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Abstract

We have carried out a comprehensive study of the influence of electronic structure

modeling and junction structure description on the first-principles calculation of the

spin polarization in molecular junctions caused by the chiral induced spin selectivity

(CISS) effect. We explore the limits and the sensitivity to modelling decisions of a

Landauer / Green’s function / density functional theory approach to CISS. We find

that although the CISS effect is entirely attributed in the literature to molecular spin

filtering, spin-orbit coupling being partially inherited from the metal electrodes plays

an important role in our calculations, even though this effect cannot explain the experi-

mental conductance results. Also, an important dependence on the specific description

of exchange interaction and spin–orbit coupling is manifest in our approach. This is

important because the interplay between exchange effects and spin-orbit coupling may

play an important role in the description of the junction magnetic response.
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Our calculations are relevant for the whole field of spin-polarized electron transport

and electron transfer because there is still an open discussion in the literature about

the detailed underlying mechanism and the magnitude of relevant physical parameters

that need to be included to achieve a consistent description of the CISS effect.

1 Introduction

Chiral induced spin selectivity (CISS) is an effect first described in the late 90s,1 observed in

either the transport or transfer of electrons through chiral molecules or molecular assemblies.

The effect translates into the onset of spin polarization, i.e. one of the two spin components

has a larger probability of making it through the molecule, depending on its orientation

with respect to the transport direction.2 This effect has been demonstrated for a variety

of molecular systems at room temperature. In addition to its importance for fundamental

science, the CISS effect has large potential for applications such as spin-dependent chemistry,

electrochemical water splitting,3–6 enantiomer separation with achiral magnetic substrates,7

and spintronic devices.2,8 It may also contribute to the large efficiency of electron transfer

in biological systems due to the coupling of spin angular momentum and linear momentum

reducing backscattering.2,9

The CISS effect has been observed in tunneling junctions,10 in photoemission through chiral

monolayers,11 in electrocatalysis,3–6,12 in enantio-selective response to magnetic polariza-

tion,13 and in magnetism-related properties induced in a conventional superconductor14 for

a variety of molecules ranging from DNA,15–17 peptides10,18 and proteins19 to helicenes.20,21

Most, but not all of these systems are helical. While most experiments were done on molec-

ular ensembles, the effect has been shown in single-molecule junctions.10 Despite initial

assumptions that the SOC of the substrate (gold) might play a role, substantial CISS has

been observed in photoemission on substrates with small SOC (aluminium and copper).19,20
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In conductance measurements, spin polarizations of up to 60% were obtained for a single

22-amino-acid α-helical peptide on a gold substrate contacted by a nickel tip.10 This is in

line with a difference in single-molecule current of roughly one order of magnitude between

electrons of different spin orientations in conductance experiments on 14-amino-acide pep-

tide monolayers on nickel, contacted via gold nanoparticles,10 and with the substantial spin

polarizations measured for molecular systems in various other experimental configurations.2

A theoretical description of CISS requires taking spin–orbit coupling (SOC) into account.

While tight-binding and first-principles theoretical descriptions of a related effect, spin split-

ting in surface states of Au(111) surfaces induced by Rashba SOC,22 can yield quantitative

accuracy,23,24 such tight-binding25–35 and first-principles36,37 descriptions of the CISS effect

so far underestimate it by several orders of magnitude.38,39 It has been suggested that this

discrepancy is due to dephasing25,29 or local leakages,35 which can be modeled in terms of

Büttiker probes.40–45 There is also substantial debate in the current literature as to whether

CISS can be observed in two-terminal configurations at all.46–49 Other proposed explanations

include nonmagnetic electrodes becoming spin-polarized in a nonequilibrium situation due

to the presence of the chiral molecule,50 charge transfer between molecule and substrate,51

and electron correlation in nonequilibrium playing a substantial role.52

A first-principles-based description of CISS is essential for understanding subtle aspects of

structure–property relationships, and for predictive simulations. Deciding which of the men-

tioned suggestions is (or are) essential for a reliable first-principles description of CISS is

a formidable task. It is further complicated by the fact that even for phenomena where

the basic physical mechanisms are known, practically feasible approaches such as Kohn–

Sham density functional theory (KS-DFT) may yield quantitatively and sometimes even

qualitatively wrong results with an inappropriate choice of the approximate exchange–

correlation functional.53,54 Particularly challenging for KS-DFT, both from practical and

formal perspectives, are spin-related properties such as spin crossover and exchange spin
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coupling.53–55 There are also formal issues when combining KS-DFT with nonequilibrium

phenomena.39,56–59 Nonetheless, KS-DFT has proven very successful in understanding single-

molecule conductance.39,59–61 Absolute conductance values from the experiment are hard to

reproduce because of issues such as structural fluctuations and level alignment,59 but trends

and qualitative properties are described very well in many cases, and it is possible to get

the right order of magnitude for conductance.61 This is in contrast to CISS, where present-

day first-principles (and tight-binding) results are consistently lower than the experimentally

required values, by several orders of magnitude.

