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Abstract

Fluorescent molecules, fluorophores, play essential roles in bioimaging. Attachment

of fluorophores to proteins enables observation of the detailed structure and dynamics

of biological reactions occurring in the cell. Effective bioimaging requires fluorophores

with high quantum yields to detect weak signals. Besides, fluorophores with various

emission frequencies are necessary to extract richer information. An essential com-

putational component to discover novel functional molecules is to predict molecular

properties. Here, we present statistical machines that predict excitation energies and

associated oscillator strengths of a given molecule using a random forest algorithm. Ex-

citation energies and oscillator strengths are directly related to the emission spectrum

and the quantum yields of fluorophores, respectively. We discovered specific molecu-

lar substructures and fragments that determine the oscillator strengths of molecules

from the feature importance analysis of our random forest machine. This discovery is

expected to serve as a new design principle for novel fluorophores.
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Introduction

Fluorophores play essential roles in diverse fields such as biochemistry, analytical chem-

istry, medicine, and spectroscopy.1–4 For example, they allow us to observe protein-protein

interactions and to screen toxic compounds at the molecular level.5,6 However, only a lim-

ited number of fluorophores are commonly used. The discovery of novel fluorophores may

open new possibilities to observe unseen biological reactions. To find novel and favorable

fluorophores, it is essential to identify their photophysical properties accurately, such as

absorption, emission wavelength, absorption coefficient, and quantum yield.7

Conventional approaches to developing fluorophores have limitations. Novel fluorophores

have been discovered by modifying existing ones based on human experts’ chemical intu-

ition. Despite decades of endeavors by experimental chemists, only a few fluorophores are

commonly used, such as fluorescein,8 BODIPY,9 cyanine,10 and Seoul-Fluor.7,11 For exam-

ple, various BODIPY derivatives are discovered by modifying the s-indacene core structure.9

Seoul-Fluor is developed based on the indolizine core.7,11 These molecules are designed to

have distinct emission frequencies by attaching diverse functional groups to their core struc-

ture.7,9,11 With traditional approaches, finding a novel molecular scaffold takes considerable

time and resources to synthesize and verify candidate compounds.12

Theoretical approaches such as quantum mechanical (QM) calculation or machine learn-

ing (ML) may solve this problem more efficiently than conventional approaches. Diverse QM

approaches have been developed to predict the photophysical properties of molecules.13–18

Most previous studies focused on predicting the photophysical properties of inorganic solids.

They do not guarantee accurate property prediction of fluorophores used in biomedical re-

searches.13–17 Sumita and coworkers used density-functional theory (DFT) with the B3LYP

hybrid functional and the 3-21G* basis set to evaluate the photophysical properties of

molecules.18 One critical limitation of QM approaches is that they need more considerable

computation resources than ML-based approaches.19

Although there are a few studies to predict the electronic properties of small organic
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molecules with ML approaches, their prediction accuracy was inferior to that of QM ap-

proaches.19–21 Ghosh and coworkers utilized multiple deep-learning (DL) methods to train

a machine that predicts the electronic properties of molecules from their structures as in-

puts.19 They used multi-layer perceptron (MLP),21 convolutional neural network (CNN),22

and deep tensor neural network (DTNN)17 to predict the density of states from the DFT

results of the QM723,24 and QM925,26 data set.19 Nakata and coworkers utilized the sup-

port vector machine (SVM) and the ridge regression to predict the HOMO-LUMO gaps of

molecules.20 The root mean squared error (RMSE) between QM values and prediction value

of their models spans from 0.36 to 0.48 eV.20 Note that prediction errors of ML studies

are similar to that of the time-dependent density functional theory (TD-DFT) benchmarks

against experiments.27,28 To the best of our knowledge, previous ML approaches predicted

excitation energies of a molecule, but not oscillator strengths.19,20

Montavon and coworkers predicted the maximum absorption intensity and corresponding

excitation energy from time-dependent Hartree-Fock results using a deep neural network.21,29

The RMSE of excitation energy of maximum intensity predicted with the existing deep-

learning model (1.71 eV) exceeds the range (1.45 eV) of visible light (1.65-3.10 eV). This

amount of prediction error appears to be rather large for practical molecular design tasks.21

Here, we developed statistical models that predict the electronic transitions of a molecule

using random forests (RF) algorithm30 from SMILES input.31 RF is known to have low over-

fitting risk and high accuracy.32 Another advantage of RF over DL is that it facilitates the

analysis of relative feature importance.30,33 In this study, we identified specific fragments that

play essential roles in determining oscillator strengths of electronic transitions of molecules.

The performance of our model is encouraging for the discovery of novel fluorophores.

Our model was trained with the TD-DFT results of about half a million molecules.

