training set Butane Isobutane
Method composition MAE Max. MAE Max.

PBE - 37 115 36 120
MOB-ML[23] 100, 100, 50 16 60 25 87

MOB-ML(mod.)[24] 20, 50, 0 8.7 38 8.8 38
NeuralXC 20, 50, 0 6.6 23 6.1 17
NeuralXC 5, 10, 0 8.6 31 9.1 27

TABLE I. Mean absolute error (MAE) and maximum absolute error (Max.) for the transferability task on small alkanes. The
second column describes how many samples of propane, ethane and methane were contained in the training set. Energy errors
are given in meV.

is assessed. Fig. 2 shows that these energies are pre-
dicted well beyond chemical accuracy with MAEs of 6.6
meV and 6.1 meV respectively and that in fact, we are
more accurate than Cheng et al.’s state of the art method
which achieves MAEs of 8.7 meV and 8.8 meV. Even af-
ter the training set size was decreased to 10 ethane and 5
propane structures, our model’s accuracy remains com-
parable to that of Cheng et al.’s, as can be seen in Tab.
I.

We would further like to assess how well our model
generalizes to other hybridizations of the carbon atom.
Fig. 2 shows the prediction errors of the model used in
Fig. 2 for the augmented test set containing systems with
double and triple bonds. While we see a decline in perfor-
mance for these systems, the model still predicts all total
energies within 2 mHartree or 54 meV of the reference
values. The positive linear correlation between predic-
tion error and target value, which is especially prominent
for ethylene and propene, suggests the existence of sys-
tematic errors. These errors are most likely due to the
model’s failure to treat physical effects deriving from the
sp and sp2 hybridizations of the carbon atom and could
be compensated by including relevant structures in the
training set.

Moving on from hydrocarbons, we created a functional
that was optimized to reproduce highly accurate calcu-
lations for small water clusters. We will show that this
model learns to correct hydrogen bonds involving oxy-
gen, regardless of the chemical environment. We will
further outline in the next section, how it can be used
in molecular dynamics simulations of liquid water. The
machine-learned functional was built as an additive cor-
rection to the PBE xc-functional and consisted of a sum
of two models. The first one was trained to reproduce
the total energies of monomers and dimers. The second
model was then built on top of the first to correct three-
body energies in trimers.

Tab. II shows the final model’s generalization error
compared to its baseline method on a test set consisting
of 200 monomers, 500 dimers, and 250 trimers, obtained
in the same way as the training set. Rather than com-
paring total energies, we show errors for one, two, and
three-body energies as defined in Ref. [35] as otherwise
large one-body energies would always dominate the com-
parison.

The high accuracy shown for two-body energies indi-

cates that our optimized functional correctly treats hy-
drogen bonds between two water molecules. It is un-
clear, however, whether this extends to systems contain-
ing molecules other than water. For this purpose, we have
made use of the s66x8 dataset [38] introduced above. Our
findings are summarized in Fig. 3 using a representative
subset of these systems: It can be observed that Neu-
ralXC accurately treats the hydrogen bond involving an
oxygen atom for a wide variety of systems. As expected,
the functional fails to correct the hydrogen bond involv-
ing nitrogen, an element on which the model was not
trained.

Molecular dynamics. Using our ML model as a po-
tential instead of merely adding an energy correction as
proposed in earlier work by the authors [18] and in re-
lated work [19] has the advantage that electron densities
are self-consistent with respect to the underlying func-
tional. Self-consistency makes the Hellmann-Feynman
theorem [20] applicable, allowing us to obtain accurate,
energy-preserving forces that can be used to study the
dynamical properties of a system. We illustrate the util-
ity of this approach to running molecular dynamics sim-
ulations for liquid water using the NeuralXC functional
optimized on small water clusters.

It is commonly accepted that the accurate description
of liquid water necessitates the use of hybrid function-
als and the explicit treatment of dispersion forces and
nuclear quantum effects (NQEs) [42]. The latter is of-
ten achieved through path integral molecular dynamics
[43], the cost of which still prohibits its use in ab-initio
simulations of realistically sized systems. Testing our op-
timized functional on liquid water, we, therefore, bear in
mind that an exact agreement with experimental results
could only be achieved if NQEs were to be explicitly in-
cluded.