In addition to future experiments and further developments of theoretical models, statistical

analyses of errors and uncertainty quantification62–72 and machine-learning approaches73–78

may help establishing a reliable first-principles theory of CISS. As a first step, we need to

identify how first-principles modeling decisions affect central quantities relevant for CISS.

This is interesting and necessary even before a full first-principles theory has been established,

to prevent identifying a certain theoretical approach as quantitatively correct due to error

compensation later on. To this end, we build on our previous work,37 in which we had

identified the imaginary part of the effective single-particle Hamiltonian matrix (in Hartree-

Fock theory or KS-DFT: the Fock matrix) as responsible for SOC-induced spin polarization

in closed-shell systems within the Landauer approach.This approach describes the correct

qualitative behavior of CISS when changing helicity or molecular length,37 so it is likely that

it plays a part in modeling CISS (with a yet unknown amplification mechanism missing, as

discussed above).

We first analyze the influence of metal clusters modeling the electrodes by changing their

shape, size, and material (Cu, Ag, Au) for the same ideal carbon helix as studied in our

previous work,37 followed by an analysis of the effect of going from equidistant to alternately

spaced carbon atoms in the helix. This is important since parts of the SOC may be inher-

ited by the electrode, and this inheritance may be affected by the electronic and atomistic
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structures of both helix and electrode. We then look into the dependence of the quantities

entering spin polarization in CISS on modeling decisions such as the admixture of exact

exchange in the approximate exchange–correlation functional. This is important since the

imaginary part of the effective single-particle Hamiltonian matrix (in a framework including

SOC) depends on it.79,80 Finally, we do a representative check of how a our findings for an

artificial system transfer to realistic systems, by varying the exact exchange admixture for

the spin polarization in a helicene derivative.

2 Theoretical background

In the vast majority of theoretical studies, it is assumed that spin–orbit coupling plays a

decisive role for understanding CISS (even though it has been suggested that it is possible to

induce spin-polarized currents in the absence of SOC in helical systems81). This is consistent

with the fact that for curved carbon systems, SOC is roughly three orders of magnitude larger

than for flat graphene82–84 (where it is around a few µeV85,86).

2.1 Spin–orbit coupling

For a single electron moving within the potential of a nucleus, spin–orbit coupling is the

interaction of the electron’s spin with its motion in the nuclear potential. This type of

interaction can be described by the Breit–Pauli Hamiltonian,87 where the one-electron SOC

is given as

ĤBP, so =
1

2m2
ec

2

∑
i

∑
I

ZI(riI × p̂i) · ŝi
r3iI

, (1)

where me is the mass of the electron, c is the speed of light, ZI is the charge number of

nucleus I, p̂i is the momentum operator of electron i, ŝi is the spin operator of electron i,
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and riI is the distance between nucleus I and electron i.

In many-electron systems, additional spin–orbit coupling terms arise due to the potential

and motion of the other electrons. Those two-electron SOC terms can be split into two

contributions, the spin–same-orbit coupling,

ĤBP, sso = − 1

2m2
ec

2

∑
i,j 6=i

(rij × p̂i) · ŝi
r3ij

, (2)

and the spin–other-orbit coupling,

ĤBP, soo = − 1

m2
ec

2

∑
i,j 6=i

(rij × p̂i) · ŝj
r3ij

. (3)

rij is the operator corresponding to the distance between electron i and electron j.

In many KS-DFT calculations, two-electron SOC is neglected 1.

2.2 Electron transport considering spin–orbit coupling

To estimate the CISS effect based on KS-DFT electronic structure calculations, we employ

the Landauer–Imry–Büttiker approach,89 which assumes coherent tunneling as the transport

mechanism. This is a good assumption for the short oligopeptides for which CISS has been

studied experimentally,90,91 and for helicene2.

When combined with first-principles electronic structure methods relying on an effective

single-particle picture, the Landauer-Imry–Büttiker approach is based on a partitioning

scheme,93 where the effective single-particle Hamiltonian matrix (in the following shortly

1Parts of the two-electron SOC can, for instance, be approximated in a one-electron formulation by using
the Kohn–Sham potential for the calculation of the SOC instead of the bare nuclear potential.88

2The description of transport for longer molecules, e.g segments of DNA,92 requires the inclusion of
incoherent transport.
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called Hamiltonian matrix) of the complete junction is partitioned as

H tot =


HL V LC 0

V CL HC V CR

0 V RC HR

 . (4)

HL is the Hamiltonian matrix of the left electrode, HR the Hamiltonian matrix of the

right electrode, HC the Hamiltonian matrix of the central region, and V XY describes the

coupling of region X with region Y . This partitioning requires single-particle basis functions

which are (at least mainly) localized in the respective regions, as is the case for the popular

atom-centered Gaussian basis functions. To estimate the CISS effect, we use an approach

described, among others, in Refs.94,95 If SOC is considered in DFT, single-electron quantities

become two-component spinors, and all matrices assume the form

M =

 M↑↑ M↑↓

M↓↑ M↓↓

 . (5)

