In Silico screening of some antiviral phytochemicals as drug leads against Covid-19

Monjur Ahmed Laskar¹, Moriom Begam² and *Manabendra Dutta Choudhury¹

¹ Bioinformatics Centre, Assam University, Silchar – 788011, Assam, India

² Department of Zoology, MHCM Science College, Algapur, Hailakandi, Assam, India *Corresponding author.

E-mail: drmdc@bioinfoaus.ac.in; Phone: (+91)-3842 270920

Abstract

Background: COVID-19 caused by SARS-CoV-2 in December 2019 has become a pandemic hazard to the community health. It is a respiratory difficulty causing fever, dry cough, fatigue, shortness of breath, muscle aches and some instances lead to pneumonia. Coronaviruses have large viral RNA Genomes and are single-stranded positive-sense RNA viruses. The nsp10/nsp16 protein is an important target because it is essential for the virus to replicate, the papain-like protease (Nsp3), the main protease (Nsp5), the primary RNA-dependent RNA polymerase (Nsp12) are also attractive drug targets for this disease. The uses of phytochemicals as therapeutic agents have been increasing in recent years. Some antiviral phytochemicals were taken based on literature survey for this study.

Methods: ADME parameters and drug like nature of phytochemicals were screened using SwissADME web tool. Three dimensional structures of targets are downloaded from Protein Data Bank and docked with phytochemicals & control by using software FlexX.

Results: Morin shows significant results in ADME screening and Drug likeness prediction studies, it shows stable bonding pattern with all four targets in compare to other phytochemicals and control, shows least score in docking and forms maximum number of hydrogen bonds with the active residues of the receptors.

Conclusion: Based on present observation of docking results, ADME parameters and drug like nature, we suggest that **morin** may be a potent new drug candidate against Covid-19.

Keywords: COVID-19, coronavirus, drug target, phytochemicals, Drug likeness, ADME, docking, morin

Introduction

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) & the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) are members of the family Coronaviridae and causes mild respiratory diseases. They affect species from animals to humans causing severe forms of respiratory disease. In the year 2002 SARS-CoV emerged in Guandong province of China. Its transmission caused more than 8000 cases and 774 deaths¹. No specific antiviral treatment exists to conquer the disease that was earlier ended by control measures such as travel constraint and patient isolation.

In Wuhan, Hubei province of China a new form of pneumonia disease emerged in winter 2019^{2–4}. It was known as SARS-CoV-2 causing the coronavirus disease 2019 (COVID-19) and rapidly spread from animals (pangolins or bats as possible sources) to humans.

COVID-19 has become a pandemic hazard to the community health. It is a respiratory difficulty causing fever, dry cough, fatigue, shortness of breath, muscle aches and some instances lead to pneumonia⁵.

The transmission in humans was very fast. As on June 12, 2020, a total of 7553182 confirmed infections were reported worldwide, with 423 349 deaths⁶.

The World Health Organization (WHO) strategy to contain the spreading includes the decrease of human-to-human spreading by restraining the contact between individuals, thus preventing diffusion amplification events and communicating critical risk information to all communities⁶.

While the diagnosis of COVID-19 is based on the amplification of the viral genome in real-time PCR with specific probes, the current treatment of affected person is limited to a combination of broad-spectrum antiviral drugs⁷. However, in several cases this pharmacological approach has proven to be totally unproductive. Coronaviruses have large viral RNA Genomes and are single-stranded positive-sense RNA viruses⁸.

The nsp10/16 is a complex of two critical proteins mapped by scientists from Northwestern University, Feinberg School of Medicine, USA. This protein is also known as RNA methyltransferase or MTase. Complex nature makes it more difficult to work with. The alliance of the two pieces jointly is essential to make a functional protein. These proteins transform the genetic material of the virus to construct it and seem like the host (human) cell RNA. This permits the virus to hide from the cells, providing it time to reproduce. This is a vital target because it is essential for the virus to replicate. If a drug can be developed to inhibit nsp10/nsp16, the immune system should be able to identify the virus and eliminate it earlier⁹. Beside this, several other proteins having roles in viral replication, gene expression etc. like the papain-like protease (Nsp3), the main protease (Nsp5), the primary RNA-dependent RNA polymerase (Nsp12), an exoribonuclease (Nsp14), an endonuclease (Nsp15) etc. are also attractive drug targets for this disease¹⁰.

Plants have naturally developed over the years in varied climate conditions on earth and have been bestowed with affluent composite of secondary metabolites/phytochemicals with broad

pharmacokinetic spectrum. Around 2500 medicinal plant species have been documented worldwide^{11, 12} to treat a myriad of inflictions and ailments. Polyphenols, alkaloids, flavonoids, saponins, quinones, terpenes, proanthocyanidins, lignins, tannins, polysaccharides, steroids, thiosulfonates, coumarins etc. are prominent bioactive phytochemicals, which have been studied to combat viral diseases¹⁴⁻²⁰ (Table 1). Therefore, the present study was conducted to discover potent anti-COVID-19 natural compounds. In this study hydroxychloroquine is taken as positive control since it is reported to be efficient in Chinese COV-19 patients¹³.

