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ABSTRACT  

In this study we strengthen our fundamental understanding of the underlying reactions of a possible 

Ca-O2 battery using a DMSO based electrolyte. Employing the rotating ring disc electrode, we 

find a transition from a mixed process of O2
- and O2

2- formation to an exclusive O2
- formation at 

gold electrodes. We will show that in this system Ca-superoxide and Ca-peroxide are formed as 

soluble species. However, there is a strongly adsorbed layer of ORR products on the electrode 

surface which is blocking the electrode. Surprisingly the blockade is a partial blockade because 

the formation of superoxide can be maintained. During an anodic sweep the ORR product layer is  

stripped from the electrode surface. With X-ray photoelectron spectroscopy the deposited ORR 

products are shown to be Ca(O2)2, CaO2 and CaO as well as side reaction products such as CO3
2- 

and other oxygen containing carbon species. We will give evidences that the strongly attached 

layer on the electrocatalyst that is partially blocking the electrode could be adsorbed CaO. The 

disproportionation reaction of O2
- in presence of Ca2+ was demonstrated via mass spectrometry.  

Finally the ORR mediated by 2,5-Di-tert-1,4-benzoquinone (DBBQ) is investigated by differential 

electrochemical mass spectrometry (DEMS) and XPS. Similar products as without DBBQ are 

deposited on the electrode surface. The analysis of the DEMS experiments shows that DBBQ- is 

reducing O2 to O2
- and O2

2- whereas in the presence of DBBQ2- O2
2- is formed. The mechanism of 

the ORR with and without DBBQ will be discussed. 
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Introduction 

To overcome future energy storage problems, several different technologies will be needed, 

among which batteries will potentially be a key player for mobile applications and transportation. 

Considering the scarcity of several elements used in today’s lithium ion batteries (e.g. cobalt (1)) 

and, even more importantly, socio-economic impacts of, for example, cobalt mining (2), 

alternative battery technologies have to be developed to unleash the full potential of 

electrochemical energy storages. One possibility is to use other chemistries such as metal-air and 

metal-sulphur, which do not necessarily require the use of cobalt catalysts. Another problem for 

lithium technology is the lack of the resource lithium and the water consuming mining (3). Thefore 

Calcium, being the fifth most abundant metal on earth, combines a high abundance with a 

competitive  volumetric capacity of 2072 mAh⋅cm-3 (4, 5) and thus, is a promising candidate as 

anode material in future battery applications. Early studies, however, showed the difficulties of Ca 

plating/stripping (6). Fortunately, more recent studies revealed electrochemical systems in which 

the Ca plating/stripping becomes accessible (4, 5, 7, 8). 

Combining Ca plating/stripping as anode reaction with an oxygen cathode promises impressive 

theoretical specific energy densities. This kind of batteries, where a metal anode is combined with 

an oxygen cathode, was extensively investigated and several combinations of alkali metals and 

oxygen have been proposed(9-11). It is interesting that even on good catalysts for the oxygen 

reduction reaction (ORR) in aqueous media e.g. platinum, where oxygen is reduced to water and 

thus, the dioxygen bond is broken the situation is completely changing if a non-aqueous electrolyte 

is used (12). There the reaction typically stops at the superoxide or peroxide stage. Figure 1 is 

showing the theoretical OCV potentials of the formation of lithium, sodium and potassium 
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superoxides and peroxides in comparison to calcium superoxide and calcium peroxide. The 

resulting theoretical specific energy in Wh/kg is also displayed in Figure 1 (see numbers in 

brackets). 

 

Figure 1: Thermodynamics of alkali superoxides and peroxides in comparison to calcium 

superoxide and calcium peroxide (all in solid state). The standard potentials are given with respect 

to the corresponding metal of the superoxide/peroxide. Based on these potentials the theoretical 

specific energy (in Wh/kg) with respect to the mass of the product is displayed in brackets. To our 

knowledge no thermodynamic data is available for the O2/Mg(O2)2 system. Note that the 

O2/Ca(O2)2 system as it was previously miscalculated (13). The correct value is displayed here.  

Figure 1 shows, that especially the O2/CaO2 system is delivering the second highest theoretical 

specific energy density for the displayed systems. The O2/Ca(O2)2 is showing the lowest theoretical 

specific energy with 838 Wh/kg. But even this value is higher than the value for the Li Ion 

technology (C/LiCoO2) with a theoretical specific energy density of 387 Wh/kg(14). Preceding 

studies on the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in the Ca2+ 

system in DMSO were already done by us (13, 15). There we observed a significant effect of the 

electrocatalyst on the ORR mechanism. On Au electrodes the formation of peroxide was observed 

via differential electrochemical mass spectrometry. In contrast to that, superoxide is the main 

product on Rh, Pt, Ru and glassy carbon. Further investigations of the system on Pt and glassy 

carbon electrodes were done using differential electrochemical mass spectrometry (DEMS) in a 
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generator collector arrangement and rotating ring disc electrodes (RRDE). There we found that 

roughly 90% of the ORR product is soluble O2
-. Taking also the amount of insoluble products into 

account, we observed a remarkable reversibility for a metal air system of 95%. In addition CV 

studies unraveled that O2
- is forming a contact ion pair with Ca2+, which was also found in several 

other metal-O2 systems(16) (17). In a future study, we will present more evidence on this (18). 

In the current paper, we are using the RRDE technique to get more insights into the reaction 

mechanism of the ORR in Ca2+ containing DMSO. The homogenous disproportionation of O2
- in 

the presence of Ca2+ is investigate using mass spectrometry. For the noble metals Au and Pt, ex-

situ x-ray photoelectron spectroscopy (XPS) combined with Ar+ etching is performed to analyze 

the deposited ORR products on the electrode surface. Finally we are using the well-known redox 

mediator in Li-O2 systems, 2,5-Di-tert-1,4-benzoquinone (DBBQ), to investigate the applicability 

in the Ca2+ system by using DEMS and XPS.  
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Experimental 

Chemicals 

Calcium perchlorate tetrahydrate (99 %, Sigma Aldrich) was dried under reduced pressure and 

T=356 K in a Büchi-oven for 48h. Extra dry DMSO (99.7%, over molecular sieve, Acros 

Organics) and potassium superoxide (Acros Organics) were used as received. As supporting salt 

for the reference electrolyte AgNO3 (>99.5%, ChemPure) was used. All electrolyte preparations 

were made in Ar (Air Liquid, 99.999 %) filled glovebox by GS. 