The tunneling current for electrons originating with spin orientation σ from the right elec-

trode and arriving with spin orientation σ′ at the left electrode (σ, σ′ ∈ {↑, ↓}) can be

calculated as

Iσ,σ′ =
e

h

∫ E+ eV
2

E− eV
2

T σ,σ
′
(E)dE, (6)

where E is the energy, V is the applied bias voltage, which is assumed to drop symmetrically

in the two junction electrode, and T is the transmission function. The transmission function

roughly describes the probability of an electron originating with spin orientation σ and

arriving with spin orientation σ′ to tunnel through the central region from right to left. It
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can be calculated as

T σ,σ
′
= Tr

[
Γσ′σ′

L Gσσ′
Γσσ
R

(
Gσσ′

)†]
, (7)

where ΓL and ΓL are the so called coupling matrices of the left and the right electrode and G

is the Green’s function of the central region. The coupling matrices describe the interaction

of the electrodes with the central region. The energy dependence of T and of the matrices

on the right has been dropped here for readability. The transmission at the Fermi energy

EF allows estimating the zero-bias conductance,

gσ,σ′(0 V) =
e

h
T σ,σ

′
(EF ). (8)

The coupling matrices will be assumed as energy-independent here (see discussion on the

wide-band limit in Section 3), while the Green’s functions are energy-dependent quantities

evaluated as

Gσ,σ′
=

1

ESσ,σ
′

C −Hσ,σ′

C −Σσ,σ′

L −Σσ,σ′

R

, (9)

where SC is the overlap matrix for the atom-centered basis functions (which has all elements

equal to zero for σ 6= σ′) and Hσ,σ′

C is the Hamiltonian matrix of the central region. Σσ,σ′

L and

Σσ,σ′

L are the self-energies which describe the effect of the left and right electrode, respectively,

on the central region,

Σσ,σ′

X = ∆σ,σ′

X − i

2
Γσ,σ′

X . (10)

Here, we assume that the real part of the self-energies (which leads to a shift of the central-

subsystem effective single-particle levels) is already included in HC , thus setting ∆σ,σ′

X to

zero.

8



If SOC is neglected within the electrodes, the spin-flip blocks of ΓX and ΣX become zero

and the spin within the electrodes remains well defined. This approximation allows to define

an overall transmission as the sum of T four spin-dependent contributions,

2T =T ↑↑ + T ↓↑ + T ↑↓ + T ↓↓, (11)

where the first and last terms describe spin-conserving transmissions, while the second and

third terms describe spin-flip transmissions. The factor of 2 takes into account that for

closed-shell systems without SOC, T is usually interpreted as the probability of an electron

of a given spin orientation to tunnel through the junction, whereas here terms for both spin

orientations are added up3.

In the experiment, measuring the spin polarization PS of the transmitted electrons requires a

magnetic electrode.10 In our calculations, we can mimick measurement by an ideal magnetic

electrode by employing a closed-shell one like gold, since we have access to all four terms in

Eq. (11) and can thus evaluate PS as the normalized difference between transmission for all

spin-up electrons and all spin-down electrons making it to the other side,

P =
T ↑↑ + T ↓↑ − T ↑↓ − T ↓↓

2T
. (12)

Again, this is an energy-dependent quantity, and an estimate for the polarization at zero

bias can be obtained by considering P (EF ).

Note that all Hamiltonian matrix elements are obtained from a standard self-consistent field

algorithm on a finite cluster–molecule–cluster system (see below) in equilibrium. This is a

good approximation for transport properties close to zero bias, but it may miss strongly

nonlinear effects which may play a role for larger bias voltages.

3In Ref.,37 the factor of 2 was omitted, i.e., T as defined here and in most of the literature is equal to
1/2 T as defined in Ref.37 This distinction does not affect the values of the property crucial for CISS, the
polarization PS .
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3 Methods

We calculated PS for three different systems: perfect carbon helixes with evenly and alter-

natingly spaced atoms, respectively, and a helicene derivative as studied prevously in the

experiment. Cartesian coordinates of all structures are provided in the Supporting Informa-

tion.

3.1 Construction of junctions of the perfect helical systems

The ideal helical structures were constructed as in Ref.:37 40 carbon atoms were placed along

a perfect right-handed helical path (radius = 2 Å, pitch = 3 Å), either evenly spaced (1.3 Å)

or alternately spaced (1.2 Å / 1.3 Å). Two hydrogen atoms were attached to each end,

whose positions were optimized while keeping the carbon atoms fixed. The gold–molecule–

gold junctions were built by placing the terminal carbon atoms in the fcc-position between

two metal clusters with a carbon–metal distance dC−Metal of 2.48 Å (see Figure 1).

Several metal clusters were studied, differing in size and the type of metal. For all clusters,

the experimental dAu−Au distance of 2.88 Å was used for comparability. Three different

metals were considered (Au, Cu, Ag) to investigate the amount of inherited SOC from the

metal. To check the dependence on the size of the metal cluster, four different cluster sizes

were used, namely 6-3-1, 16-0-0, 16-16-0, and 16-16-16 (where the numbers indicate the

number of metal atoms in subsequent layers, see Figure 2).
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1.3Å
1.3Å
1.3Å
1.3Å
1.3Å
1.3Å

1.2Å
1.3Å
1.2Å
1.3Å
1.2Å
1.3Å

a) b)

Figure 1: Structures of the gold–molecule–gold junction of the carbon helix with a) equal and b)
alternating bond distances.