Sl. No.	Phytochemicals	Plant (part)
1	Baicalin	Scutellaria baicalensis (roots)
2	Chalcones	<i>Glycyrrhiza inflate</i> (roots)
3	Dammarenolic acid	Aglaia sp. (bark)
4	Decanoylphorbol-13 acetate	Croton mauritianus (leaves)
5	Excoecarianin, Loliolide	Phyllanthus urinaria (whole plant)
6	Honokiol	Magnolia tree (roots, bark)
7	Jubanines	Ziziphus jujuba (roots)
8	Limonoids	Swietenia macrophylla (stem)
9	Oleanane	Camellia japonica (flowers)
10	Quercetin	Embelia ribes (seeds)
11	Saikosaponins	Bupleurum kaoi (roots)
12	Sennoside A	Rheum palmatum (roots)
13	Silvestrol	Aglaia foveolata (leaves, bark)
14	SJP-L-5	Schisandra micrantha (roots)
15	Spiroketalenol	Tanacetum vulgare (rhizome)
16	Swerilactones	Swertia mileensis (whole plant)
17	Xanthohumol	Humulus lupulus (whole plant)
18	Oxyresveratrol	Artocarpus lakoocha
19	Saikosaponin B2	Bupleurum kaoi (Root)
20	Tangeretin and nobiletin	Citrus reticulate (Pericarps)
21	Jatrophane ester	Euphorbia amygdaloides
		spp. and <i>semiperfoliata</i> (Whole plant)
22	Glycyrrhizic acid	Glycyrrhiza radix (Roots)
23	Quercetin 3-rhamnoside	Houttuynia cordata (Aerial parts)

Table 1: Some antiviral phytochemicals

24	Samarangenin B	Limonium sinense (Root)	
25	LPRP-Et-97543	Liriope platyphylla (Root)	
26	Tetranortriterpenoid 1-cinnamoyl-	Melia azedarach L. (Leaves)	
	3, 11-dihydroxymeliacarpin		
	(CDM)		
27	Lignin–carbohydrate complex	Prunella vulgaris (Fruit spikes)	
28	Pterocarnin A	Pterocarya stenoptera (Bark)	
29	Chalepin and pseudane IX	Ruta angustifolia (Leaves)	
30	Manassantin B	Saururus chinensis (Root)	
31	Dicaffeoylquinic acids	Schefflera heptaphylla (Leaf stalks)	
32	Scopadulcic acid B	Scoparia dulcis L. (Whole plant)	
33	5,7,4' trihydroxy-8-	Scutellaria baicalensis	
	methoxyflavone (F36)	(Root)	
34	Naringin	grape and orange (skin)	
35	Myricetin	Myrica cerifera	
36	Inophyllum_B	Calophyllum inophyllum	
37	Inophyllum_P	Calophyllum inophyllum	
38	Pericalline	Catharanthus roseus / C. lanceus	
39	Chrysophanic acid	Dianella longifolia	
40	Nordihydroguaiaretic acid	Larrea divaricata	
41	Retrojusticidin B	Phyllanthus myrtifolius	
42	Emodin	Rheum sp. and Polygonum sp.	
43	Gingerol	Zingiberis rhizome	
44	Anthraquinone	Dianella longifolia	
45	Methyl rosmarinate	Hyptis atrorubens Poit	
46	Licoleafol	Glycyrrhiza uralensis	
47	Amaranthin	Amaranthus tricolor	
48	Calceolarioside B	Fraxinus sieboldiana	
49	Papaverine	Papaver somniferum	
50	Biopterin	Crithidia fasciculata	
51	Buchapine	Euodia roxburghiana	
52	Caribine	Hymenocallis arencola	

53	Lycorine	Clivia miniata	
54	Fisetin	Rhus spp.	
55	Morin	Prunus dulcis, Chlorophora tinctoria, Psidium	
		guajava etc.	
56	Luteolin	Matricaria inodora L.	
57	Rutin	Fagopyrum esculentum	
58	Taxifolin	Acacia catechu	
59	Oleanolic acid	Prosopis glandulosa	
60	Betulinic acid	Syzigium claviflorum	

Materials and Methods

The Ligands

Antiviral phytochemicals were taken based on literature survey, the structure of these phytochemicals and positive control hydroxychloroquine were retrieved from PubChem Compound and by drawing using ChemOffice tools. The three dimensional structure of these compounds in sdf format were generated using OpenBabel software²¹.

Drug likeness study and ADME Screening

To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process. SwissADME web tool was used to predict ADME parameters and drug like nature of phytochemicals²².

The receptor

The structures of drug targets: the nsp10/nsp16 protein (RNA methyltransferase or MTase), the papain-like protease (Nsp3), the main protease (Nsp5), the primary RNA-dependent RNA polymerase (Nsp12) are downloaded from RCSB Protein Data Bank (http://www.rcsb.org).

Active site identification

The active sites of targets were identified by the FlexX software²³.

Protein – Ligand interaction using FlexX

Docking is a term used for computational schemes that attempt to find the best matching between two molecules: a receptor and ligand²⁴. The receptors were docked with the control and phytochemicals using software FlexX. The active site amino acids were defined in the target molecule during the target preparation. The SDF file of all the compounds was loaded in FlexX

as docking library. The output file gave the energy values in Kcal/mol. For each docked molecule, this value was noted down.

Results

The phytochemicals selected for the study with their SMILES were noted in table 2.