The highest oscillator strength and associated excitation energy among ten excitation states

of molecules are used to train the model. Molecular fingerprints and various molecular

property descriptors are used as input features for our model. From the RF results, molecular
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fragments that play essential roles in determining the molecular electronic properties are

identified. Chemical insights into critical factors determining the electronic properties of

molecules will be discussed.

Method

Overview of the Workflow

In this study, the target properties for predictions are the excitation energy and oscillator

strength of the transition with the maximum oscillator strength among the first ten excited

states. The training and test sets contain 450,000 and 50,000 molecules, respectively. A

schematic diagram of the workflow is shown in Figure 1.

Two independent RF machines were trained to predict the maximum oscillator strength,

and the other RF machine was trained to predict the excitation energy coupled with the max-

imum oscillator strength. We utilized the RF method implemented in the Scikit-learn 0.21.3

library.34 The feature vector of a molecule consists of the extended connectivity fingerprints

(ECFP),35 molecular access system (MACCS) keys,36 and various molecular descriptors pro-

vided by RDkit.37 The obtained feature vectors were used as the input of the RF models.

Molecular Data Set

All data used in this study are from the PubChemQC database.20 PubChemQC contains the

quantum mechanical calculation results of almost four million molecules in PubChem38 using

the TD-DFT methods implemented in GAMESS.39,40 PubChemQC provides the ground-

state electronic molecular structures optimized by DFT at the B3LYP/6-31G* level and the

ten low-lying excited state information calculated by TD-DFT with B3LYP/6-31+G*. A

half-million molecules were randomly selected from a subset of molecules that consist only

of H, B, C, N, O, F, P, S, Cl atoms with no net charge. Among the molecules in the selected

set, 450,000 molecules were used as a training set, and the rest as a test set.
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Figure 1: Overview of the algorithm. First, SMILES representations are converted to fin-
gerprints vector (combination of ECFP, MACCS keys, molecular descriptors calculated with
RDkit).
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Target Properties and Molecular Features

We use the dimensionless quantity oscillator strength (fLU) that represents the rate of ab-

sorption to deal with the excitation intensity.41 We focus on the transition of the highest

oscillator strength because it corresponds to the peak of absorption spectra. Oscillator

strength is defined as follows:42

fLU =
2me

3h̄2
(EU − EL)|〈ψLdL|r|ψUdU〉|2 (1)

where me is the mass of an electron, L and U denote the lower and upper state of transition,

and dk and ψk represent the degeneracy and wave function of state k.

Two fingerprint methods—ECFP35 and MACCS keys36—were used to generate a fea-

ture vector from a molecule. In addition to the fingerprints, various molecular descriptors

calculated by RDkit were included37 as well. These molecular features were generated from

the SMILES representations of molecules.31,43 The used molecular descriptors are listed in

supplementary information. ECFP is a topological fingerprint for molecular characterization

that accounts for the relationships between molecular substructure efficiently. The genera-

tion procedure of ECFP systematically records the neighborhood of each non-hydrogen atom

into multiple circular layers up to a given diameter as integer identifiers.35 All these atom-

centered substructural identifiers are then mapped into a fixed-length binary representation

using a hashing function.35 The MACCS keys are binary codes that identify the presence

of 166 pre-determined molecular sub-structures. Additional molecular descriptors related

to the overall topology or the physicochemical properties of a molecule, such as molecular

weight or the fraction of sp3 carbon, were included in input features.

Two types of feature vectors were tested in this study. The first vector includes 4096

bits from ECFP4 (of diameter 4), 166 MACCS keys and, 39 molecular descriptors from

RDkit, resulting in a 4031-dimensional vector. The second vector includes 16384 bits solely

from ECFP6 (of diameter 6) to discover bigger fragments, which determine the electronic
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properties of molecules. We call the first vector ”Vector 1” and the second vector ”Vector

2”.

Random Forest Regression

To predict the oscillator strength and the excitation energy, random forests regression (RFR),

an ensemble learning method was applied as schematically shown in Figure 1. It operates by

constructing multiple decision trees during training and averaging the prediction values of

all trees for final prediction.44,45 Each tree starts from the root node encompassing all data

points, and nodes are divided into two new sub-nodes. Splits are decided to minimize mean

square error (MSE). We performed extensive searches of hyperparameters (the number of

trees, leaves, and the ratio of features). Extension of each tree ended when the number of

used features for the decision reached one-third of the dimension of the input vector. Our

final RF model consists of 1000 trees and 8714 leaf nodes. Four models were constructed

in total. Two models were trained with Vector 1—ECFP4 4096 bits, MACCS keys, and

molecular descriptors—to predict the excitation energy and oscillator strength of a molecule

independently. The other two models are trained with ECFP6 16386 bits to identify larger

fragments.