16-0-0 16-16-0 16-16-16 6-3-1

Figure 2: Structures of the gold–molecule–gold junction for gold clusters of different sizes and
shapes to simulate the electrodes. The clusters are named by the number of atoms in each layer.
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3.2 Construction of junctions of the helicene molecule

As an experimental system, a cationic helicene derivative was studied, for which a spin-

polarization of roughly 50 % was measured for a monolayer on highly oriented pyrolytic

graphite with a magnetized iron-coated Si tip in the conductive atomic force microscope.21

The structure was optimized without the counter anion in vacuum, and the junction was built

by placing the optimized helicene cation between two 20-atomic gold clusters (see Figure 3).

The molecule–gold distance was estimated based on a DFT-calculated gold–benzene distance

of 3.1 Å.96

Isolated Junction

N N

OO

+

a)

b)

c)

Figure 3: a) Lewis structure of the investigated helicene cation, b) optimized structure of the
cation and c) gold–helicene–gold junction.

3.3 Computational settings

Turbomole 7.197–100 was employed for the optimizations of all structures. The generalized-

gradient approximation (GGA) exchange–correlation functional introduced by Perdew, Burke

and Ernzerhof (PBE)101,102 was used, in combination with the def2-TZVP103,104 basis set.

Dispersion interactions were taken into account by Grimme’s dispersion correction DFT-
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D3105 including Becke–Johnson damping.106 To speed up the calculations, the resolution-of-

the-identity method107,108 with the corresponding auxiliary basis set109 was employed. The

structures were allowed to relax until the change of energy was below 10−6 a.u. and the

gradient was below 10−4 a.u.. The energy convergence threshold within the self-consistent

field algorithm was set to 10−7 a.u..

For the calculations of the transmission functions, several different methodologies (see Ta-

ble 1) were applied: relativistic effects were taken into account by using the exact two-

component (X2C) method110,111 and the x2c-SVPall-2c112 basis set (Turbomole), the

zeroth-order regular approximation (ZORA)113–117 and the ZORA-DZ118 basis set (ADF119–121),

or effective-core potentials using the dhf-SVP122 basis set (Turbomole). Additionally, cal-

culations with the Dirac123 code in combination with the dyall.ae2z124 basis set and the

X2C method were done. For all calculations, the exchange–correlation energy was calculated

based on the B3LYP125–127 functional.

For each system, two electronic-structure calculations were carried out: First a one-component

KS-DFT calculation without taking SOC into account, then a two-component KS-DFT cal-

culation including spin–orbit coupling (using the molecular orbitals from the one-component

calculation as an initial guess). The one-component and two-component Hamiltonian and

overlap matrices were extracted from the output files of the employed DFT programs. These

matrices were then postprocessed as described in the Theory section employing our program

package Artaios.128 The self-energies ΣX for the electrodes X ∈ {L,R} were created from

the matrices of the one-component calculation,

ΣX = (ESXC −HXC)† gX (ESXC −HXC) . (13)

Here, SXC and HXC denote the overlap and Hamiltonian matrix blocks containing basis

functions on both the central region and the electrode X, and gX is the Green’s function

of the electrode X. The Green’s function is approximated within the wide-band limit,129
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assuming a constant local density of states LDOSconst

(gX)ij = −iπLDOSconstδij. (14)

The value for the constant LDOS was set to 0.036 eV−1 as calculated by DFT for the 6s

band of gold.130 This is a reasonable assumption for gold with its flat LDOS around the

Fermi energy. The Green’s function of the central region in the presence of the electrodes

was calculated as

G =
1

ESC −HC −ΣL −ΣR

. (15)

HC and SC were extracted from the respective matrices of the two-component calculation.

Transmission functions and spin polarizations are reported with respect to an estimated

Fermi energy of EF = −5 eV for gold. Since we did not use the experimental dAg−Ag/dCu−Cu

distance, we also show the transmission functions calculated with copper and silver clusters

shifted against the estimated Fermi energy of gold.

This postprocessing methododology neglects nonequilibrium effects on the electronic struc-

ture. For small bias voltages, this is likely a good approximation.131,132 However, it cannot

be excluded that for a quantitative description of CISS, including such nonequilibrium effects

explicitly may play an important role (also see the discussion in the conclusion).

Table 1: KS-DFT methodological choices for the calculation of transmission functions in this
work. All spin–orbit coupling calculations with Turbomole were done using the ”$kramers”
and ”$coulex” keywords.