Electrochemical treatment of the noble metal electrodes 

Prior to the measurements in the organic solvents the noble metal electrodes (Au and Pt) were 

checked for cleanness. This was done by cycling the electrode in 0.5 M H2SO4 until the typical 

hydrogen adsorption/desorption region (for Pt) and the oxide formation (for Pt and Au) was 

observed in the cyclic voltammetry. Afterwards the crystals were washed with MilliQ water 

(18.2 MΩ) and dried under reduced pressure until further electrochemical measurements were 

performed. 

RRDE Experiments 

The RRDE-measurements were performed in a closed H-cell. The H-cell was purged with an 

Ar-O2 mixture throughout the experiment to saturate with oxygen and avoid contamination of the 

electrolyte with water from the ambient air. A silver wire in a solution of 0.1 M AgNO3 in DMSO 

was used as reference electrode. To avoid contamination of the working electrolyte with AgNO3 

the contact between reference electrode and working compartment was established via the wet 

surface of a closed glass stopcock. The water content of the electrolyte determined via Karl-Fischer 

titration was typically 40 ppm. A gold-disk platinum-ring electrode with a geometric surface area 

of 0.196 cm² (disk area) and a collection efficiency of 0.25 was used throughout the investigation.  
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DEMS Experiments 

DEMS experiments were performed with a home built differentially pumped mass spectrometer 

as described by Wolter and Heitbaum (19, 20). The spectrometer is connected via a flexible 

vacuum steel rod to a MBraun glove box filled with a 20:80 O2:Ar atmosphere. The water content 

in this glovebox never exceeds a value of 0.3 ppm. As electrochemical cell a thin layer DEMS cell, 

which was optimized for the use in metal-O2 systems was used. In this cell, we are using a porous 

Teflon membrane with sputter - deposited Au as working electrode, which is interfacing the 

vacuum of the mass spectrometer. The wall opposite to the working electrode of the thin layer cell 

is formed by a porous PTFE membrane interfacing an oxygen atmosphere, thus allowing 

continuous oxygen flow to the working electrode. Three counter electrodes (Au wires) and a 

reference electrode are connected via capillaries to the working electrode compartment. As 

reference electrode a silver wire immersed into a 0.1 M AgNO3 in DMSO is used. The DEMS cell 

is operated without convection so that reaction products which are soluble in the electrolyte can 

accumulate in the working electrode compartment (V=5.6 µL). For a more detailed description of 

the experimental setup, see (21). 

Detection of the homogenous disproportionation of superoxide via mass spectrometry 

A vessel containing 25 mL of DMSO with 0.1 g KO2 was prepared in an argon-filled glovebox. 

The vessel was closed with a rubber septum and transferred to the mass spectrometer. There the 

solution is continuously stirred during the experiment with a magnetic stirrer. Two cannulas were 

pierced through the septum. Via one highly pure Ar gas was flushed through the experimental 

setup, the other one was connecting the gas phase of the vessel to the differentially pumped mass 

spectrometer. Via a leak valve the pressure in the vacuum is adjusted to 7⋅10-5 mbar. 1 M 

Ca(ClO4)2 in DMSO and 1 M LiClO4 in DMSO are prepared in the glovebox. 3 mL of the 
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respective solution is transferred in a sealed syringe to the experimental setup. There the solution 

is right away inserted into the vessel via the septum. A sketch of the experimental setup is shown 

in the supporting information.  

 

XPS analysis 

To investigate the chemical state of sample surfaces X-Ray Photoelectron Spectroscopy (XPS) 

was used. In general the samples are Pt or Au electrodes (d=10mm) which were modified in an 

electrochemical experiment. The sample electrodes are mounted on a crystal holder manufactured 

out of steel. After the electrochemical experiment, the samples are washed with dry DMSO 

(99.7%, over molecular sieve, Acros Organics) and mounted into a homemade sample transfer 

system. This transfer system allows the transfer of a sample between the glovebox and the UHV 

chamber without contact to air. The XP Spectrometer is part of a homemade UHV chamber with 

a base pressure of 5⋅10- 10 mbar(22-24). The used X-Ray source is a non-monochromatized Mg Kα 

(1253.6 eV) source. As electron energy analyzer a hemispherical electron analyzer (Omnicron 

NanoTechnology EA 125) is used. Survey spectra were recorded with a pass energy of 50 eV and 

an energy resolution of 0.5 eV. High-resolution spectra were recorded with a pass energy of 15 eV 

and an energy resolution of 0.1 eV. To increase the signal to noise ratio, the high-resolution spectra 

are an average of 9 spectra. By doing this the resolution of our device was determined with 1.07 eV 

(measured with the FWHM of the Au 4f7/2 peak). The binding energy was calibrated using the Au 

4f7/2 peak at 83.95 eV or the Pt 4f7/2 peak at 71.09 eV (25), which were present in all recorded 

spectra. The XPS measurements were accompanied by Ar+-etching (Physical Electronics Model 

04-191, 3 kV, Iemission=25 mA, Isample=1 µA) The electrochemical experiments were performed in 

a Glovebox filled with a 80:20 Ar: O2 mixture. The humidity in the glovebox never exceeded a 
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value of 0.3 ppm. Our experiments showed that the deposited films of electrically non-conducting 

species is thin and in good contact with the conducting Au or Pt crystal. Therefore, no charge 

compensation with an electron flood gun was needed.  

 

Results and Discussion 

RRDE and DEMS investigations of the ORR in Ca(ClO4)2 in DMSO 

The ORR at a gold electrode in 0.1 M Ca(ClO4)2 is shown in Figure 2. After a rise in current at 

a potential of −0.8 V, a plateau is observed for a rotation rate of 4 Hz, which is close to the 

diffusion-limited current for a two-electron reduction of oxygen and thus agrees well with the 

previous observations made in the DEMS flow-through cell (15). 

However, after a charge flow of 8200 µC cm−2, the current starts to become less negative at a 

potential of −1.29 V and reaches a second plateau, which agrees well with the diffusion-limited 

current of the one-electron process and is also reflected in the share of superoxide (Figure 2 c). 

This is in principle reminiscent of the ORR in Li+-containing DMSO, where a transition to 

superoxide formation was observed after the electrode was partially blocked by Li2O2 (26, 27). 