The molecular dynamics simulations was run for 96 wa-
ter molecules in a periodic box at experimental density
and 315 K, choosing a higher temperature to approxi-
mately accommodate for NQEs. We sampled four initial
configurations, from a thermalized molecular dynamics
simulation of the same system run with MB-pol, each
sample being 5 ps apart. These configurations were then
used together with random initial velocities as starting
points for four 5 ps MD runs with time step 0.5 fs, using
both PBE and NeuralXC as functionals. In the case of
PBE, each initial configuration was again thermalized by
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1-body 2-body 3-body
Method RMSE MAE Max. RMSE MAE Max. Mean RMSE MAE Max. Mean

PBE 61 48 174 35 21 263 6.3 10 6.2 72 -3.6
NeuralXC 1.8 1.4 9.3 9.1 6.6 42 -5.5 7.1 4.8 37 -3.8

TABLE II. Generalization errors of the model trained on water monomers, dimers and trimers. The errors in total energy are
split up into their many-body contributions. For monomers the 1-body errors are reported, for dimers the 2-body errors and
for trimers the 3-body errors. All values are given in meV.
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FIG. 3. Representative subset of dissociation curves taken from the s66x8 [38] dataset. From left to right, the figures describe
hydrogen bonds between: a) water and methanol, b) n-methylacetamine (C3H7ON) and water, c) acetylene and water and
d) water and methylamine (CH3NH2), where the molecule listed first is understood to be the hydrogen donor. The energies
depicted correspond to binding energies for the reference calculations (orange) and total energies for the baseline (blue) and
NeuralXC (black) calculations. As the molecules stay rigid during the relative displacement, binding and total energies merely
differ by a constant. We, therefore, shifted every curve by its mean energy to align them and draw better comparisons between
the methods. The depicted distances were normalized by dividing them through their respective equilibrium values, which were
determined with MP2.

using a Nose-Hoover thermostat [44, 45] for 2 ps before
using the velocity-verlet algorithm [46] to propagate the
system.

Fig. 4a indicates that our functional is capable of accu-
rately reproducing the oxygen-oxygen radial distribution
function (RDF) obtained from x-ray diffraction experi-
ments [40] and joint refinement of neutron and x-ray data
[41]. Small deviations can be observed in the height of
the first peak, which can be credited to the lack of explicit
treatment of NQEs. It is understood that the height of
this peak is highly sensitive to NQEs and that a more re-
liable measure for the quality of a functional is given by
the shape of the first trough characterizing the distribu-
tion of molecules in the interstitial region [47, 48]. This
minimum and subsequent maxima in the RDF are accu-
rately reproduced by the NeuralXC functional. RDFs for
OH and HH show more significant deviations from exper-
imental results than their OO counterpart. It should be
noted that due to their small mass, hydrogen atoms are
more susceptible to nuclear quantum effects. We, there-
fore, expect these effects to play a larger role in RDFs

involving hydrogen, a notion that has been confirmed by
PIMD studies using the MB-pol force-field [15].

Electronic densities. So far, we have only tested
properties that can be directly related to the ground state
energy of a given system. The fact that we merely impose
that the model reproduces total energies during training,
introduces freedom as to how this energy is distributed
across space (or equivalently, across orbitals). However,
this distribution determines how well the model repro-
duces properties that go beyond ground state energies
such as the (ground state) electron density and energy
eigenstates of the system.

Fig. 5 compares the change in density going from PBE
to CCSD(T) (left) to that of going from PBE to Neu-
ralXC (right). Densities on the left were calculated with
PySCF [34], and a cc-pVDZ basis set, whereas densi-
ties on the right, were calculated with SIESTA [26] and
a numerical polarized double zeta basis set. Therefore,
comparisons can only be made at a qualitative level as
contributions from the choice of functional cannot be sep-
arated from basis-set effects. We can tell from the plotted
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FIG. 4. Radial distribution functions (RDFs) in the order a) OO, b) OH, c) HH. The RDFs obtained from Born-Oppenheimer
molecular dynamics simulations of 96 water molecules in a periodic box at experimental density and 317 K using PBE and
NeuralXC as functionals are compared to experimental results by Skinner et al. [40] and Soper [41]. Uncertainties in the
experimental results by Soper are shown as shaded area.

isosurfaces that there is a qualitative agreement between
the two methods. Especially for benzene and toluene,
both methods localize more electrons around the hydro-
gens and on carbon-carbon bonds, albeit CCSD(T) show-
ing more change quantitatively. The same behavior can
be observed for malonaldehyde (MDA), where the elec-
tron density is redistributed from carbon to hydrogen
and oxygen atoms. In general, NeuralXC seems to fail to
accurately reproduce more complicated nodal structures
around the oxygen atoms, which is especially apparent
in ethanol.