Methodology DFT code Functional Relativistic effects basis set
A Turbomole 7.1 B3LYP X2C x2c-SVPall-2c
B Turbomole 7.1 B3LYP effective-core potential dhf-SVP
C Dirac B3LYP X2C dyall.ae2z
D ADF B3LYP ZORA ZORA-DZ
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4 Dependence of CISS on structural parameters

4.1 Electrode cluster composition

To investigate to what extent the polarization PS for the perfect helical system originates

from intrinsic SOC of the helix or from SOC inherited from the gold clusters, we have

calculated PS for three junctions: Au–helix–Au, Ag–helix–Ag, and Cu–helix–Cu, employing

methodology A (see Table 1). For all three electrodes, the interatomic distance of bulk gold

(2.88 Å) was used for comparability.

PS massively decreases with the atomic number of the element which is used to build the

electrode (see Figure 4). This trend can also be observed in Im(HC). This reinforces our

earlier finding of SOC being inherited to a substantial degree from the electrodes for the

Au–helix–Au system,37 similar to proximity effects in graphene on gold.133,134 In contrast,

at least in photoemission experiments, a substantial spin polarization resulting from CISS

is observed for light-element substrates just as much as for gold.19,20 This suggests that

molecular conductance experiments on CISS employing electrodes with less intrinsic SOC

would be beneficial to check whether CISS is equally independent of substrate SOC in this

type of experiment as in photoemission, and that as for as long as this is not settled, to keep

in mind that first-principles CISS results on molecular conductance may be affected by a

potentially artificial SOC transfer from the substrate. However, these results do not indicate

that CISS as obtained from the Landauer + two-component DFT approach as employed here

only reflects substrate SOC: As shown in Ref.,37 for the same set of gold clusters, going to a

longer helix increases polarization considerably, in agreement with experimental results.135

To gain further insight into this phenomenon, we will study in Section 4.3 whether the

amount of SOC transfer is linked to the near-metallic properties of our model helix resulting

from the equidistant spacing of the carbon atoms.
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Figure 4: B3LYP/x2c-SVPall-2c spin polarization PS of the transmitted electrons for the equidis-
tant carbon helix junction with 10-atom (6-3-1) metal clusters, using different metal atoms to build
the electrodes (Cu, Ag, Au). While for gold electrodes, PS is about 1 %, it is negligibly small for
copper and silver electrodes. This is in agreement with Im(HC), which is much larger for gold
compared with copper or silver as electrode material.

4.2 Electrode cluster size and effective core potentials

Contact effects have been studied previously in a tight-binding model,136 and it has been

pointed out in several theoretical45,136 studies that one-dimensional leads prevent spin po-

larization through CISS. It has even been suggested that a suitably chosen connection to

the electrodes can lead to spin filtering in achiral systems.137 If PS is mainly induced by the

SOC inherited from the gold atoms, two other parameters are expected to be important for
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the calculation of PS: the size and the shape of the clusters. This may influence the coupling

of the electrode with the helix and thus the inherited SOC. Since all-electron calculations

using large gold clusters are expensive, we used methodology B here (see Table 1), i.e., fully-

relativistic effective core potentials which only take into account the SOC of gold. This is

justified, since the results from the previous section clearly indicate that the inherited SOC

from the gold is most important for PS, and because the calculations for the ten-atomic gold

clusters with effective-core potentials reproduce the results from the all-electron calculation

quite well (see Figure 5).

The calculations for different gold clusters as electrodes (Figure 2) clearly show that PS

depends on the cluster shape and size (see Figure 5). PS calculated with mono- and a

bilayers of a 4x4 gold sheet is negligibly small. Adding a third layer increases PS to the

order of 0.1 %, but it remains much lower than PS for the original ten-atom gold cluster

(built from three layers as 6-3-1). This suggests that there may be counteracting effects

at play: an increase of SOC transfer when adding a third layer, and a decrease of this

transfer when extending the cluster sideways. These results suggest a need of converging

PS with respect to cluster size. However, two-component calculations in general and all-

electron calculations using the X2C decoupling scheme in particular are expensive, making

such studies computationally demanding. It may be that going to a description employing

semiinfinite electrodes under periodic boundary conditions may alleviate the shape and size

dependence somewhat, but our studies suggest that this is something that should be checked

carefully, at least if SOC transfer from the electrodes plays a role.
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1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
E - EF [eV]
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16_0_0
16_16_0
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Figure 5: Calculated (B3LYP/dhf-SVP) spin polarization of the transmitted electrons (PS)
through the equidistant helix connected to gold clusters of different sizes and shapes. PS strongly de-
pends on the gold cluster. With 4×4 gold layers, PS increases with the number of layers (monolayer
= 16 0 0, bilayer = 16 16 0, trilayer = 16 16 16). However, if a smaller three-layered gold-cluster
is employed (first layer six gold atoms, second layer three gold atoms, third layer one gold atom =
6 3 1), PS is much larger than for the 16 16 16 cluster.