However, a major difference between these measurements is the large charge which can be passed 

before this transition occurs: Even if the charge detected at the ring electrode is subtracted 

(2500 µC cm-2), the remaining charge is still 5700 µC cm−2 and thus in the order of several 

monolayers. Since it is well known that insoluble peroxides and superoxides are insulating and 

thus poisoning the electrode surface, this result implies that in fact most of the reduction charge is 

passed into soluble species. Considering that the charge detected at the ring only accounts for a 

small portion of the produced species, this can only be understood by assuming that the soluble 

species are not readily oxidizable at the ring (28). Here we want to point out that the previously 
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reported CVs in the DEMS cells showed a plateau for the 2 e-/O2 process in the ORR (13). This 

difference to the measurement shown here is due to the higher convection in the RRDE experiment 

and thus a higher flowing charge which is sufficient to poison the electrode and trigger the 

transition from the 2 e-/O2 process to the 1 e-/O2 process.  
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Figure 2. ORR in presence of Ca2+ at a gold-RRDE.  a. Currents at the gold-disk. b. Corresponding 

currents at a platinum-ring. c. Share of superoxide. Electrolyte: 0.1 M Ca(ClO4)2 in DMSO. 

A(Disk) = 0.196 cm2, N0 = 0.25.  

Using the DEMS thin layer cell in stagnant electrolyte, it can also be shown that the peroxide 

formed during the ORR is soluble in the DMSO-based electrolyte by examining the electron 

number of the OER was examined (see Figure 3, the oxidation of a peroxide corresponds to a two-

electron process). To probe for soluble, reduced oxygen species, the experiment was carried out 

as follows: First, the potential was swept to −1.5 V, where it was kept for 500 s and roughly 170 

nmol of O2 were reduced. Then, the electrolyte was exchanged and the potential was stepped to 
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−0.5 V, before it was cycled to 0.75 V. The amount of O2 evolved during the anodic sweep is only 

1.5 nmol. In contrast to this, the amount of O2 reduced in an experiment without a potential stop 

and without electrolyte exchange is 42 nmol and the amount evolved is 12 nmol (the difference 

between ORR and OER charge is probably caused by the transport of the soluble species into the 

capillaries of the cell). The large discrepancy between OER and ORR charge in the case of 

electrolyte exchange implies that the peroxide-species (as indicated by the two-electron process 

during reduction as well as oxidation) are at least partially soluble. 
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Figure 3 Thin-layer DEMS-measurement of ORR on porous Au/PTFE in presence of Ca2+.  a. 

Currents at the gold working electrode. b. Corresponding flux of oxygen. c. Corresponding flux 

of CO2. d. Number of electrons transferred per evolved molecule of O2. Black: After holding the 

potential for 500 s at −1.5 V, the electrolyte was exchange under potential control and then stepped 

to −0.5 V before continuing cycling. Green: DEMS measurement without potential step and 

without electrolyte exchange. Electrolyte: 0.4 M Ca(ClO4)2 in DMSO, 900 mbar O2. The diffusion 

limited currents for oxygen consumption in the absence of convection is due to the special thin 

layer construction of the cell. e Cross section of the components that form the electrolyte volume 

of the thin layer cell. For more details about the DEMS electrochemical cell, see (21). 

Since we have shown that the ORR products are soluble, it has to be shown if it is possible to 

reactivate the electrode by dissolving the ORR products. The reactivation of the electrode was 

investigated with the RRDE. The convection induced by the RRDE should favour the dissolution 

of the ORR products.  
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The electrode was first blocked by a potential stop in the ORR. Then a CV was recorded in the 

potential range of the ORR (see Figure 4 (a)). Even with a blocked electrode we observe a faradaic 

current for the ORR. An explanation for this might be the electro migration of ions through the 

blocking insulating layer if higher field strengths are applied as we previously reported for the 

ORR in Mg2+ containing DMSO (29).The potential window is successively opened positively by 

100 mV. Reaching a potential of 0.3 V for the upper limit, the reactivation of the electrode can be 

recognized by an increase in the reduction current of the ORR (see arrows in Figure 4). At the 

same time, an oxidation peak is obtained at 0.3 V, which can be attributed to the oxidation of 

products deposited on the electrode (see magnification of the OER region in Figure 4). A further 

opening of the potential regenerates the electrode completely and shows the necessity of applying 

higher potentials for the reactivation of the electrode. This measurement shows that the electrode 

is not regenerated simple by dissolution of the ORR products, but that a blocking surface layer 

(possibly an adsorbate) remains on the surface which can only be stripped at potentials around 

0.3 V. In the first cycle reaching this potentials, this stripping is rather incomplete, as can be seen 

in the subsequent sweep into the ORR region. The more the blocking is lifted, the larger grows the 

corresponding oxidation peak and also shifts to lower potentials. This is indicative of a nucleation 

and growth behaviour: Oxidation of this layer is slow and only occurs at defects on the boundary 

between the layer and the free surface sites. 

As the disc electrode is reactivated the amount of detected superoxide at the ring electrode is 

increasing (see Figure 4 (a)). For the completely reactivated electrode (see black traced 

measurement in Figure 4 (a)), again a transition from the peroxide formation to the superoxide 

formation is observed, as can be seen in the share of superoxide in see Figure 4 (b). For a partially 

blocked electrode (see orange traced measurement in Figure 4 (a)) the formation of superoxide is 
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shifting 200 mV in positive direction (see ornage trace share of superoxide in Figure 4 (b)). This 

is showing, that the peroxide formation preferentially is occurring at active sites on the electrode, 

which are already blocked in the orange trace measurement and thus the superoxide formation is 

starting earlier during the sweep. 
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Figure 4 (a)RRDE study with a partially blocked Au electrode with v=20 mV/s. The upper 

potential limit is increased by 100 mV per cycle. The arrows indicate the reactivation of the 

electrode due to a potential opening. In all measurements 0.1 M Ca(ClO4)2 in DMSO with 20% 

O2 was used. The rotation frequency is in all measurements is 9 Hz. The roughness factor 

of the disk electrode was 3.(b) Calculated share of superoxide for the black and orange 

traced measurement in (a) in the potential range of the ORR. 
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Disproportionation of superoxide in the presence of Ca2+ 

Another known reaction in non-aqueous metal air batteries is the disproportionation of the 

superoxide. The common procedure to test if superoxide is undergoing a disproportionation in the 

presence of a cation of interest is to use a solution of the stable superoxide compound KO2 (in this 

study: KO2 in DMSO) and add a solution containing the cation of interest (in this study: Ca(ClO4)2 

in DMSO (30-32). The products of the disproportionation of O2
- are O2

2- and O2. Hence, this 

reaction can be followed by measuring the ionic current of mass 32 as shown in Figure 5. 
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Figure 5: Ionic current of mass 32 (red) as a function of time. The gas phase over a stirred solution 

containing 0.1 g KO2 in 25 mL DMSO was analyzed by MS after adding 3 mL of 1 M Ca(ClO4)2 

and 1 M LiClO4 in DMSO. The time at which the Ca2+ and Li+ containing DMSO were added, are 

indicated as dashed line in the graphs. For details on the experimental setup see Figure S 1 in the 

supporting information.  