Compounds	SMILES		
Baicalin	C1=CC=C(C=C1)C2=CC(=O)C3=C(C(=C(C=C3O2)OC4C(C(C(O4)C(=O)O		
	0(0(0(0(0(
Dammarenolic	CC(=CCCC(C)(C1CCC2(C1CCC3C2(CCC(C3(C)CCC(=O)O)C(=C)C)C)C)O)		
acid	C		
Excoecarianin	C1C2C3C(C(C(O2)OC(=O)C4=CC(=C(C(=C4)O)O)O)OC(=O)C5=CC(=C(C6		
	=C5C7C(=CC(=0)C(C7(0)0)(06)0)C(=0)03)0)0)OC(=0)C8=C(C(=C(C(=C		
	8)C9=C(C(=C(C=C9C(=O)O1)OC1=C(C(=C(C=C1C(=O)OC1C2C(C(COC(=O		
)C3=CC(=C(C(=C3C3=C(C(=C(C=C3C(=O)O2)O)O)O)O)O)O)OC1OC(=O)C		
	1 = CC(=C(C(=C1)O)O)OO(=O)C1 = CC(=C(C(=C1)O)O)O)OOO)O)O)O)O)O)O)O)O)O)O)O)O)OOOOO		
	0		
Loliolide	CC1(CC(CC2(C1=CC(=O)O2)C)O)C		
Honokiol	C=CCC1=CC(=C(C=C1)O)C2=CC(=C(C=C2)O)CC=C		
Oleanane	CC1(CCC2(CCC3(C(C2C1)CCC4C3(CCC5C4(CCCC5(C)C)C)C)C)C)C)C		
Quercetin	C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O)O		
Sennoside A	C1=CC2=C(C(=C1)OC3C(C(C(C(O3)CO)O)O)O)C(=O)C4=C(C2C5C6=C(C(
	=CC=C6)OC7C(C(C(C(O7)CO)O)O)O)C(=O)C8=C5C=C(C=C8O)C(=O)O)C=		
	C(C=C4O)C(=O)O		
Silvestrol	COC1C(OC(CO1)C(CO)O)OC2=CC3=C(C(=C2)OC)C4(C(C(C(C4(O3)C5=C		
	C=C(C=C5)OC)C6=CC=C6)C(=O)OC)O)O		
SJP-L-5	CN(C)C1=CC=C(C=C1)C2=C(C3=C(C=C2C(=O)OC)OCO3)OC		
Xanthohumol	CC(=CCC1=C(C(=C(C=C10)OC)C(=O)C=CC2=CC=C(C=C2)O)O)C		
Spiroketalenol	CC#CC#C\C=C1/C=CC2(O1)CCCCO2		
Licochalcone	CC(C)(C=C)C1=C(C=C(C(=C1)C=CC(=O)C2=CC=C(C=C2)O)OC)O		
Chalcone	C1=CC=C(C=C1)C=CC(=O)C2=CC=CC=C2		
Decanoylphorbol-	CCCCCCCCC(=0)OC1C(C2(C(C=C(CC3(C2C=C(C3=0)C)O)C0)C4C1(C4		
13 acetate	(C)C)OC(=O)C)O)C		
Jubanine A	CCC(C)C1C(=O)NC=CC2=C(C=CC(=C2)OC3CCN(C3C(=O)N1)C(=O)C(CC		
	4=CC=CC=C4)NC(=O)C(CC5=CC=CC=C5)N(C)C)OC		
Jubanine B	CN(C)C(CC1=CC=CC=C1)C(=O)NC(CC2=CC=C2)C(=O)N3CCC4C3C(
	=O)NC(C(=O)NC=CC5=C(C=CC(=C5)O4)OC)CC6=CC=CC=C6		
3-Hydroxy	COC1=CC(=C1OC)O)C2C3COC(=O)C3CO2		
Caruilignan C			
Limonin	CC1(C2CC(=O)C3(C(C24COC(=O)CC4O1)CCC5(C36C(O6)C(=O)OC5C7=C		
	OC=C7)C)C)C		

Table 2: Compounds with their SMILES

Oxyresveratrol	C1=CC(=C(C=C10)0)C=CC2=CC(=CC(=C2)0)0
Saikosaponin B2	CC1C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC5=C6CC(CCC6(C(C
	C54C)O)CO)(C)C)C)C)O)OC7C(C(C(C(O7)CO)O)O)O)O
Tangeretin	COC1=CC=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C(=C3OC)OC)OC)OC
Nobiletin	COC1=C(C=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C(=C3OC)OC)OC)OC)OC
Jatrophane ester	CC1C=CC(C(C(C(C(=C)C(C2C(C1=O)CC(C2C(=O)COC(=O)C3=CC=CC=C3
)(C)OC(=0)C)OC(=0)C(C)C)OC(=0)C4=CC=CC=C4)OC(=0)C)OC(=0)C)(C
)C
Glycyrrhizic acid	CC1(C2CCC3(C(C2(CCC10C4C(C(C(O4)C(=0)0)0)0)OC5C(C(C(C(05)
	C(=0)0)0)0)C)C(=0)C=C6C3(CCC7(C6CC(CC7)(C)C(=0)0)C)C)C)C)C
Quercetin 3-	CC1C(C(C(O1)OC2=C(OC3=CC(=C3C2=O)O)O)C4=CC(=C(C=C4)O
rhamnoside	0(0(0(0(
LPRP-Et-97543	CC1=C(C2=C(C=C10)OCC(C2=O)CC3=CC=C(C=C3)O)O
Chalepin	CC(C)(C=C)C1=CC2=CC3=C(C=C2OC1=O)OC(C3)C(C)(C)O
Manassantin B	CC1C(C(OC1C2=CC(=C(C=C2)OC(C)C(C3=CC4=C(C=C3)OCO4)O)OC)C5=
	CC(=C(C=C5)OC(C)C(C6=CC(=C(C=C6)OC)OC)O)OC)C
Dicaffeoylquinic	C1C(C(CC1(C(=0)0)0)OC(=0)C=CC2=CC(=C(C=C2)0)0)OC(=0)C=CC
acid	3=CC(=C(C=C3)O)O)O
Scopadulcic acid	CC12CCC3(C1)C(CC(C4C3(CCCC4(C)C(=O)O)C)OC(=O)C5=CC=CC=C5)C
В	C2=O
Naringin	CC1C(C(C(O1)OC2C(C(C(OC2OC3=CC(=C4C(=O)CC(OC4=C3)C5=CC=
	C(C=C5)O)O)CO)O)O)O)O)O)O
Myricetin	C1=C(C=C(C(=C10)0)0)C2=C(C(=0)C3=C(C=C(C=C302)0)0)0
Inophyllum_B	CC1C(OC2=C(C1O)C3=C(C(=CC(=O)O3)C4=CC=CC=C4)C5=C2C=CC(O5)(
	C)C)C
Inophyllum_P	CC1C(OC2=C(C1O)C3=C(C(=CC(=O)O3)C4=CC=CC=C4)C5=C2C=CC(O5)(
	C)C)C
Pericalline	CC=C1CN2CCC1C(=C)C3=C(C2)C=C4C=CNC4=C3
Chrysophanic	CC1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C=CC=C3O
acid	
Nordihydroguaiar	CC(CC1=CC(=C(C=C1)O)O)C(C)CC2=CC(=C(C=C2)O)O
etic acid	
Retrojusticidin B	COC1=CC2=CC3=C(COC3=O)C(=C2C=C1OC)C4=CC5=C(C=C4)OCO5
Emodin	CC1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C=C(C=C3O)O
Gingerol	CCCCCC(CC(=O)CCC1=CC(=C(C=C1)O)OC)O
Anthraquinone	C1=CC=C2C(=C1)C(=O)C3=CC=CC=C3C2=O
Methyl	COC(=0)C(CC1=CC(=C(C=C1)0)0)OC(=0)C=CC2=CC(=C(C=C2)0)0
rosmarinate	
Licoleafol	CC(=CCC1=C2C(=C(C=C10)0)C(=0)CC(02)C3=CC(=C(C=C3)0)0)CO
Amaranthin	C1C(NC(=CC1=CC=[N+]2C(CC3=CC(=C(C=C32)O)OC4C(C(C(C(O4)CO)O)
	O)OC5C(C(C(C(O5)C(=O)O)O)O)O)C(=O)[O-])C(=O)O)C(=O)O
Calceolarioside B	C1=CC(=C(C=C1CCOC2C(C(C(C(O2)COC(=O)C=CC3=CC(=C(C=C3)O)O)
	0)0)0)0