Figure 6: Transmission function and PS calculated for the perfect helix with alternating bond
pattern. In contrast to the equidistant helix, even for 20 % exact exchange admixture, a dip occurs
in the transmission function, indicating a sizeable HOMO–LUMO gap for the alternating system
in comparison with the equidistant system. PS is much smaller than for the equidistant structure.
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4.3 Carbon helix with alternating bond pattern

The perfect helix with equidistant carbon–carbon distances resembles a metallic system,

which makes a direct transfer to experimental systems difficult. Thus, we also calculated a

carbon helix with an alternating bond pattern, which corresponds better to a system with a

band gap, such as stable molecular helices.

equidistant alternating

Junction

Isolated
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0.50

0.25
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Figure 7: Im(H) of the equidistant and alternating helices in the junction (modeled by 10-atom
gold clusters), plotted only for the central region consisting of the carbon and hydrogen atoms
(top). For the isolated helix, values are plotted on the same scale as in the junction (middle row)
and amplified by a factor of 10 (bottom row).

The transmission function and PS are strongly affected by the change from the equidistant

to the alternating helix (see Figure 6). The transmission functions now shows a large dip in
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the vicinity of the estimated Fermi energy, and PS decreases massively. Looking at Im(HC)

within a gold–molecule–gold junction, Im(HC) of the alternating helix (see Figure 7) is much

smaller than Im(HC) for the equidistant helix. However, comparing Im(HC) of the isolated

structures shows that for the isolated molecules, Im(HC) is quite similar. This indicates that

the differences of PS for both bond patterns arise from differences in inherited gold SOC.

5 Dependence of CISS on computational parameters

5.1 Exact-exchange admixture in the approximate exchange–cor-

relation functional

We evaluate polarization for the equidistant carbon model helix with and without 10-gold-

atom electrode clusters, obtained from B3LYP in terms of methodology A (see Table 1),

varying the amount of Hartree–Fock exchange in the approximate exchange–correlation func-

tional (5 %, 20 %, 35 %, 50 %, 65 %, and 80 %). For the isolated helix, the size of Im(HC)

increases with the amount of Hartree–Fock exchange (Figure 8, bottom). However, for the

Au–helix–Au system, the polarization of the transmitted electrons does not correlate lin-

early with the amount of exact exchange: From 5 % to 50 %, PS increases, while any further

increase of exact exchange leads to a decrease of PS (Figure 8, top). This trend is also

observed in Im(HC) (Figure 8, middle). These results suggest that for the Au–helix–Au

system, Im(HC), and thus PS, is influenced by exact exchange in several ways: In addition

to Im(HC) increasing intrinsically due to the larger amount of exact exchange, the align-

ment between metal and molecule orbitals may shift (as suggested by the changes in the

transmissions shown in Figure 8), and the coupling with the gold electrode, and thus the

inherited part of Im(HC), may change. By looking at the coupling blocks of Re(HC) (see

Supporting Information), a clear correlation between PS and the coupling strength cannot

be observed. The magnitude of Re(HC) of the coupling block increases from 5 % to 50 %,
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but does not decrease significantly for 60 % and 80 %. Thus, we cannot explain the trend

in PS by a simple analysis of the Hamiltonian.
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Figure 8: Calculated transmission, spin polarization of the transmitted electrons (PS), and Im(H)
of the gold–molecule–gold junction of the equidistant helix for several amounts of exact exchange.
Increasing the amount of Hartree–Fock exchange strongly influences the transmission function,
leading to an opening of a gap in the transmission function. Also the calculated spin polarization
of the transmitted electrons (PS) for the equidistant carbon helix between 10-atom gold clusters
(top): For admixtures of 5 % to 50 %, PS increases. Any further increases leads to a decrease
of the calculated PS . For the gold–molecule–gold junction, Im(HC) behaves as the calculated
PS (middle), while for the isolated molecule, Im(H) constantly increases with the amount of exact
exchange (bottom). Note the different scales for Im(HC) for the junction and the isolated molecule.
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5.2 Two-electron terms in spin–orbit coupling

Our results indicate that for the systems under investigation here, non-negligible PS can only

be predicted if SOC is inherited from the electrodes. In those calculations (which employ

standard implementations of SOC in electronic structure codes), SOC is only taken into

account partially, i.e., only the one-electron SOC is considered for reasons of computational

feasibility. However, two-electron SOC terms (spin–same orbit (SSO) and spin–other orbit

(SOO)) can also contribute to the CISS effect. Taking these interactions into account could

increase the intrinsic SOC of the helix and thus could lead to a significant amount of PS

originating from the molecule itself.

To investigate the effect of the two-electron SOC terms, transmission functions were cal-

culated based on the DFT electronic structure data obtained with methodology C (see

Table 1), i.e., with the Dirac code123 including also two-electron SOC terms. Since the

self-consistent-field calculations of the Au–molecule–Au junctions could not be brought to

convergence using the Dirac code with these settings, the transmission functions were eval-

uated for the isolated molecules only. To do so, the electrodes for the calculation of the

transmission function were chosen to be the terminal hydrogen atoms (with the same LDOS

as for the metal-cluster electrodes), while the scattering region was defined as the carbon

atoms. Although this workaround prevents us from quantifying the effect of the two-electron

SOC terms on PS for the Au–helix–Au junction, it allows us to assess whether the intrinsic

SOC of the carbon helix is significantly enhanced by including two-electron terms.