After adding 3 mL of 1 M Ca(ClO4)2 in DMSO to 0.1 g KO2 in 25 mL DMSO we observe an 

increase of the ionic current of mass 32. Further on the ionic current of mass 32 is going through 
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a maximum and fading within 2h. This shows that O2
- is undergoing disproportionation in the 

presence of Ca2+. Adding again 3 mL of 1 M LiClO4 in DMSO to the solution is not increasing the 

ionic current of mass 32 further, which shows that the disproportionation of O2
- was finished. 

Otherwise, addition of Li+ should lead to another increase in the signal on mass 32 as the remaining 

superoxide will disproportionate under the formation of O2 and insoluble Li2O2. 

Astonishingly, parallel to oxygen formation, ion current transients corresponding to volatile 

species like H2O (m/z:18), H2CO (m/z:30), CO (m/z:28), CO2 (m/z:44) and SO2 (m/z:64) were 

observed (see Figure S 2 in the supporting information). To our knowledge this was not reported 

so far in this kind of experiments or in DEMS experiments in metal-air systems during the ORR. 

A reason why we are observing these signals might be the sensitivity of our experiment, which 

was optimized by using the differentially pumped vacuum system as well as a relatively high 

pressure in the vacuum system that was adjusted by the leak valve. The formulation of a 

mechanism how these compounds are formed during disproportionation is currently not possible. 

The most plausible source would be a side reaction with singlet oxygen, which was observed as a 

by-product of the disproportionation reaction in presence of various cations in significant amounts 

(32, 33). Due to the high reactivity of singlet oxygen, it is plausible that DMSO is decomposed in 

a follow-up reaction under generation of the above species. Another side product of the 

disproportionation that was already reported is CO3
2- (32, 34).We prove the presence of carbonates 

after the disproportionation by acidifying the solution with H2SO4 and observing a CO2 formation 

from the chemical reaction as it was also done by Mahne et. al.(33) (see Figure S 3 in the 

supporting information).  
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XPS studies of the electrode surfaces 

The Pt and Au electrode after the ORR are characterized by XPS at various stages of Ar+-etching 

to get insights into the depth-profile of elemental distribution of the deposited film. The 

electrochemical experiments prior to the XPS measurements are described in the supporting 

information.  

First of all the  survey spectra of the Pt electrode after the ORR and after the OER are displayed 

in Figure 6. 

 

Figure 6 Top figure: Survey spectra of a Pt electrode after performing the ORR at -1.5 V vs Ag+|Ag 

for 60 min (blue line) and after sweeping the potential into the OER (black line). Bottom figures: 

High-resolution XP spectra of the O 1s-, Ca 2p-, C 1s- and Pt 4f-region. The associated 

electrochemical experiment is shown in Figure S 4 in the supporting information.  
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After holding the electrode potential in the ORR region, the spectrum for the Pt electrode surface 

mainly shows peaks at binding energies that contribute to the core levels of carbon, calcium and 

oxygen. The assignment towards chemical species was already discussed above. The Pt peaks are 

also visible in the measurement after the ORR and especially the 4f peaks of Pt show an interesting 

feature: The increase of the intensity towards higher binding energies after the 4f peaks is an 

indication of inelastic scattering of the Pt 4f electrons. This shows that Pt is buried under a layer 

of precipitated products of the ORR (35). Also in the region in which the Pt 4d peaks are expected 

to appear (between 315 and 332 eV binding energy) the baseline is increasing. This is again 

showing that the X-rays excite the Pt 4d core levels and that the emitted photoelectrons are 

inelastically scattered as they are passing through the deposited thin layer. We made the same 

observation using an Au electrode (see Figure S 5 in the supporting information). Due to the 

surface sensitivity of the XPS experiment and the fact that the 4f peaks of the electrode material is 

observed is giving evidence that a thin film is deposited on the electrode surface. After a sweep 

into the OER region, the Pt peaks are largely increased, indicating that the surface now is only 

covered by a very thin film. This will be discussed below. 

High-resolution XP spectra of the O 1s, the Ca 2p the C 1s as well as the 4f peaks of the electrode 

material (Au and Pt) were recorded and are shown for different Ar+ etching times in Figure 7. In 

addition a literature survey on binding energies of CaO, Ca(OH)2, CaCO3 and CaO2 was done. The 

results are plotted in the first row of Figure 7. The solid dots in Figure 7 are indicating the average 

of the binding energies available in literature, while the error bar denotes the standard deviation. 

The values used and references are summed up in the supporting information. Figure 7 also shows 

common binding energies of different carbon species.  
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Figure 7: High resolution XP Spectra of various binding energy regions. The corresponding core 

shell orbitals are indicated in the plots. The XP spectra are recorded after 60 min of ORR in 0.2 M 

Ca(ClO4)2 in DMSO on a Pt electrode (middle row) and an Au electrode (bottom row). The 

different spectra are recoded after different Ar+ etching times as indicated in the legend. Typical 

binding energy values for different chemical compounds are displayed in the first row. The 

displayed values are the average values (points) with the standard deviation from the average. 

(error bar). An overview of the different values from the different references is shown in the 

supporting information.   