Feature Importance Analysis

From the trained RF models, the importance of each feature in performing prediction was

extracted. Molecular fragments that have high contributions to the oscillator strength of a

molecule were identified from the ECFP. Also, critical molecular substructures defined in the

MACCS keys and molecular descriptors were identified. To analyze the feature importance, a

fingerprint with a longer diameter (ECFP6) and more vector bits (16384) were used to search

for huger and more diverse fragments. The four bits with the highest feature importance were

selected to discover important fragments that induce high oscillator strength. All fragments

corresponding to each selected bit were obtained by the reverse process of the generation. All
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molecules that include these fragments were then searched from the PubChemQC database.

Finally, eight fragments were selected.

Results and discussion

Distribution of the Highest Intensity Transitions from PubChemQC

Analysis of the PubchemQC database shows that it is not trivial to discover favorable flu-

orophores with desired properties (Figure 2). Favorable fluorophores are required to have

high oscillator strength, which may lead to a strong emission spectrum, and diverse emission

colors. About a half of PubChemQC molecules have the maximum oscillator strength less of

than 0.1 (Figure 2a). Only 4.12 and 0.18 percent of molecules have oscillator strength over

0.5 and 1.0, respectively. In terms of excitation energy, most molecules have their maximum

intensity absorption in the ultraviolet region (Figure 2b). Only 0.4 percent of molecules in

the database have their absorption peak in the visible region. Taken together, the number of

molecules whose maximum intensity absorption in the visible range and oscillator strength

over 0.5 is only 880, corresponding to 0.03% of the dataset. This result demonstrates that

highly accurate electronic property prediction methods are essential for designing a novel

fluorophore efficiently.

Hyperparameter Optimization

Five hyperparameters of the model were optimized. Two hyperparameters are related to

input vector generation: the diameter and the number of bits of ECFP. Three hyperpa-

rameters are related to the random forest model: the number of trees, the number of data

points in each leaf node, and the ratio of tested features to find the best split. Except for

the number of data points per leaf nodes, increasing the size of the model did not improve

the performances of models (Table S1 and Table S2). After extensive hyperparameter opti-

mization, ECFP4 with 4096 bits, 1000 trees, 1/3 feature ratio, and 1000 data points per leaf
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Figure 2: Distribution of the maximum oscillator strength transition of molecules in Pub-
ChemQC. (a) Distribution of (a) the maximum oscillator strength, (b) the excitation energy
of max oscillator strength are colored in red, black, and violet if they correspond to the IR,
visible and UV region, respectively. (c) The heat map showing the distribution of excitation
energy and oscillator strength in log-scale.

nodes were used to train the model.

Prediction Accuracy of the Highest Intensity Transition

The target properties of our model are maximum oscillator strength and the corresponding

excitation energy of a molecule. One of the most important properties to be a favorable

fluorophore is high-intensity emission in the visible light range. However, the number of

emission spectrum data is still not enough for applying deep-learning or other state-of-the-

art approaches.46,47 Additionally, the quantum calculation of emission spectrum is compu-

tationally more complicated than that of the absorption spectrum because the geometry

optimization of excited states is less accurate than that of the ground state.47,48 Because the

wavelength of absorption and emission are correlated in general,43 we used the absorption

spectrum as a proxy of the emission spectrum.

The correlation coefficient between our prediction and TD-DFT calculation exceeds 0.8

for both oscillator strength and excitation energy(Table 1). The RMSE of oscillator strength

and excitation energy predictions with vector1 are 0.088 and 0.448 eV, respectively (Table 1).

Figures 3b and 4b show that most molecules are distributed near the diagonal line, repre-

senting the perfect prediction. For 96 percent of molecules, the error of oscillator strength
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between prediction and TD-DFT is less than 0.2 (yellow lines in Figure 3a). In terms of

excitation energy prediction, 80 percent of predictions have errors less than 0.5 eV (yellow

lines in Figure 4).

To the best of our knowledge, our models are the most accurate models in predicting the

oscillator strength and the excitation energy at the highest intensity transition of organic

compounds. Two existing approaches predicted excitation spectra based on the HOMO-

LUMO gap,19,20 not the highest intensity transition, which makes a direct comparison with

our model hard. Only Montavon and coworkers developed a model that predicts the highest

intensity transition by using fully connected hidden layers with a multi-task neural network.21

They optimized the 3D geometry of molecules using a DFT method starting from SMILES.

The atom-pair matrix of Coulomb interaction was used as input. The training was carried

out with 5000 molecules, and the number of the hidden layers of the model was four. The

RMSE values of their model were 0.12 and 1.76 eV for the maximum oscillator strength and

corresponding excitation energy, respectively. The accuracy of our model outperforms their

model in terms of both oscillator strength and excitation energy prediction. Notably, the

RMSE of our model in excitation energy prediction is only one-third of their model.