If the two-electron terms are not considered within the DFT calculation, Turbomole and

Dirac give the same results (Figure 9). Adding the two-electron SOC terms does not in-

crease PS, but rather decreases it. This is consistent with calculations for the g-tensor.88

The two-electron terms counteract the one-electron term, decreasing the effective SOC. Em-

ploying spin–same and spin–other orbit interactions lead to a decrease of more than 80 %

of PS compared with one-electron spin–orbit coupling only. Even if this is just shown for a
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scenario where no gold electrodes are considered, it suggests that for the development of a

quantitative DFT-based method for the correct description of the CISS effect, either all SOC

terms should be considered, or a careful evaluation of systematic error compensation needs

to be done. Otherwise, seemingly correct values for PS might originate from an insufficient

description of SOC.

scattering region
electrode region

1el.
1el.+ 2el.SSO

1el.+ 2el.SSO+SOO

1el.
1el.+ 2el.SSO

1el.+ 2el.SSO+SOO

a) b)

Figure 9: Calculated spin polarization of the transmitted electrons(PS) for the isolated equidistant
carbon helix. The terminal hydrogen atoms were defined to be the electrodes, while the carbon
atoms were defined to be the central region. PS was calculated with Dirac without two-electron
SOC (blue, 1el.), with additionally including the spin–same orbit interaction (red, 1el.+2elSSO),
and with all two-electron SOC terms (purple, 1el.+2elSSO+SOO). Adding two-electron SOC terms
decreases the calculated PS .

6 A realistic helix: helicene

Finally, we study a realistic system, a helicene derivative (Figure 3). Compared to other ex-

perimentally studied systems such as peptides, this molecule has a significant transmission

and is therefore less prone to numerical noise. Instead of the X2C method, we employ the

ZORA method as implemented in the ADF program package (method D as detailed in the
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methodology section, see Table 1). We use this methodology for the helicene molecule, since

two-electron SOC influences PS, and the ZORA treatment of the SOC indirectly includes

parts of the two-electron SOC due to the usage of the full Kohn–Sham potential 4 We also

calculated the transmission function and PS for the equidistant carbon helix with method

D as a consistency check. Both are in qualitative agreement with the results from method-

ology A employing Turbomole and X2C (see Supporting Information). Interestingly, the

polarization calculated with ADF and ZORA is larger than the polarization calculated with

Turbomole and X2C, which seems quite puzzling since ZORA contains parts of the 2-

electron SOC which should decrease the polarization. However, the calculation with ADF

does not only describe SOC differently, but uses a different type of basis functions (Slater-

Type Orbitals) as well as a different basis set (ZORA-DZ).

Similar to the results by Masyluk et al.36 for a peptide, a very small value for PS over

the whole calculated energy range is predicted with the Landauer approach. However, PS

changes its sign after inverting the structure (see Figure 10), showing that this polarization

appears to originate from the CISS effect. Im(H) of the helicene molecule within a gold–

molecule–gold junction is much smaller than Im(H) of the equidistant helical molecule within

a gold–molecule–gold junction (see Figure 10. This indicatesa much lower SOC transfer from

gold to the helicene molecule compared with the ideal equidistant helix, which might be latter

being closer to the gold surface.

Since PS for the perfect helical system was very sensitive to the amount of exact exchange,

we check whether the polarization for helicene can be brought closer to experimental values

by increasing the amount of exact exchange. This increase shifts the maximum of PS to

higher energies (see Figure 10). This is probably due to the enlargement of the HOMO–

LUMO gap. However, PS remains by orders of magnitude too small compared with the

experimental values of roughly 50%. Nonetheless, one can again see the importance of the

4We had chosen methodology A, taking into account only 1-electron contributions to SOC, as our stan-
dard method for the model helices because for the alternative methodology D employed here it was not
possible to extract the Hamiltonian for a perfect linear system, which was studied for comparison.
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Hartree–Fock exchange for the investigation of the CISS effect: Increasing it from 20 % to

50 % enhances PS by about a factor of 1.5. Thus, for a DFT-based approach to describe the

CISS effect, we would strongly suggest to not only use pure functionals, but also to check

hybrid ones (and possibly more types which are beyond the scope of the present study).
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Figure 10: Calculated PS for the gold–helicene–gold junction using B3LYP/ZORA-DZ for the two
different enantiomers of the helicene derivative and two different amounts of Hartree–Fock exchange,
as well as Im(H) of the central region of the junction of the equidistant helix and the helicene. PS
is very small compared to PS of the equidistant carbon helix. However, the sign of PS changes upon
inverting the structure, indicating the CISS effect to be the origin of this polarization. Increasing
the Hartree–Fock exchange increases PS by a factor of about 1.5, but it remains very small. Im(H)
for the helicene molecule is very localized and much smaller than Im(H) of the equidistant helix,
in agreement with the much larger PS for the equidistant helix. This indicates that for a realistic
system the inherited SOC by the gold is negligible.

7 Conclusions

We have investigated the effect of several structural and computational parameters on the

calculated magnitude of spin polarization caused by the CISS effect for artificial and realistic
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helices, based on two-component DFT combined with the Landauer–Imry-Bttiker approach.