Papaverine	COC1=C(C=C(C=C1)CC2=NC=CC3=CC(=C(C=C32)OC)OC)OC
Biopterin	CC(C(C1=CN=C2C(=N1)C(=O)NC(=N2)N)O)O
Buchapine	CC(=CCC1(C(=O)C2=CC=CC=C2NC1=O)C(C)(C)C=C)C
Caribine	C1CC2C=C3C(CN4C3C(C2NC1)C5=CC6=C(C=C5C4)OCO6)O
Lycorine	C1CN2CC3=CC4=C(C=C3C5C2C1=CC(C5O)O)OCO4
Fisetin	C1=CC(=C(C=C1C2=C(C(=O)C3=C(O2)C=C(C=C3)O)O)O)O
Morin	C1=CC(=C(C=C10)0)C2=C(C(=0)C3=C(C=C(C=C302)0)0)0
Luteolin	C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(C=C3O2)O)O)O)O
Rutin	CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3=C(OC4=CC(=C4C3=O)O)O)
	C5=CC(=C(C=C5)O)O)O)O)O)O)O)O)O
Taxifolin	C1=CC(=C(C=C1C2C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O)O
Oleanolic acid	CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C2C1)C)C(=O
)O)C
Betulinic acid	CC(=C)C1CCC2(C1C3CCC4C5(CCC(C(C5CCC4(C3(CC2)C)C)(C)C)O)C)C(
	=0)0
Hydroxychloroqu	CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO
ine	

For any molecule to become a drug it should not have any toxic or allergenic effects and it should possess all the ADME properties. ADME screening and Drug likeness properties of some phytochemicals were shown below

Morin			
# @ @			Water Solubility
	LPC	Log S (ESOL) 😣	-3.16
		Solub 'y	2.11e-01 mg/ml ; 6.98e-04 mol/l
	FLEX PIZE	Class	Soluble
			-3.01
HO		Solubility	-3.51 3.74e-02 ma/ml : 1.24e-04 mol/l
		Class 😣	Soluble
l í ľ ľ	OH I I I I I I I I I I I I I I I I I I I		-3.24
но	INSATU POLAR	Solubility	1 73e-01 mo/ml : 5 73e-04 mol/l
		Class 😡	Soluble
			Pharmacokinetics
	INSOLU	GI absorption 😣	High
SMILES Oc1ccc(c(c1)O)c1	oc2cc(O)cc(c2c(=O)c1O)O	BBB permeant 😣	No
Ph	ysicochemical Properties	P-gp substrate 😣	No
Formula	C15H10O7	CYP1A2 inhibitor 😣	Yes
Molecular weight	302.24 g/mol	CYP2C19 inhibitor 😣	No
Num. heavy atoms	22	CYP2C9 inhibitor 😣	No
Num. arom. heavy atoms	16	CYP2D6 inhibitor 😣	Yes
Fraction Csp3	0.00	CYP3A4 inhibitor 😣	Yes
Num. rotatable bonds	1	Log K _p (skin permeation) 😣	-7.05 cm/s
Num. H-bond acceptors	7		Druglikeness
Num. H-bond donors	5	Lipinski 🥹	Yes; 0 violation
Molar Refractivity	78.03	Ghose 😶	Yes
TPSA 🔮	131.36 A*	Veber 😌	Yes
Les B (1.000) 0	Lipophilicity	Egan 🛞	Yes
Log Poly (ILOGP)	1.47	Mueage 😣	Yes
Log P _{o/w} (XLOGP3) 69	1.54	Bioavailability Score 9	0.55
Log P _{o/w} (WLOGP) 😣	1.99	,	Medicinal Chemistry
Log P _{o/w} (MLOGP) 😣	-0.56	PAINS 😣	0 alert
Log Poly (SILICOS-IT)	1.54	Brenk \varTheta	0 alert
Consensus Log Poly	1.20	Leadlikeness 😣	Yes
UW C		Synthetic accessibility 😣	3.25