There are three possible explanations for the high performance of our model. First, the

size of our training set is 100 times larger than that of the previous study. It may decrease

the risk of overfitting to a small set of molecules. Second, non-Coulomb interactions that

were not considered by an atom-pair Coulomb interaction matrices may carry important

information. The ECFP, MACCS keys, and molecular descriptors are able to capture local

environments including the effects of non-Coulomb interactions. Third, the depth of layers in

their model was four, which may be too shallow to learn the electronic properties accurately.

In contrast, the number of leaf nodes and the number of trees in our model are saturated

(Table S1 and Table S2).

It is worth noting that the error of our models is comparable to that of TD-DFT quantum

calculation against the experiment.27,28,49 Fabian and coworkers reported that the mean
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Table 1: Root mean square error (RMSE) and Pearson R between TD-DFT and random
forest (RF) regression comparing to Motavon’s DL (Deep Learning) model.21

Model Feature Quantum property RMSE Pearson R Computation timee

RF Vector 1a Excitation energy (eV) 0.448 0.881 27 min
RF Vector 1a Oscillator strength 0.088 0.834 23 min
DL Matrixb Excitation energy (eV) 1.76d

DL Matrixb Oscillator strength 0.12d

RF Vector 2c Excitation energy 0.447 0.882 14h 2min
RF Vector 2c Oscillator strength 0.092 0.814 13h 18min

a ECFP4 4096 bits + 166 MACCS keys + 39 descriptors;
b Atom-pair Coulomb potential matrix; c ECFP6 16384 bits;

d Results come from Motavon’s paper;21
e Intel Xeon CPU E5-2650 v4 2.20 GHz 24 core, 48 processors, 128 GB memory.
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Figure 3: Prediction results of the maximum oscillator strength. The X-axis represents our
RF prediction results. The Y-axis represents TD-DFT results. (a) Scatter plot. (b) Heat
map. Only 0.6% of molecules are predicted to have oscillator strength below 0.01

absolute deviation of excitation energy between TD-DFT predictions with B3LYP functional

and the 6-31+G* basis set compared to the experiment is 0.27 eV.

Fragments contributing to high oscillator strength

We identified molecular fragments that determine high maximum oscillator strength. To

discover bigger and more diverse molecular fragments, we extracted information from the

RF results using ECFP6 with 16384 bits. To confirm that the oscillator strength distribu-
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Figure 4: Accuracy of excitation energy (eV) of maximum oscillator strength prediction.
The X-axis represents our RF prediction results. The Y-axis represents TD-DFT results. (a)
Scatter plot. (b) Heat map. Only 0.6% and 2.3% of molecules are predicted to have excitation
energy of maximum intensity lower than 2.0 eV and higher than 7.0 eV, respectively.

tions of the identified fragments are statistically higher than the average, the p-value of the

distribution was calculated by the Wilcoxon rank sum test. The fragments satisfying the

following conditions were selected for further analysis; 1) the p-value is lower than 0.0001,

2) the mean oscillator strength of molecules containing the fragment is over 0.3, and 3) the

number of molecules containing the fragment is over 10. The eight fragments satisfying the

above criteria were retrieved from the PubchemQC database. These fragments are presented

in the ascending order of p-value, descending order of statistical significance (Figure 5).

Overall, it is identified that nitrogen-containing heterocycles are playing important roles

in inducing high oscillator strength of a molecule. The first six statistically significant

fragments have one or more nitrogen atoms inside a ring structure. The most statisti-

cally significant fragment contains an indazole-like structure, the fragment c(cc)(c(c)c)n(C)n

(Figure 5a). The 69 molecules containing the indazole-like structure have the lowest p-

value of 1.158*10−28 and the second highest mean oscillator strength, 0.415 (Figure 5).

1-Methylbenzo[f]indazole has the highest oscillator strength among the compounds that

contain fragment c(cc)(c(c)c)n(C)n (Figure 6a). The maximum oscillator strength and ex-
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citation energy of the molecule are 1.430 and 5.381 eV, respectively. The highest intensity

electron transition arises from the second-highest occupied MO (Figure 6c) to LUMO (Fig-

ure 6d). The little overlap between the two orbitals suggests that a significant amount of

electron density change is associated with the transition, which leads to strong absorption

of light.

The second statistically significant fragment is a pyzazine-like fragment, c1nc(C)cnc1NC

(Figure 5c). The fragment is found in 45 molecules, and their mean oscillator strength is

0.471, which is the highest among the eight identified fragments. The third and fourth signifi-

cant fragments are a triazole-like structure (4H-Triazol-4-ylmethanamine), and 1-acetylpyrrolidine-

like structure, respectively. They both are contained in 26 molecules in the dataset and have

oscillator strength over 0.35.