For an equidistant ideal carbon helix, SOC is mainly inherited from the gold atoms of the

electrodes, and it is highly sensitive to exact exchange admixture and cluster size and shape.

This is strikingly illustrated by the fact that even when SOC is only considered on the

electrodes via effective core potentials and neglected on the molecule, the polarization is

nearly the same as for an all-electron SOC description on the full system. When introducing

bond alternation, the helix becomes less metallic and less SOC arising from the gold is

present. Sensitivity to the description of exchange is also seen in the realistic helicene

system (though to a lesser extent, possibly due to a larger molecule-electrode distance).

Furthermore, including two-electron terms in the description of SOC decreases polarization

by up to 80%, even though this effect may be masked by changes in the atom-centered

single-particle basis functions. We cannot exclude that the strong cluster size and shape

dependence we observe is unique to the artificial helix. Yet, a possible dependence on all

these parameters should be kept in mind in any future first-principles studies of CISS.

As previous work on a first-principles description of CISS,36,37 our results clearly point out the

need for including further mechanisms, such as electron–phonon coupling138 or other terms

resulting in leakage35 or dephasing,25,29 spin polarization at the interfaces,50 and an explicit

description of electron correlation and nonequilibrium effects on the electronic structure52

(note that our electronic structures are obtained from a self-consistent field algorithm on

finite systems in equilibrium). Yet, for these studies, our findings suggest that a careful

study of the dependence on computational and structural parameters is crucial to prevent

seemingly correct results due to error compensation.
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Möllers, P.; Nürenberg, D.; Zacharias, H.; Wei, J.; Wierzbinski, E.; Waldeck, D. H.

27



Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Elec-

trodes. J. Chem. Phys. C 2019, 123, 3024–3031.

(7) Banerjee-Ghosh, K.; Ben Dor, O.; Tassinari, F.; Capua, E.; Yochelis, S.; Capua, A.;

Yang, S.-H.; Parkin, S. S. P.; Sarkar, S.; Kronik, L.; Baczewski, L. T.; Naaman, R.;

Paltiel, Y. Separation of enantiomers by their enantiospecific interaction with achiral

magnetic substrates. Science 2018, 360, 1331–1334.

(8) Brandt, J. R.; Salerno, F.; Fuchter, M. J. The added value of small-molecule chirality

in technological applications. Nat. Rev. Chem. 2017, 1, 0045.

(9) Michaeli, K.; Kantor-Uriel, N.; Naaman, R.; Waldeck, D. H. The electron’s spin and

molecular chirality how are they related and how do they affect life processes? Chem.

Soc. Rev. 2016, 45, 6478–6487.

(10) Aragones, A. C.; Medina, E.; Ferrer-Huerta, M.; Gimeno, N.; Teixido, M.; Palma, J. L.;

Tao, N.; Ugalde, J. M.; Giralt, E.; Diez-Perez, I.; Mujica, V. Measuring the Spin-

Polarization Power of a Single Chiral Molecule. small 2017, 13, 1602519.

(11) Abendroth, J. M.; Cheung, K. M.; Stemer, D. M.; Hadri, M. S. E.; Zhao, C.; Fuller-

ton, E. E.; Weiss, P. S. Spin-Dependent Ionization of Chiral Molecular Films. J. Am.

Chem. Soc. 2019, 141, 3863–3874.

(12) Gazzotti, M.; Arnaboldi, S.; Grecchi, S.; Giovanardi, R.; Cannio, M.; Pasquali, L.;

Giacomino, A.; Abollino, O.; Fontanesi, C. Spin-dependent electrochemistry: Enantio-

selectivity driven by chiral-induced spin selectivity effect. Electrochimica Acta 2018,

286, 271–278.

(13) Santos, J. I.; Rivilla, I.; o P. Cossio, F.; Matxain, J. M.; Grzelczak, M.; Mazinani, S.

K. S.; Ugalde, J. M.; Mujica, V. Chirality-Induced Electron Spin Polarization and

Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Reso-

nance. ACS Nano 2018, 12, 11426–11433.

28



(14) Alpern, H.; Yavilberg, K.; Dvir, T.; Sukenik, N.; Klang, M.; Yochelis, S.; Cohen, H.;

Grosfeld, E.; Steinberg, H.; Paltiel, Y.; Millo, O. Magnetic-related States and Or-

der Parameter Induced in a Conventional Superconductor by Nonmagnetic Chiral

Molecules. Nano Lett. 2019, 19, 5167–5175.

(15) Xie, Z.; Markus, T. Z.; Cohen, S. R.; Vager, Z.; Gutierrez, R.; Naaman, R. Spin Specific

Electron Conduction through DNA Oligomers. Nano Lett. 2011, 11, 4652–4655.

(16) Zwang, T. J.; Hürlimann, S.; Hill, M. G.; Barton, J. K. Helix-Dependent Spin Filtering

through the DNA Duplex. J. Am. Chem. Soc. 2016, 138, 15551–15554.
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