Baicalin			
# @ @			Water Solubility
	upo	Log S (ESOL) 9	-3.41
		Solubility	1.73e-01 mg/ml; 3.87e-04 mol/l
	FLEX SIZE	Class 😣	Soluble
0 0M ^{M0}	F°	Log S (Ali) 😣	-4.63
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Solubility	1.04e-02 mg/ml ; 2.33e-05 mol/l
		Class 😣	Moderately soluble
		Log S (SILICOS-IT) 99	-2.22
~	INSATU POLAR	Solubility	2.67e+00 mg/ml ; 5.98e-03 mol/l
		Class 😣	Soluble
			Pharmacokinetics
	INSOLU	GI absorption 😣	Low
SMILES OC(=0)C1OC(Oc	2cc3oc(cc(=0)c3c(c20)0)c2ccccc2)C(C(C10)0)0	BBB permeant 😣	No
Ph	hysicochemical Properties	P-gp substrate 😣	Yes
Formula	C21H18O11	CYP1A2 inhibitor 🥹	No
Molecular weight	446.36 g/mol	CYP2C19 inhibitor 99	No
Num. heavy atoms	32	CYP2C9 inhibitor 9	No
Num. arom. heavy atoms	16	CYP2D6 inhibitor 🥹	No
Fraction Csp3	0.24	CYP3A4 inhibitor 😣	No
Num. rotatable bonds	4	Log Kn (skin permeation) 0	-8.23 cm/s
Num. H-bond acceptors	11	Druglikeness	
Num. H-bond donors	6	Lipinski Θ	No: 2 violations: NorO>10, NHorOH>5
Molar Refractivity	106.72	Ghose Θ	Yes
TPSA 🥹	187.12 A*	Veber 😣	No: 1 violation: TPSA>140
	Lipophilicity	Egan 🥹	No: 1 violation: TPSA>131.6
Log Poly (ILOGP)	1.59		No: 3 violations: TPSA>150, H-acc>10, H-
Log P _{o/w} (XLOGP3) 🥹	1.11	Muegge 🤎	don>5
Log P _{olw} (WLOGP) 🤒	0.14	Bioavailability Score 8	0.11
Log Poly (MLOGP) 😣	-1.63		Medicinal Chemistry
Log Pala (SILICOS-IT)	-0.10	PAINS 😣	1 alert: catechol_A 9
Consensus Log P . 0	0.22	Brenk 😡	1 alert: catechol 🧐
Consensus Log Fo/W	0.22	Leadlikeness 🧐	No; 1 violation: MW>350
		Synthetic accessibility 🥯	5.09

Luteolin			
<b># @</b> 🖌			Water Solubility
	LIPO	Log S (ESOL) 😣	-3.71
		Solubility	5.63e-02 mg/ml ; 1.97e-04 mol/l
	FLEX SIZE	Class 😣	Soluble
I I Ï		Log S (Ali) 😣	-4.51
	$\gamma$	Solubility	8.84e-03 mg/ml ; 3.09e-05 mol/l
		Class 😣	Moderately soluble
		Log S (SILICOS-IT) 😣	-3.82
HO	INSATU POLAR	Solubility	4.29e-02 mg/ml ; 1.50e-04 mol/l
		Class 😣	Soluble
			Pharmacokinetics
	INSOLU	GI absorption 😣	High
SMILES Oc1cc(O)c2c(c1)c	00(cc2=O)c1ccc(c(c1)O)O	BBB permeant 🛞	No
Ph	ysicochemical Properties	P-gp substrate 🛞	No
Formula	C15H10O6	CYP1A2 inhibitor 🛞	Yes
Molecular weight	286.24 g/mol	CYP2C19 inhibitor 😣	No
Num. heavy atoms	21	CYP2C9 inhibitor 😣	No
Num. arom. heavy atoms	16	CYP2D6 inhibitor 😣	Yes
Fraction Csp3	0.00	CYP3A4 inhibitor Θ	Yes
Num. rotatable bonds	1	Log K _n (skin permeation) 😣	-6.25 cm/s
Num. H-bond acceptors	6		Druglikeness
Num. H-bond donors	4	Lipinski 😶	Yes; 0 violation
Molar Refractivity	76.01	Ghose 😣	Yes
TPSA 🔮	111.13 A*	Veber 😶	Yes
L D (1.000)	Lipophilicity	Egan 🛞	Yes
Log P _{o/w} (ILOGP)	1.86	Mueage 😣	Yes
Log P _{o/w} (XLOGP3) 😣	2.53	Bioavailability Score 9	0.55
Log P _{o/w} (WLOGP) 😣	2.28		Medicinal Chemistry
Log P _{o/w} (MLOGP) 😣	-0.03	PAINS 😣	1 alert: catechol_A 🛞
Log P _{o/w} (SILICOS-IT) 😣	2.03	Brenk 😣	1 alert: catechol 🥹
Consensus Log Poly	1.73	Leadlikeness 🛞	Yes
-3 0W		Synthetic accessibility 😣	3.02

Emodin			S (201
<b>₩ ⊕</b> 🖌			Water Solubility
	LIPO	Log S (ESOL) 😣	-3.67
		Solubility	5.74e-02 mg/ml ; 2.12e-04 mol/l
	FLEX SIZE	Class 🛞	Soluble
		Log S (Ali) 😣	-4.37
		Solubility	1.17e-02 mg/ml ; 4.31e-05 mol/l
		Class 😣	Moderately soluble
HO V V V	СН	Log S (SILICOS-IT) 😣	-3.91
ő	INSATU POLAR	Solubility	3.36e-02 mg/ml ; 1.24e-04 mol/l
		Class 😣	Soluble
			Pharmacokinetics
	INSOLU	GI absorption 😣	High
SMILES Cc1cc(O)c2c(c1)C	C(=O)c1c(C2=O)c(O)cc(c1)O	BBB permeant 😣	No
Ph	ysicochemical Properties	P-gp substrate 😣	No
Formula	C15H10O5	CYP1A2 inhibitor 😣	Yes
Molecular weight	270.24 g/mol	CYP2C19 inhibitor 😣	No
Num. heavy atoms	20	CYP2C9 inhibitor 😣	No
Num. arom. heavy atoms	12	CYP2D6 inhibitor 😣	No
Fraction Csp3	0.07	CYP3A4 inhibitor 😣	Yes
Num. rotatable bonds	0	Log K _p (skin permeation) 😣	-6.02 cm/s
Num. H-bond acceptors	5		Druglikeness
Num. H-bond donors	3	Lipinski 😣	Yes; 0 violation
Molar Refractivity	/0./8	Ghose 😣	Yes
TPSA 😈	94.03 A ⁻	Veber 😣	Yes
	Lipophilicity	Egan 😣	Yes
Log P _{o/w} (ILOGP)	1.81	Muegge	Yes
Log P _{o/w} (XLOGP3) 😣	2.72	Bioavailability Score 0	0.55
Log P _{o/w} (WLOGP) 😣	1.89		Medicinal Chemistry
Log P _{o/w} (MLOGP) 😣	0.36	PAINS 🥹	1 alert: quinone_A 🥹
Log P _{olw} (SILICOS-IT) 😣	2.55	Brenk 🥹	0 alert
Consensus Log Poly	1.87	Leadlikeness 🛞	Yes
		Synthetic accessibility 😣	2.57