The rest four fragments are relatively less significant and included in a smaller num-

ber of molecules, less than 20. The fifth and sixth fragments are quinoxaline-like and

1-phenylpyrazole-like fragments with the mean oscillator strength of 0.371 and 0.344, re-

spectively. Unlike the other fragments, the last two fragments, mesitylene and 2-methylhex-

1-en-4-yne, do not have nitrogen inside its scaffold.

Molecular Properties inducing High Oscillator Strength

Our RF models provide which molecular descriptors are significantly related to the electronic

property of a molecule. The most critical, highest feature importance, eleven molecular

descriptors are illustrated in Figure 7.

In the previous section, it is identified that all fragments inducing high oscillator strength

have many π conjugation bonds. It is consistent with the fact that many dye molecules have a

large portion of the conjugated π-system. The most critical molecular descriptor determining

oscillator strength is the fraction of sp3 carbon atoms. It is in good agreement with the fact

that many known fluorophores have π conjugation systems. The number of stereo-centers

and the existence of carbon-carbon double bonds are closely related to the fraction of sp3
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carbon atoms. In other words, it implies that a higher sp3 carbon fraction leads to a low

oscillator strength. The 1κ shape index, the molecular cyclicity, is ranked in the second

place. The index is defined as follows:

1κ = A(A− 1)2/(B)2 (2)

where A is the number of atoms, and B is the number of bonds. The cyclicity indicates

the relative portion of cyclic/branched structures inside a molecule50,51 The index becomes

maximum if a molecule is in a linear shape and minimum if a molecular graph forms a

complete graph. The fact that molecular cyclicity is the second most crucial feature indicates

that a large portion of aromatic rings is essential for high oscillator strength.

The next critical molecular features are as follows: the maximum partial charge, the

minimum absolute partial charge, the existence of -CH2N, and the existence of nitrogen con-

nected aromatic rings. These properties appear to contribute to the high oscillator strength

through charge separation of a molecule because nitrogen atoms donate lone pair electrons.

It is known that charge separation is closely correlated with light-induced electron transfer.52

Conclusion

In this work, we developed random forest models that predict the maximum oscillator

strength and corresponding excitation energy of a molecule. Our models trained with al-

most one million DFT results yielded highly accurate predictions. In addition to the high

prediction accuracy compared to the existing prediction models, this study presents its im-

portance at one of the few theoretical studies on the prediction of the oscillator strength of

a molecule. We further identified molecular fragments and molecular descriptors important

for determining the oscillator strength of a molecule. We believe that these findings will

serve as a useful guideline for the design of novel fluorophores.
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Hyperparameter Optimization

Table S1: Hyperparameter optimization results for oscillator strength prediction

ECFP Random Forest Result

Diameter Bits Trees Data/leaf Feature ratio RMSE Pearson R Training time

4 2048 1000 50 1/3 0.089 0.83 0d 1hr 34min

4 2048 1000 50 2/3 0.089 0.83 0d 2hr 53min

4 2048 1000 100 1/3 0.092 0.82 0d 1hr 32min

4 2048 1000 100 2/3 0.091 0.82 0d 2hr 40min

4 2048 10000 50 1/3 0.089 0.83 0d 10hr 50min

4 2048 10000 50 2/3 0.089 0.83 1d 0hr 34min

4 2048 10000 100 1/3 0.091 0.82 0d 11hr 24min

4 2048 10000 100 2/3 0.091 0.82 1d 13hr 12min

4 4096 1000 50 1/3 0.088 0.83 0d 3hr 11min

4 4096 1000 50 2/3 0.088 0.83 0d 5hr 33min

4 4096 1000 100 1/3 0.091 0.82 0d 2hr 54min

4 4096 1000 100 2/3 0.091 0.82 0d 6hr 36min

4 4096 10000 50 1/3 0.088 0.83 1d 2hr 47min

4 4096 10000 50 2/3 0.088 0.83 2d 1hr 3min

4 4096 10000 100 1/3 0.091 0.82 0d 22hr 18min

4 4096 10000 100 2/3 0.091 0.82 1d 8hr 48min

4 8192 1000 50 1/3 0.088 0.84 0d 6hr 59min
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continued from previous page