Comparing the XP spectra in Figure 7 for the Pt and the Au electrode after the transfer and after 

5 min Ar+ treatment shows that the O 1s and Ca 2p peaks are observed at similar binding energies 
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on the different electrode materials. This is an indication that the same species are deposited on 

both electrode materials. Only in the C 1s region in the spectra collected on the Pt electrode a 

shoulder is visible  at a binding energy of 287.3 eV, indicating that more C-O-C and C-OH species 

are present on the surface. The comparable chemical state regarding the calcium oxygen 

compounds of the film deposited during ORR becomes clearer in Figure 8, where the O 1s and 

Ca 2p XP spectra after 5 min Ar+ etching for the Au and the Pt electrode are plotted. The O 1s 

regions of the peak at a binding energy of 532.3 eV are overlapping. This shows that the same 

amount of oxygen is present in both experiments. The rather large FWHM of 2.34 eV of the peak 

at 523.3 eV indicates that this peak probably contains excitations from the O 1s core level out of 

different chemical environments and thus, different chemical compounds. In both spectra, the 

additional small peak at a binding energy of 529.5 eV shows the presence of another oxygen 

species with a higher electron density on both electrode materials. The peaks in the Ca 2p region 

are also appearing at the same binding energies again indicating that the same calcium oxygen 

species are deposited on the Au and Pt electrode. The higher intensity of the Ca 2p region towards 

higher binding energies is due to the superposition of the Au 4d peak and the Ca 2p peak (see 

survey spectra in Figure S 4).  
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Figure 8: Comparison of the XP Spectra in the O 1s region and Ca 2p region of the experiments 

on the Au and Pt electrode. The spectra are both recorded after 5 min Ar+ etching. For the Ca 2p 

region the counts were normalized to the Ca 2p3/2 peak. The O 1s region is displayed with no 

further normalization procedure.  

Since we have shown that the chemical composition of the ORR products on the gold and 

platinum electrode are the same, the further detailed analysis of the XP data will deal with the Pt 

electrode. The elemental composition of the film on the Pt electrode was calculated using atomic 

sensitivity factors (36) and assuming a uniform distribution of the elements in the investigated 

volume of photoelectron formation. The calculated values are summed up in Table 1. Table 1 

shows that carbonaceous species are located on the surface of the deposited film. After a total 

etching time of 7 min the C 1s signal vanishes (C 1s atomic ratio is less than 5% of the total film, 

estimated from the survey spectra in Figure S 6), thus inside the film the amount of carbonaceous 

species can be neglected. The film gets thinner through the Ar+-etching, as indicated by the 
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increase of the Au 4f and Pt 4f peaks. Close to the electrode surface, the film consists only out of 

calcium and oxygen. 

 

Table 1: Surface composition (atomic ratio) calculated from the signal area of the high resultion 

spectra of the experiments with the Pt electrode shown in Figure 7. This was done by assuming a 

uniform elemental distribution of the volume where photoelectrons are emitted from.  

a Due to the lower sensitivity of the experimental setup while recoding high resolution spectra it 

was not possible to detect carbon and therefore this value was set to zero. The survey spectra show 

that by doing this the absolute error is less than 5%.  

𝑡(𝐴𝑟+) / min 𝐶 / % 𝐶𝑎 / % 𝑂 / % 

0 40.2 15.3 44.4 

5 20.3 23.9 55.8 

7 0.0a 29.8 70.2 

9 0.0a 33.3 66.7 

 

Moreover, the Ca 2p, O 1s and C 1s XP spectra are showing a shift in the binding energy for the 

different Ar+-etching times. This implies a change in the oxidation state of the deposited film. A 

detailed discussion of the O 1s and C 1s region is made by considering the deconvolution of the 

recorded spectra. To our knowledge, there are no reports about binding energies of the Ca 2p core 

level of CaO2 and Ca(O2)2
 in literature. However, binding energies for the O1s levels for the 

peroxide are available. These two compounds are expected to be the main ORR products (13, 15), 

but the minor formation of CaO is also possible. In addition, the shift in binding energies of the 

Ca 2p core level is not as big as the shift of binding energies of the O 1s and C 1s core level, which 

from a chemical point of view is reasonable since in all calcium-oxygen-compounds Ca has the 

formal oxidation state +II. Therefore, a further discussion of the binding energy shift of the Ca 2p 

core level is not made here, but we will use the overall intensity of this excitation for quantification 
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below. The C 1s region was also investigated in detail (see Figure S 8 in the supporting 

information). There we observed contributions of C-O, O-C=O and CO3
2- species. These species 

are located on the surface of the deposited film and are disappearing after Ar+ treatment. From 

previous studies on meatal-air batteries the formation of decomposition products like CO3
2- is well 

known and thus it is not surprising to also find these species in the present system (37-40). As 

source of the carbonate we would refer to the disproportionation of superoxide and the associated 

side reactions (presumably through the formation of singlet oxygen), as we also discussed in the 

context of fig.5. 

In the survey spectrum we observe a peak at 161.5 eV binding energy on the platinum electrode 

even after 9 min of Ar+ treatment indicative of another decomposition product, which we attribute 

to S2- (see Figure S 7 in the supporting information). Previous results of Sharon and Aurbach et. 

al. on the Li-O2 system in DMSO containing electrolyte showed the presence of higher oxidation 

states of sulphur on the electrode surface as SO3
2- and SO4

2- (41) which was attributed to a side 

reaction between DMSO and the reactive oxygen species generated during the ORR. In our case, 

the S 2p core level peak is observed after 9 min of Ar+ treatment and therefore on the Pt electrode. 

Therefore the signal should in our case arise from a reaction of the electrocatalyst Pt with DMSO. 

It is well known that on Pt electrodes adsorption of layers of DMSO (42, 43) as well as further 

reduction of DMSO is occurring(44). Overall, the decomposition mechanism of DMSO by reactive 

oxygen species generate during the ORR is still unclear. One of the best suggestion is the 

decomposition of the electrolyte by the highly reactive, electronically exited state of oxygen, i.e. 

singlet oxygen. Singlet oxygen was found to be a product during the ORR in organic solvents due 

to the disproportionation of superoxide compounds(32). 
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The O1s region is deconvoluted for the experiments after 7 min and 9 min Ar+ treatment (see 

Figure 9). We chose those two experiments for the analysis, due to the lack of oxygen containing 

carbon compounds as we showed before. Therefore the deposited layer consists exclusively of 

calcium-oxygen compounds 

 

Figure 9 Deconvolution of the O 1s region of the spectra collected from the Pt electrode after 7 min 

Ar+ treatment (yellow) and 9 min Ar+ treatment (also shown in Figure 7). The experimental data 

is shown as circles and the resulting fit is plotted as line. The different deconvoluted species 

(Ca(O2)2, CaO2 and CaO) are plotted as filled curves under the experimental data. The atomic 

atomic % of the different deconvoluted peaks is shown in Table 2.p 

 

The O 1s region in Figure 9 reveals a new peak at 529.4 eV binding energy after 7 min Ar+ 

treatment, which was deconvoluted into the light green peak, which is assigned to CaO (45)(see 

also literature overview in Figure 7). Oxides were previously also found on electrodes of Lithium-
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Air systems (46, 47). The origin of the oxide formation in these systems is still unclear. We assume 

that, the oxide is formed only as adsorbate in the monolayer range, as our previous DEMS 

measurements do not show evidence for a significant occurrence of the 4 e--process (13, 15). The 

formation of CaO might also occur as artefact from the XPS analysis procedure. In the supporting 

information we summed up our arguments why we exclude the formation of CaO as an artefact 

from the XPS analysis procedure. 