Hydroxychloroq	uine			
<b>₩ ⊕ </b>			Water Solubility	
	LIPO	Log S (ESOL) 😣	-3.91	
		Solubility	4.17e-02 mg/ml ; 1.24e-04 mol/l	
	FLEX	Class 😣	Soluble	
		Log S (Ali) 🚱	-4.28	
		Solubility	1.75e-02 ma/ml : 5.22e-05 mol/l	
	сң	Class 😣	Moderately soluble	
$ \leq $			6.25	
l.	INSATU	Log S (SILICOS-IT)	-0.35 1 50e 04 ma/ml : 4 46e 07 mol/l	
		Class 🖗	Poorly soluble	
		01033	Pharmacokinetics	
	INSOLU	GI absorption 😣	High	
SMILES OCCN(CCCC(Nc	1ccnc2c1ccc(c2)CI)C)CC	BBB permeant 😣	Yes	
Ph	sicochemical Properties	P-gp substrate 🚱	No	
Formula	C18H26CIN3O	CYP1A2 inhibitor 😣	Yes	
Molecular weight	335.87 g/mol	CYP2C19 inhibitor 😣	No	
Num. heavy atoms	23	CYP2C9 inhibitor 🛞	No	
Num. arom. heavy atoms	10	CYP2D6 inhibitor 🛞	Yes	
Fraction Csp3	0.50	CYP3A4 inhibitor 😣	No	
Num. rotatable bonds	9	Log K _p (skin permeation) 🥹	-5.81 cm/s	
Num. H-bond acceptors 3		Druglikeness		
Molar Refractivity	2 08 57	Lipinski 🛞	Yes; 0 violation	
	48.39 Å ²	Ghose 😣	Yes	
11 38 -	Lipophilicity	Veber 🛞	Yes	
Log Poly (iLOGP) 😣	3.58	Egan 🛞	Yes	
	3.59	Muegge 🛞	Yes	
	3.30	Bioavailability Score 8	0.55	
	3.59		Medicinal Chemistry	
Log P _{o/w} (MLOGP) 🥹	2.35	PAINS 9	0 alert	
Log P _{o/w} (SILICOS-IT) 8	3.73	Brenk 🧐	U alert	
Consensus Log P _{o/w} 🛞	3.37	Leadlikeness 🖤	No; 2 violations: Rotors>7, XLOGP3>3.5	
l		Synthetic accessibility 🤎	2.82	

ADME and drug likeness screening results of some phytochemicals and control

Three dimensional structures of targets are downloaded from Protein Data Bank having PDB ids: 6W75, 6W9C, 6LU7 and 6M71 for the nsp10/nsp16 protein (RNA methyltransferase or MTase), the papain-like protease (Nsp3), the main protease (Nsp5) and RNA-dependent RNA polymerase (Nsp12) respectively.

Interaction energies between ligand and receptor play the most crucial role in drug designing. In this work, drug targets the nsp10/nsp16 protein (RNA methyltransferase or MTase), the papainlike protease (Nsp3), the main protease (Nsp5) and RNA-dependent RNA polymerase (Nsp12) and the interactions of the compounds were studied using FlexX. The docking results of compounds with targets are described in table 3. The docking poses are shown in Figures (Figure 1 - Figure 5).

Phytochemicals	Docking Score (Kcal/mol)				
	NSP10 - NSP16	Papain-like	<b>RNA-dependent</b>	COVID-19	
	Complex	protease	<b>RNA</b> polymerase	main	
				protease	
Baicalin	-19.7773	-34.3309	-19.3806	-12.1868	
Dammarenolic acid	-7.2746	-8.3572	-2.6079	2.5649	
Excoecarianin	0.0000	0.0000	0.0000	0.0000	
Loliolide	-12.3698	-14.5091	-11.4858	-8.0941	
Honokiol	-15.9008	-13.9542	-15.7179	-8.6464	
Oleanane	0.0000	0.0000	0.0000	0.0000	
Quercetin	-24.5804	-24.9869	-20.6509	-12.0769	
Sennoside A	-11.2257	-21.5574	-13.4283	2.0780	
Silvestrol	-6.4271	-14.5208	-7.9343	4.6139	
SJP-L-5	-16.4261	-16.8003	-12.8650	-5.8154	
Xanthohumol	-16.9845	-24.9632	-16.9412	-8.4929	
Spiroketalenol	-14.9469	-12.8823	-14.8976	-5.3747	
Licochalcone	-14.6707	-19.1733	-13.2370	-7.4708	
Chalcone	-14.8018	-17.7265	-14.4728	-8.5971	
Decanoylphorbol-13	-2.5114	-4.3715	-1.0579	6.5114	
acetate					
Jubanine A	-16.7469	-28.0104	-9.8798	-2.0363	