ECFP Random Forest Result

Diameter Bits Trees Data/leaf Feature ratio RMSE Pearson R Training time

4 8192 1000 50 2/3 0.088 0.83 0d 9hr 24min

4 8192 1000 100 1/3 0.090 0.82 0d 6hr 21min

4 8192 1000 100 2/3 0.090 0.82 0d 9hr 18min

4 8192 10000 50 1/3 0.088 0.84 2d 5hr 56min

4 8192 10000 50 2/3 0.088 0.83 9d 0hr 7min

4 8192 10000 100 1/3 0.090 0.82 2d 19hr 35min

4 8192 10000 100 2/3 0.090 0.82 4d 3hr 3min

6 2048 1000 50 1/3 0.090 0.83 0d 1hr 37min

6 2048 1000 50 2/3 0.090 0.83 0d 2hr 46min

6 2048 1000 100 1/3 0.092 0.82 0d 1hr 15min

6 2048 1000 100 2/3 0.092 0.82 0d 2hr 36min

6 2048 10000 50 1/3 0.090 0.83 0d 12hr 34min

6 2048 10000 50 2/3 0.089 0.83 0d 19hr 48min

6 2048 10000 100 1/3 0.092 0.82 0d 11hr 8min

6 2048 10000 100 2/3 0.092 0.82 0d 21hr 31min

6 4096 1000 50 1/3 0.089 0.83 0d 3hr 9min

6 4096 1000 50 2/3 0.089 0.83 0d 5hr 46min

6 4096 1000 100 1/3 0.092 0.82 0d 2hr 54min

6 4096 1000 100 2/3 0.091 0.82 0d 7hr 42min

6 4096 10000 50 1/3 0.089 0.83 1d 5hr 33min

6 4096 10000 50 2/3 0.089 0.83 3d 7hr 3min

6 4096 10000 100 1/3 0.092 0.82 1d 0hr 39min

6 4096 10000 100 2/3 0.091 0.82 2d 2hr 3min

6 8192 1000 50 1/3 0.088 0.83 0d 5hr 59min
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continued from previous page

ECFP Random Forest Result

Diameter Bits Trees Data/leaf Feature ratio RMSE Pearson R Training time

6 8192 1000 50 2/3 0.088 0.83 0d 13hr 56min

6 8192 1000 100 1/3 0.091 0.82 0d 4hr 58min

6 8192 1000 100 2/3 0.091 0.82 0d 18hr 6min

6 8192 10000 50 1/3 0.088 0.83 1d 23hr 56min

6 8192 10000 50 2/3 0.088 0.83 4d 11hr 10min

6 8192 10000 100 1/3 0.091 0.82 3d 3hr 19min

6 8192 10000 100 2/3 0.091 0.82 5d 23hr 48min

Table S2: Hyperparameter training of excitation energy

ECFP Random Forest Result

Diameter Bits Trees Data/leaf Feature ratio RMSE Pearson R Training time

4 2048 1000 50 1/3 0.45 0.88 0d 1hr 29min

4 2048 1000 50 2/3 0.45 0.88 0d 2hr 31min

4 2048 1000 100 1/3 0.46 0.87 0d 1hr 40min

4 2048 1000 100 2/3 0.46 0.87 0d 4hr 32min

4 2048 10000 50 1/3 0.45 0.88 0d 12hr 22min

4 2048 10000 50 2/3 0.45 0.88 0d 22hr 24min

4 2048 10000 100 1/3 0.46 0.87 0d 12hr 53min

4 2048 10000 100 2/3 0.46 0.87 1d 1hr 3min

4 4096 1000 50 1/3 0.45 0.88 0d 2hr 55min

4 4096 1000 50 2/3 0.45 0.88 0d 5hr 40min

4 4096 1000 100 1/3 0.46 0.87 0d 3hr 3min
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continued from previous page