IV. CONCLUSION

We have developed a supervised ML method termed
NeuralXC that lifts the accuracy of Kohn-Sham den-
sity functional calculations at a GGA level to that of
coupled-cluster theory calculations. It was shown that
the method is data-efficient in that it can reach de-
sired accuracies with training sets containing only a few

structures for simple molecules like water and benzene
and tens to hundreds of structures for more challenging
molecules such as ethanol and malonaldehyde. We have
further demonstrated that the trained models are trans-
ferable across chemical environments: a model trained
on ethane and propane predicted relative total energies
of n-butane and isobutane structures with an MAE of
6.6 and 6.1 meV respectively, surpassing a state of the
art method introduced by Cheng et al. [24] regarding
accuracy. Moreover, a NeuralXC functional trained on
water monomers, dimers, and trimers was able to ac-
curately describe O-H hydrogen bonds between a water
molecule and methanol, n-methylacetamine, and acety-
lene without being re-trained on these systems. Finally,
we have shown that these machine-learned functionals
can be used to conduct molecular dynamics simulations
by reproducing radial distribution functions of liquid wa-
ter close to experimental results.

We believe that NeuralXC opens up a new path to
developing exchange-correlation functionals for KS-DFT
calculations. As our method only introduces a linearly
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FIG. 5. Comparison of the difference in electron density
between CCSD(T) and PBE (left) and NeuralXC and PBE
(right). Plotted are isosurfaces of constant density change in
units of 10−3 e/Bohr3. The isosurface values on the left are
given by the color bars depicted adjacent to the molecules,
and their values were adjusted to facilitate the qualitative
comparison to NeuralXC results. On the right-hand side all
isosurfaces are plotted for ±10−3 e/Bohr3

scaling overhead to the underlying baseline functional, it
is especially attractive for simulations of large systems for
which state-of-the-art hybrid functionals are still too ex-
pensive to employ. Further research will need to address
ways in which NeuralXC can correct excited state prop-
erties, to make our method suitable for more challenging
tasks such as time-dependent DFT. We further see pos-
sible applications in orbital-free DFT, where NeuralXC
could be used to develop kinetic energy functionals. Fi-
nally, it remains to be seen which methods can serve as
suitable baselines, as e.g., the local density approxima-
tion, together with a minimal basis set, would make our
method a competitive alternative to tight-binding DFT.

V. SUPPLEMENTAL DATA

Training data and ML-models will be made available
upon publication. The code to train and deploy Neu-
ralXC can be found at Ref. 49.
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quera, P. Ordejón, and D. Sánchez-Portal, Journal of
Physics: Condensed Matter 14, 2745 (2002).

[27] J. Behler and M. Parrinello, Physical Review Letters 98,
146401 (2007).

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al., in 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16) (2016) pp.
265–283.

[29] D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980
(2014).

[30] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
in Advances in neural information processing systems
(2007) pp. 153–160.

[31] S. Chmiela, H. E. Sauceda, K.-R. Müller, and
A. Tkatchenko, , 1 (2018), arXiv:1802.09238.

[32] L. Cheng, M. Welborn, A. S. Christensen, and T. F.
Miller, “Thermalized (350k) qm7b, gdb-13, water, and
short alkane quantum chemistry dataset including mob-
ml features,” (2019).

[33] T. H. Dunning Jr, The Journal of chemical physics 90,
1007 (1989).

[34] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H.
Booth, S. Guo, Z. Li, J. Liu, J. D. McClain,
E. R. Sayfutyarova, S. Sharma, S. Wouters,
and G. K. Chan, “Pyscf: the pythonbased
simulations of chemistry framework,” (2017),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340.

[35] V. Babin, C. Leforestier, and F. Paesani, Journal of
Chemical Theory and Computation 9, 5395 (2013).

[36] V. Babin, G. R. Medders, and F. Paesani, Journal
of Chemical Theory and Computation 10, 1599 (2014),
arXiv:arXiv:1210.7022v1.
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[44] S. Nosé, The Journal of chemical physics 81, 511 (1984).
[45] W. G. Hoover, Physical review A 31, 1695 (1985).
[46] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R.

Wilson, The Journal of Chemical Physics 76, 637 (1982).
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