Regarding the peak towards higher binding energies in the O 1s region, the high FWHM of 

2.34 eV in Figure 7 of the peak after 5 min Ar+ treatment is suggesting that several species are 

contributing to this peak. Therefore we deconvoluted the peak into a CaO2 contribution (grey peak 

in Figure 9) and a Ca(O2)2 contribution (blue peak in Figure 9). The assignment towards CaO2 and 

Ca(O2)2 is made by taking the binding energy into account as well as calculating the stoichiometry 

of the calcium-oxygen compound from the XPS data. Based on our analysis of the different binding 

energies of calcium-oxygen compounds there are two possible species that can contribute to the 

intensity in the binding energy region of the grey peaks in Figure 9: Ca(OH)2 and CaO2. In our 

literature search concerning the binding energy of CaO2 we only found one value for the binding 

energy at 531.9 eV(48). Since the number of transferred electrons per oxygen molecule is slightly 

higher than 1 e-/O2 on a Pt electrode during the ORR (13), it is plausible to assume that also minor 

amounts of peroxide are formed. Moreover, the precipitation of CaO2, which is generated from the 

chemical disproportionation of Ca(O2)2 (as was shown above in the context of Figure 5), is also a 

possible origin of CaO2 on the surface. The results concerning the formation of hydroxides during 

the ORR in DMSO in literature are equivocal. The stability of DMSO in a Li-O2 cell was studied 

extensively. There are reports, that LiOH can be formed from LiO2 and Li2O2 in presence of 

DMSO (41, 49, 50). On the other hand, there are reports that DMSO is a stable electrolyte in a Li- 
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Air cell (40, 51). The formation of LiOH in these systems is observed on a timescale of 100-500 h. 

If the reactivity of CaO2 and Ca(O2)2 is comparable to the Li-containing compounds, we would 

conclude, that the Ca(OH)2 is not formed in our experiment (timescale 1h). Therefore, an 

assignment of the grey peak in Figure 9 as CaO2 is conclusive. Concerning the blue peaks in Figure 

9: To our knowledge, there are no binding energies of the O 1s core level of Ca(O2)2 reported in 

literature. From a chemical point of view the O 1s binding energy of Ca(O2)2 should be shifted 

positive compared to CaO2, which is the case in the assignment of Figure 9. 

The presence of Ca(O2)2 on the surface becomes obvious if the stoichiometry of the calcium-

oxygen compound is calculated from the intensity of the Ca 2p and O 1s core level excitations. 

The calculated O / Ca ratios as well as the amount of different oxygen species resulting from the 

deconvolution is shown in Table 2, for details of the calculation see the supporting information. 

 

Table 2: Peak areas of the O 1s region in atomic % of the deconvoluted spectra in Figure 9. The 

calculated O / Ca is also shown. For the calcultaion of O / Ca only the areas of the peroxide and 

superoxide region were used. The area of the Ca 2p peaks was corrected over the expected amount 

of Ca calculated form the deconvoluted CaO O 1s peak. 

𝑡(𝐴𝑟+) / min 𝐶𝑎𝑂 / % 𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒 / % 𝑠𝑢𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒 / % O / Ca 

7 8.2 46.9 44.9 2.97 

9 19.9 35.9 44.2 3.12 

Table 2 shows that the O / Ca ratio for 7 min and 9 min Ar+ treatment is approximately 3. For 

the compounds of interests, Ca(O2)2 and CaO2, the expected ratio of O / Ca are 4 and 2 

respectively. Therefore, ratio of 3 is indicating the presence of Ca(O2)2 on the surface and 

moreover a nearly equal distribution of peroxide and superoxide. This calculated O / Ca ratio was 

also used in the deconvolution routine to define the ratio of deconvoluted peak areas after 7 and 9 
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min Ar+ etching (see Figure 9). It can be see that by doing this, the deconvolution is well 

representing the experimental data.  

The XP spectrum of the transferred Pt electrode after sweeping the potential into the OER region 

is shown in Figure 6. The survey spectra shows that the surface now mainly consists of platinum. 

The Ca 2p core level peaks are not visible anymore. This is showing that all deposited calcium 

species can be stripped from the Pt surface by applying a high electrode potential, i.e. 0.7 V vs 

Ag+|Ag. The remaining contaminants on the surface now are mainly aliphatic carbon at a binding 

energy of 284.8 eV and oxygen containing carbon species at C 1s binding energies >285.5 eV 

accompanied by a O 1s signal at 531.4 eV (see C 1s and O 1s region in Figure 6). Aliphatic carbon 

is a well-known contaminant in XPS experiments. The origin of the oxygen containing carbon 

species is probably the exposure of the electrode to the glove box atmosphere, which contains 

organic solvent vapors and to contaminates adsorbed from the organic electrolyte. Therefore, we 

would conclude that the electrocatalyst Pt was fully regenerated by sweeping the electrode 

potential into the OER. 
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 Interpretation of the mechanism of the ORR in Ca2+ containing DMSO  

It is rather surprising that according to the XPS results the same Ca–O species is present on Au 

as well as on Pt since our previous investigations showed fundamental differences with respect to 

the reduction mechanism on these two electrocatalysts (13). At gold initially a 2-electron process 

is occuring, while at platinum 1-electron process is observed over the whole potential (and time) 

range. Moreover, the current transients in Figure S 4  

also imply that a different number of electrons are transferred and that the reduction mechanism, 

especially in the beginning of the ORR, is fundamentally different for both electrodes. While there 

seems to be a blocking effect which alters the reaction mechanism to a 1-electron process also on 

Au, the RRDE experiments show that the blocking of the electrode stops after the transition to the 

1-electron process and a diffusion-limited current is exhibited (see Figure 2). The transition of the 

mechanism of the ORR in DMSO based electrolytes from the 2 e--process to the 1 e-- process was 

already observed in Li+ containing solution (26, 52, 53). There this observation was explained with 

a geometric effect of the deposited peroxide layer: The deposited peroxide covers adsorption sites 

on the electrocatalyst, which are needed to reduce oxygen to peroxide. However, in contrast to the 

observations in Li+-containing electrolytes, the electrodes in the presence of Ca2+ are not fully 

blocked (the one electron process is maintained within a sweep) which indicates a significant 

difference between the deposition mechanism of Li2O2 and CaO2. Based on the knowledge of the 

Li+ containing system, we will explain our finding that  the apparent contradiction between the 

different reaction mechanisms and the observation of the same chemical species on the Au and Pt 

surfaces.  