ECFP Random Forest Result

Diameter Bits Trees Data/leaf Feature ratio RMSE Pearson R Training time

4 4096 1000 100 2/3 0.46 0.87 0d 5hr 21min

4 4096 10000 50 1/3 0.45 0.88 1d 12hr 44min

4 4096 10000 50 2/3 0.45 0.88 1d 23hr 41min

4 4096 10000 100 1/3 0.46 0.87 1d 1hr 50min

4 4096 10000 100 2/3 0.46 0.87 2d 2hr 47min

4 8192 1000 50 1/3 0.45 0.88 0d 7hr 13min

4 8192 1000 50 2/3 0.45 0.88 0d 10hr 14min

4 8192 1000 100 1/3 0.46 0.88 0d 9hr 48min

4 8192 1000 100 2/3 0.46 0.88 0d 13hr 30min

4 8192 10000 50 1/3 0.45 0.88 2d 12hr 58min

4 8192 10000 50 2/3 0.45 0.88 6d 18hr 48min

4 8192 10000 100 1/3 0.46 0.88 2d 0hr 11min

4 8192 10000 100 2/3 0.46 0.88 5d 4hr 5min

6 2048 1000 50 1/3 0.45 0.88 0d 1hr 34min

6 2048 1000 50 2/3 0.45 0.88 0d 4hr 27min

6 2048 1000 100 1/3 0.46 0.87 0d 2hr 19min

6 2048 1000 100 2/3 0.46 0.87 0d 2hr 54min

6 2048 10000 50 1/3 0.45 0.88 0d 14hr 3min

6 2048 10000 50 2/3 0.45 0.88 0d 21hr 15min

6 2048 10000 100 1/3 0.46 0.87 0d 12hr 25min

6 2048 10000 100 2/3 0.46 0.87 0d 21hr 53min

6 4096 1000 50 1/3 0.45 0.88 0d 3hr 10min

6 4096 1000 50 2/3 0.45 0.88 0d 5hr 11min

6 4096 1000 100 1/3 0.46 0.87 0d 3hr 2min

18



continued from previous page

ECFP Random Forest Result

Diameter Bits Trees Data/leaf Feature ratio RMSE Pearson R Training time

6 4096 1000 100 2/3 0.46 0.87 0d 5hr 50min

6 4096 10000 50 1/3 0.45 0.88 1d 9hr 58min

6 4096 10000 50 2/3 0.45 0.88 2d 14hr 18min

6 4096 10000 100 1/3 0.46 0.87 0d 20hr 44min

6 4096 10000 100 2/3 0.46 0.87 2d 0hr 48min

6 8192 1000 50 1/3 0.45 0.88 0d 7hr 25min

6 8192 1000 50 2/3 0.45 0.88 0d 11hr 18min

6 8192 1000 100 1/3 0.46 0.87 0d 6hr 26min

6 8192 1000 100 2/3 0.46 0.87 0d 23hr 34min

6 8192 10000 50 1/3 0.45 0.88 2d 2hr 28min

6 8192 10000 50 2/3 0.45 0.88 4d 18hr 19min

6 8192 10000 100 1/3 0.46 0.87 2d 3hr 42min

6 8192 10000 100 2/3 0.46 0.87 3d 4hr 54min

MACCS keys used for RF training

MACCS 166 keys information.53

Atom symbols

A : Any valid periodic table element symbol,

Q : Hetero-atoms; any non-C or non-H atom

X : Halogens; F, Cl, Br, I

Z : Others; other than H, C, N, O, Si, P, S, F, Cl, Br, I

Bond types - : Single, = : Double, T : Triple, # : Triple, : Single or double query bond,

% : An aromatic query bond, $ : Ring bond; $ before a bond type specifies ring bond, ! :

19



Chain or non-ring bond; ! before a bond type specifies chain bond

@ : A ring linkage and the number following it specifies the atoms position in the line,

thus @1 means linked back to the first atom in the list.

ISOTOPE, 103< ATOMIC NO.< 256, GROUP IVA,VA,VIA PERIODS 4-6 (Ge...), AC-

TINIDE, GROUP IIIB,IVB (Sc...), LANTHANIDE, GROUP VB,VIB,VIIB (V...), QAAA@1,

GROUP VIII (Fe...), GROUP IIA (ALKALINE EARTH), 4M RING, GROUP IB,IIB (Cu...),

ON(C)C, S-S, OC(O)O, QAA@1, CTC, GROUP IIIA (B...), 7M RING, SI, C=C(Q)Q, 3M

RING, NC(O)O, N-O, NC(N)N, C$=C($A)$A, I, QCH2Q, P, CQ(C)(C)A, QX, CSN, NS,

CH2=A, GROUP IA (ALKALI METAL), S HETEROCYCLE, NC(O)N, NC(C)N, OS(O)O,

S-O, CTN, F, QHAQH, OTHER, C=CN, BR, SAN, OQ(O)O, CHARGE, C=C(C)C, CSO,

NN, QHAAAQH, QHAAQH, OSO, ON(O)C, O HETEROCYCLE, QSQ, Snot%A%A, S=O,

AS(A)A, A$A!A$A, N=O, A$A!S, C%N, CC(C)(C)A, QS, QHQH (&...), QQH, QNQ,

NO, OAAO, S=A, CH3ACH3, A!N$A, C=C(A)A, NAN, C=N, NAAN, NAAAN, SA(A)A,

ACH2QH, QAAAA@1, NH2, CN(C)C, CH2QCH2, X!A$A, S, OAAAO, QHAACH2A, QHAAACH2A,

OC(N)C, QCH3, QN, NAAO, 5M RING, NAAAO, QAAAAA@1, C=C, ACH2N, 8M RING,

QO, CL, QHACH2A, A$A($A)$A, QA(Q)Q, XA(A)A, CH3AAACH2A, ACH2O, NCO,

NACH2A, AA(A)(A)A, Onot%A%A, CH3CH2A, CH3ACH2A, CH3AACH2A, NAO, ACH2CH2A

> 1, N=A, HETEROCYCLIC ATOM > 1 (&...), N HETEROCYCLE, AN(A)A, OCO, QQ,

AROMATIC RING > 1, A!O!A, A$A!O > 1 (&...), ACH2AAACH2A, ACH2AACH2A, QQ

> 1 (&...), QH > 1, OACH2A, A$A!N, X (HALOGEN), Nnot%A%A, O=A > 1, HET-

EROCYCLE, QCH2A > 1 (&...), OH, O > 3 (&...), CH3 > 2 (&...), N > 1, A$A!O,

Anot%A%Anot%A, 6M RING > 1, O > 2, ACH2CH2A, AQ(A)A, CH3 > 1, A!A$A!A, NH,

OC(C)C, QCH2A, C=O, A!CH2!A, NA(A)A, C-O, C-N, O > 1, CH3, N, AROMATIC, 6M

RING, O, RING, FRAGMENTS
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Molecular Descriptors used for RF training