 Table 3: Docking results of targets with phytochemicals and control

Jubanine B	0.0000	0.0000	0.0000	0.0000
3-Hydroxy Caruilignan C	-14.8918	-17.8282	-14.5065	-5.4153
Limonin	0.0000	0.0000	0.0000	0.0000
Oxyresveratrol	-23.2724	-21.5388	-18.6387	-15.3810
Saikosaponin B2	0.0000	0.0000	0.0000	0.0000
Tangeretin	-13.5612	-12.9554	-9.9507	-1.3688
Nobiletin	-17.2219	-13.2152	-9.4153	-2.7587
Jatrophane ester	0.0000	0.0000	0.0000	0.0000
Glycyrrhizic acid	0.0000	0.0000	0.0000	0.0000
Quercetin 3-rhamnoside	-24.6582	-27.3896	-21.2587	-13.0196
LPRP-Et-97543	-20.5395	-23.0514	-19.8869	-14.6944
Chalepin	-15.0850	-15.5800	-11.4380	-4.4533
Manassantin B	-12.4506	-24.5615	-8.2997	10.8517
Dicaffeoylquinic acid	-21.7308	-24.2442	-17.0935	-3.3438
Scopadulcic acid B	0.0000	0.0000	0.0000	0.0000
Naringin	-14.5846	-25.7657	-13.6635	-3.7149
Myricetin	-24.5445	-24.8053	-20.7303	-11.4399
Inophyllum_B	-14.3457	-18.4011	-16.6309	-6.3468
Inophyllum_P	-14.3457	-18.4011	-16.6309	-6.3468
Pericalline	-16.3447	-20.8096	-11.5925	-11.7141
Chrysophanic acid	-20.8292	-22.4865	-20.0624	-14.3095
Nordihydroguaiaretic acid	-18.3887	-21.6118	-14.2268	-11.5398
Retrojusticidin B	-12.8700	-23.3895	-16.3522	-7.3189
Emodin	-21.4040	-23.1325	-21.6234	-20.0202
Gingerol	-13.9236	-13.5592	-9.9803	-1.4682
Anthraquinone	-12.1782	-15.7292	-13.9016	-8.0614
Methyl rosmarinate	-23.5380	-26.3787	-16.0964	-5.6176
Licoleafol	-16.5607	-26.5293	-15.9209	-11.1106
Amaranthin	-16.7487	-29.2696	-18.8189	-10.5730
Calceolarioside B	-21.5665	-33.3063	-14.0840	-8.3660
Papaverine	-10.5395	-13.0222	-11.9049	-4.6477
Biopterin	-22.4536	-26.9995	-22.0282	-15.6592
			1	1

Buchapine	-11.2879	-15.4712	-10.8268	-5.6774
Caribine	-21.4095	-20.7228	-16.7849	-15.5639
Lycorine	-19.0653	-28.8497	-17.4176	-10.3894
Fisetin	-23.8578	-24.2011	-21.7482	-13.5647
Morin	-26.8255	-24.9316	-23.6366	-12.7982
Luteolin	-24.5968	-25.9438	-24.3635	-10.9155
Rutin	-15.5553	-27.0507	-17.3833	-9.4748
Taxifolin	-24.8729	-25.5836	-21.3850	-15.6423
Oleanolic acid	0.0000	0.0000	0.0000	0.0000
Betulinic acid	-8.7601	-10.5598	-6.1947	-1.7703
Hydroxychloroquine	-16.8433	-17.4223	-15.7864	-6.7979



Figure 1: Binding pattern of Morin with NSP10 - NSP16 complex protein



Figure 2: Binding pattern of Baicalin with papain-like protease



Figure 3: Binding pattern of Luteolin with RNA-dependent RNA polymerase







Figure 5: Binding pattern of **Hydroxychloroquine** with **A**: NSP10 - NSP16 Complex, **B**: papainlike protease, **C**: RNA-dependent RNA polymerase, **D**: main protease

### Discussions

While considering better ligands, the least score in docking was preferred as it indicates more stability in binding²⁴. The interactions of phytochemicals and control with targets were screened based on hydrogen bonding based prediction²⁵. Docking score of **Hydroxychloroquine** (**control**), with NSP10 - NSP16 Complex, Papain-like protease, RNA-dependent RNA polymerase and COVID-19 main protease is -16.8433 Kcal/mol, -17.4223 Kcal/mol, -15.7864 Kcal/mol and -6.7979 Kcal/mol respectively and forms four hydrogen bonds with NSP10 - NSP16 Complex, five hydrogen bonds with Papain-like protease, five hydrogen bonds with RNA-dependent RNA polymerase and forms three hydrogen bonds with COVID-19 main protease.

Some phytochemicals exhibit better binding efficacy with NSP10 - NSP16 Complex protein, some shows strong bonding with Papain-like protease, some interact strongly with RNA-dependent RNA polymerase and some others forms bond with COVID-19 main protease.

The flavone, **morin** isolated from *Prunus dulcis*, *Chlorophora tinctoria*, *Psidium guajava* and other plants shows better bonding with the target NSP10 - NSP16 Complex protein with a docking score of -26.8255 Kcal/mol and forms five hydrogen bonds.

**Baicalin** a flavonoid obtained from roots of the plant *Scutellaria baicalensis* has the highest docking score (-34.3309 Kcal/mol) with the receptor papain-like protease among all the phytochemicals and control also forms seven hydrogen bonds with the receptor.

The flavone, **luteolin** isolated from *Matricaria inodora* L. plant has more binding efficacy with the target RNA-dependent RNA polymerase with a docking score of -24.3635 Kcal/mol and forms five hydrogen bonds with the receptor.

**Emodin** a polyphenol found in the roots, leaves, and bark of several plants, including *Aloe barbadensis, Rhamnus pushiana, Rheum officinale, Cassia angustifolia, Polygonum multiflorum, Polygonum cuspidatum, Psychotria camponutans* etc. exhibit strong bonding with COVID-19 main protease receptor with docking score of -20.0202 Kcal/mol and forms three hydrogen bonds.