Au surfaces also showed an exclusive reduction path to reduce oxygen to peroxide in the Li+ 

containing DMSO (26). We suspect that there is a similarity concerning a direct reduction of 
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oxygen to peroxide on Au electrocatalysts in Ca2+ containing DMSO, as it was previously observed 

in Li+ containing DMSO. We would like to postulate this statement here, since of course extensive 

kinetic measurements are necessary to confirm this statement. 

On the Au electrode we observe a transition from the two electron process to the one electron 

process after a certain time. We believe that this is because adsorption sites, which are needed to 

perform the 2 e--process, are blocked by a strongly adsorbed layer of either peroxide or, more 

probable according to the XPS results, of CaO. CaO is likely to form at lower electrode potentials 

and if formed as a small percentage of the overall ORR products it would accumulate on the 

electrode surface as it is believed to be insoluble in the DMSO based electrolyte. This is also 

supported by the fact that the electrocatalyst could only be reactivated by applying higher 

potentials and not by allowing slow dissolution of a superoxide or peroxide layer. The 

electrochemical oxidation of CaO is plausible, as the standard potential of the oxidation (3.35 V 

vs. Ca2+|Ca (54)) is reached in the experiment. Nevertheless the electrode remains active to 

maintain the one electron process after partial blocking. Therefore on both electrodes the main 

product of ORR is calcium superoxide. Still we also find appreciable amounts of calcium peroxide 

in our XPS measurements. Due to the disproportionation reaction of Ca(O2)2 it is likely that CaO2 

particles are forming on the Pt electrode. After an equilibrium time a final state is reached on both 

electrodes. The same amount of CaO2 and Ca(O2)2 are formed. Underneath the superoxide and 

peroxide layer a layer of CaO is located. Moreover, the RRDE results of Figure 2 are showing that 

the superoxide is readily transported to the ring electrode, suggesting that it is much better soluble 

than the peroxide. Only in the absence of convection it would also accumulate on the surface. 

Especially for the superoxide this would also hinder the further disproportionation to peroxide. 

The stability of solid calcium superoxide was already reported (55, 56). This would explain why 
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we observed superoxide in the XPS experiments. On top of the superoxide and peroxide layer a 

layer of solvent decomposition products is located. This layer could also hinder the dissolution 

process of the superoxides and peroxides. 

 

The ORR mediation by DBBQ in Ca2+ containing DMSO 

Within the Li -O2 community, redox mediators for ORR have become common as they prevent 

the sudden death phenomenon due o blocking/passivation of the electrode surface by a solvent-

mediated ORR mechanism (21, 57-59). Despite of the solubility of calcium superoxide and 

calcium peroxide, it can be anticipated that the use of redox mediators is advantageous for the 

ORR in Ca2+ electrolytes for the following reasons: 

1) If a redox mediator is used, the ORR potential can be shifted positively (21, 58, 59). 

2) It has been observed that the use of redox mediators reduces the amount of undesired side 

reactions (60). 

Therefore the ORR in Ca2+ containing DMSO mediated by DBBQ was also investigated using 

DEMS and XPS. The DEMS measurements are presented in Figure 10. 
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(a) 

 

(b) 

 

 

 

 

 

Figure 10 (a): CVs, O2 flux and CO2 flux in a 0.5 M Ca(ClO4)2 solution in DMSO. The blue traced 

measurements were recorded in the absence of DBBQ. In the black traced measurements 

(deoxygenated solution) and in the red traced measurements (solution saturated with 700 mbar O2) 

7.5 mM DBBQ was added to the supporting electrolyte. The applied sweep rate was 10 mVs-1. We 

used a porous Teflon membrane sputtered with Au as working electrode. (b) Magnification of the 

cathodic sweep of the CVs in a DBBQ containing solution shown in (a). The arrows are indicating 

the increase in the reduction current based on 1 e-/O2 (green) and 2 e-/O2 (blue) reduction. This 

calculation was made with the observed diffusion limited oxygen consumption of 200 pmol s-1
. 

In a deoxygenated solution, the CV of DBBQ shows two reversible peak pairs a (see black traced 

measurement in Figure 10 (a)). We would like to point out that it is due to the special thin layer  

construction of the DEMS cell that in the CV diffusion limited currents are observed for the oxygen 

reduction in the absence of convection (for more details see in the (21)).  In the presence of oxygen 

the decrease of the oxygen flux into the vacuum of the mass spectrometer at the onset potential of 

the DBBQ reduction shows that the DBBQ monoanion mediates the ORR in a 0.5 M Ca(ClO4)2 in 
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DMSO. The CV of DBBQ in the presence of oxygen is shifted towards lower currents. This shift 

can be explained in analogy to the postulated mediation mechanism in Li+ containing electrolytes 

(58). Here the mechanism is formulated for Ca2+ containing electrolytes (here for the DBBQ-

monoanion): 

 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) + 𝑒
−
               
→     𝐷𝐵𝐵𝑄(𝑠𝑜𝑙)

−  (1) 

 𝐶𝑎(𝑠𝑜𝑙)
2+ + 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙)

−
               
→     {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙)}

+
 (2) 

 {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙)}
+
+ 𝑂2(𝑠𝑜𝑙)  {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) ⋅⋅⋅ 𝑂2}

+
 (3) 

DBBQ is reduced at the electrode (reaction (1)). The reduced DBBQ species is forming an ion 

pair with Ca2+ (reaction (2)). This ion pair formation is well known for benzoquinones (61, 62) 

and was also investigated by us in the context of the ORR in Li+ containing electrolyte (59). It is 

expected that the DBBQ ion pair is forming a mediator-oxygen complex (reaction (3)). This is 

followed by the formation of peroxides or superoxides by the following reaction equations: 

 2 {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) ⋅⋅⋅ 𝑂2}
+
                     
→    𝐶𝑎𝑂2(𝑠) + 𝑂2(𝑠𝑜𝑙) + 2 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) + 𝐶𝑎(𝑠𝑜𝑙)

2+   (4) 

 

 {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) ⋅⋅⋅ 𝑂2}
+
+ {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙)}

+
 

               
→    𝐶𝑎𝑂2(𝑠) + 2 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) +  𝐶𝑎(𝑠𝑜𝑙)