Morgan fingerprint density 1, 2, 3, Molecular weight, Heavy atom weight, Max absolute par-

tial charge, Max partial charge, Min absolute partial charge, Min partial charge, Number of

radical electrons, Number of valence electrons, Fraction of SP3 carbon, kappa shape index 1,

2, 3, Labute ASA, Number of aliphatic carbocycles, Number of aliphatic heterocycles, Num-

ber of aliphatic rings, Number of amide bonds, Number of aromatic carbocycles, Number

of aromatic heterocycles, Number of aromatic rings, Number of stereocenters, Number of

bridgehead atoms, Number of HB acceptors, Number of HB donor, Number of heteroatoms,

Number of heterocycles, Number of Lipinski HB acceptors, Number of Lipinski HB donors,

Number of rings, Number of rotatable bonds, Number of saturated carbocycles, Number

of saturated heterocycles, Number of saturated rings, Number of spiroatoms, Number of

unspecified atom stereocenters, Topological SA.

50 Molecular Properties inducing High Oscillator Strength

Table S3: The input features with the fifty highest importance values among the MACCSkeys
and molecular descriptors provided by RDkit.

Descriptors Feature importance

Fraction of SP3 carbon 0.14312

Kappa1 0.04294

Exist of aromatic ring 0.03969

Number of aromatic ring > 1 0.02887

Mumber of stereocenters 0.02294

Member of unspecified atom stereocenter 0.02269

Exist of C=C 0.01568

Max partial charge 0.01486
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continued from previous page

Descriptors Feature importance

Min absolute partial charge 0.01303

Exist of CH2N 0.01233

Exist of nitrogen connected to aromatic ring 0.01046

Exist of C-N 0.00949

Min partial charge 0.0081

Max absolute partial charge 0.00751

Exist of C that has a double bond with C and 2 single bonds 0.0074

Morgan density 1 0.00739

Morgan density 3 0.00735

Morgan density 2 0.007

Kappa2 0.00633

Kappa3 0.00632

Exist of two rings connected by bond 0.00603

Topological surface area 0.00544

Labute accessible surface area 0.00497

Exist of aromatic rings with 2 functional group(1,2) 0.00463

Exist of -CH2- 0.00455

Number of radical electrons 0.00448

Heavy atom weight 0.00419

Number of aromatic rings 0.00413

Molecular weight 0.00398

ACH2AAACH2Aa 0.00382

NACH2Aa 0.0038

Exist of F 0.00373
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continued from previous page

Descriptors Feature importance

Exist of CH2 connected to herero atom 0.00367

Number of Hydrogen bond acceptors 0.00352

Exist of 8-membered ring 0.00293

Exist of C=C(C)C 0.00293

Number of valence electrons 0.00292

Exist of nitrogen connected to aromatic ring with double bond 0.00285

QAAAA@1a 0.00281

Number of rotatable bonds 0.00261

Exist of 5-membered ring 0.00256

6-membered ring > 1 0.00249

Exist of rings with 2 functional group(1,2) 0.00219

Number of Lipinski hydorgen bond acceptors 0.00211

Exist of 2rings sharing 1 bond 0.00211

Number of Lipinski hydorgen bond donors 0.00207

Exist of nitrogen connected to ring 0.00205

Number of aromatic heterocycles 0.00199

Number of aromatic carbocycles 0.00182

Number of heteroatoms 0.0018
a A : Any valid periodic table element symbol, Q : Hetero-atoms,

@ : A ring linkage and the number n following it specifies the atoms position in the line;
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Figure 5: Eight molecular fragments that induce high oscillator strength. The first and
third columns present the structures of molecular fragments. The second and fourth columns
present the histogram of oscillator strength of molecules containing the fragment on the left
side.
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(a) Molecular structure
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(b) Fragment

(c) Lower state (HOMO-1) (d) Upper state (LUMO)

Figure 6: An example of a molecule containing the indazole-like fragment: 1-methyl-
benzo[f]indazole. (a) Molecular structure (b) The fragment that is expected to induce high
oscillator strength. (c) Lower state (the second highest occupied MO) and (d) upper state
(LUMO) of the maximum oscillator strength excitation.
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Figure 7: The input features with the eleven highest importance values among the MACCS
keys and molecular descriptors provided by RDkit. Only the features whose importance is
over 0.1 are plotted.
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