2+  

  (5) 

  {𝐶𝑎 ⋅⋅⋅ 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) ⋅⋅⋅ 𝑂2}
+                
→    𝐶𝑎𝑂2(𝑠𝑜𝑙)

+ + 𝐷𝐵𝐵𝑄(𝑠𝑜𝑙) (6) 

 

In reactions (4)-(6) the mediator, DBBQ, is regenerated. The regenerated DBBQ can diffuse to 

the electrode and be reduced again, which is explaining the decrease in the current in the presence 

of O2. Taking the consumption of oxygen and the electrons flowing into the reduction of DBBQ 

into account, one can calculate the expected ratio between transferred electrons per oxygen 

molecule on the basis of the postulated reactions. This results in 2 e-/O2 for reactions (4) and  (5) 



 33 

and 1 e-/O2 for reaction (6). For reaction (6) a following disproportionation reaction of the 

superoxide is plausible as we also showed in the beginning of this paper (see Figure 5). Based on 

the experimentally observed oxygen consumption in the diffusion limited region an oxygen flux 

of 200 pmol s-1, the expected increase of the faradaic current was calculated for 1 e-/O2 and 2 e- /O2 

and is shown as arrows in Figure 10 (b). The comparison to the experimental reduction waves of 

DBBQ in presence and absence of oxygen is showing that decrease of the reduction current in 

presence of oxygen is undergoing a change in the mediated ORR mechanism. In the first reduction 

peak of DBBQ we observe a mixed process between the 1 e-/O2 and 2 e-/O2 process. In the second 

reduction peak and in the diffusion limited region mainly the 2 e-/O2 process is observed. Overall, 

the mediated ORR is shifted 360 mV towards more positive electrode potentials (compare blue 

and red displayed measurements in Figure 10 (a)). 

At higher electrode potentials the comparison of the CVs and the mass spectrometric data is 

showing that the positive current is due to the oxidation of oxygen releasing species e.g. Ca(O2)2 

and CaO2. The oxidation of CO2 releasing species is also observed in the DBBQ containing 

measurement at electrode potentials higher than 0.5 V vs. Ag+|Ag.  

In the DBBQ containing electrolyte the surface of a Au electrode was analyzed by XPS in the 

same manner as in the DBBQ free solution: The potential was held for 60 min at -1.5 V vs. Ag+|Ag, 

afterwards the electrode was washed with DMSO and transferred to the XP spectrometer. The 

corresponding XP spectra are shown in Figure S 9 in the supporting information. The XP spectra 

analysis shows that after the transfer an over layer that mainly consists of ORR decomposition 

products (C-O, O-C=O and CO3
2-), was deposited on the Au surface. This over layer is rather 

thin, since it can be removed after 120 s of Ar+ etching. Most of the Au surface is recovered 

after the first Ar+ etching stage, which is different from the experiments without the 
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mediator. This is indicating that the deposited layer in the DBBQ containing electrolyte is 

thinner than in the DBBQ free solutions. After the first Ar+ treatment of the surface, we 

still observe CaxOy species with an overall high intensity of the Au 4f XP peaks. This is 

suggesting that the main part of the surface is free Au and that particles are deposited on 

the surface. The formation of large particles in the mediated ORR is well known (58, 63). 

A comparison to the XP spectra in DBBQ free solution shown above reveals that these 

particles have the same chemical composition, i.e. CaO2, Ca(O2)2 and CaO. 

We also investigated the DBBQ - mediated ORR in Mg2+ containing solution (see DEMS 

measurements in Figure S 10 in the supporting information. There we also observe a beneficial 

ORR potential shift of 280 mV. Unfortunately DBBQ is not a reversible redox system in the 

presence of Mg2+ and therefore not suited as mediator for the ORR.   



 35 

Conclusion 

In this study we report about several findings concerning the ORR in Ca2+ containing DMSO: 

(1) The share of superoxide as determined by RRDE shows that the mechanisms of the ORR 

on Au is changing from a mixed process of O2
2- and O2

- formation to an exclusive O2
- 

formation.  

(2) The unusually high charges for a metal air system in a non-aqueous solvent observed 

during the ORR in the RRDE experiments and in the potential step experiment are 

suggesting that the main products of the ORR are soluble in DMSO and therefore not 

poisoning the electrode surface. The solubility of CaO2 together with the possibility to 

reoxidize it was proven using a thin layer DEMS cell. Poisoning is only occurring very 

slowly due to a layer of ORR products is strongly attached to the electrocatalyst (CaO or 

strongly bound superoxide/peroxide species) and which is only removed at higher 

electrode potentials (0.3 V vs. Ag+|Ag) thus regenerating the electrocatalyst which shows 

that. 

(3) The disproportionation reaction of O2
- in the presence of Ca2+ was demonstrated via mass 

spectrometry. This is accompanied by the evolution of several side products. We assume 

that these side products are generated by a reaction with 1O2, which was reported to be a 

product besides 3O2
 during the disproportionation reaction in the presence of Li+. The 

formation of side products during the disproportionation is, on one hand, a problem for 

metal-air technologies in general. On the other hand, the formation of CaO2 from the 

disproportionation would boost the theoretical gravimetric energy density form 

838 Wh/kg (superoxide as discharge product) to 2515 Wh/kg. 
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(4) With XPS the surface chemistry of a thin film, which was deposited on Pt and Au 

electrodes, was investigated. The following conclusion were made: 

a. The top layer of the film contains decomposition products such as CO3
2- and other 

oxygen containing carbonaceous species. 

b. During Ar+ etching Ca(O2)2, CaO2
 and CaO were found on the surface. 

c. On Au and Pt electrodes the same species are deposited.  

d. Sweeping the potential into the OER and performing an ex situ XPS measurement 

shows, that the surface of a Pt electrode is fully regenerated.  

(5) The functionality of DBBQ as redox mediator for the ORR in Ca2+ containing DMSO 

was investigated. The ORR in the presence of DBBQ benefits from a 360 mV positive 

potential shift compared to the bare electrolyte. An analysis of the number of transferred 

electrons per oxygen molecule shows a transition from a mixed process of of O2
2- and 

O2
- formation (during the generation of DBBQ-) to an O2

2- formation (during the 

generation of DBBQ2-). Ex situ XPS measurements of the electrode surface after the 

ORR in the DBBQ containing electrolyte measurements show that a thinner film 

(compared to the bare electrolyte) was deposited. The same species were found on the 

electrode surface as in absence of DBBQ. 
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