From predicted ADME parameters and drug like nature of phytochemicals obtained from SwissADME web tool, it was found that some of the compounds do not obey the Lipinski's rule and show alert/warning in medicinal chemistry but being natural products these does not matter a lot.

Among the four best binding compounds with all targets, **morin** neither violate any rules nor shows any alert/ warning also it binds with all the targets significantly.

**Hydroxychloroquine (control)** forms hydrogen bonds with GLY4347, GLY6890 and ASN7096 residues of NSP10 - NSP16 Complex protein similarly **morin** forms hydrogen bonds with GLY6890, ASN7096, VAL4310, CYS4343 and THR6891 residues of the same receptor. Both form hydrogen bonds with GLY6890 and ASN7096 residues. Similar pattern was observed with other targets also.

The nsp10/nsp16 protein also known as RNA methyltransferase or MTase is a complex of two critical proteins bound together and the association makes the complex a functional protein. These proteins modify the genetic material of the virus to make it look more like the host (human) cell RNA and allow the virus to hide from the cells, giving it time to multiply. The nsp10/nsp16 protein is a key target because it is absolutely essential for the virus to replicate. If a drug can be developed to inhibit nsp10/nsp16, the immune system should be able to identify the

virus and eliminate it earlier⁹, since morin interacts strongly with this target than other phytochemicals and control therefore it may inhibit nsp10/nsp16 protein and thus able to eradicate the virus.

Angiotensin converting enzyme 2 (ACE2) is the major cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the entrance of the virus into the cell to produce the final infection²⁶; interestingly **morin** has angiotensin converting enzyme inhibition activity  $also^{27}$ .

**Morin** shows stable bonding pattern with all four targets in compare to other phytochemicals and control as it shows least score in docking, forms maximum number of hydrogen bonds with the active residues of the receptors, therefore **morin** have potentiality to be a drug candidate against Covid-19.

### Conclusion

Based on present observation of docking results, ADME parameters and drug like nature, we suggest that **morin** may be a potent new drug candidate against Covid-19. However, further studies are required to validate the same in vivo or in vitro.

### Acknowledgements

The authors are thankful to Department of Biotechnology (DBT), Govt. of India for establishing Bioinformatics Centre in Assam University, Silchar where the work has been carried out. The e-journal access facility (DeLCON) provided by Bioinformatics centre, Assam University funded by Department of Biotechnology, Govt. of India is highly acknowledged.

Conflict of Interest Statement: The authors declare no conflict of interests.

## References

1. World Health Organization. SARS (Severe Acute Respiratory Syndrome). 2004. Available online: https://www.who.int/ith/diseases/sars/en/ (accessed on 22 April 2020).

2. Huang LL, Shen SP, Yu P, Wei YY. Dynamic basic reproduction number based evaluation for current prevention and control of COVID-19 outbreak in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Mar 1; 41(4):466-469.

3. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020 Mar 5. doi: 10.1002/jmv.25748. [Epub ahead of print]

4. Zhu ZB, Zhong CK, Zhang KX, Dong C, Peng H, Xu T, Wang AL, Guo ZR, Zhang YH. Epidemic trend of corona virus disease 2019 (COVID-19) in mainland China. Zhonghua Yu Fang Yi Xue Za Zhi 2020 Mar 3; 54(0):E022.doi:10.3760/cma.j.cn112150-20200222-00163. Online ahead of print.

5. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020 May; 109:102433. doi: 10.1016/j.jaut.2020.102433. Epub 2020 Feb 26.

6. World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report –43.
2020. Available online: <u>https://www.who.int/emergencies/diseases/novel-coronavirus-2019</u> (accessed on 13 June 2020).

 Xu J, Shi PY, Li H, Zhou J. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infect Dis. 2020 Mar 10. doi:10.1021/acsinfecdis.0c00052. [Epub ahead of print].
 Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr; 92(4):418-423.

9. New Drug Target Found for COVID-19 By Marla Paul on Mar 20, 2020. https://news.feinberg.northwestern.edu/2020/03/new-drug-target-found-for-covid-19/

10. COVID-19 and Drug Development - Towards Data Science. Source: https://towardsdatascience.com/covid-19-and-drug-development-b800d8917b50

11. Shinwari ZK. Medicinal plants research in Pakistan. J Med Plants Res. 2010 Feb 4; 4:161-176.

12. De Smet PA. (2002) Herbal remedies. N Engl J Med. 2002 Dec 19; 347(25):2046-2056.

13. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 Mar 20:105949. doi: 10.1016/j.ijantimicag.2020.105949. [Epub ahead of print]

14. Kapoor R, Sharma B, Kanwar SS. Antiviral Phytochemicals: An Overview. Biochem Physiol. 2017; 6: 220. doi: 10.4172/2168-9652.1000220

Perez RM. Antiviral Activity of Compounds Isolated From Plants. Pharmaceutical Biology.
 2003; 41(2): 107–157.

16. Farnsworth NR, Svoboda GH, Blomster RN. Antiviral activity of selected Catharanthus alkaloids. J Pharm Sci. 1968; 57(12):2174-2175.

17. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike Protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007; 74:92-101.

18. Naithani R, Huma LC, Holland LE, Shukla D, McCormick DL, Mehta RG, Moriarty RM. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem. 2008 Oct; 8(11):1106-33.

19. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res. 2020; 10(2): 354–367.

20. Ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CL^{pro} and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020 Mar 26. doi: 10.1016/j.jpha.2020.03.009. [Epub ahead of print].

21. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Chem Inf. 2011; 3:33.

22. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3; 7:42717.

23. Simon S, Cross J. Improved FlexX Docking Using FlexS-Determined Base Fragment Placement. J. Chem. Inf. Model. 2005; 45(4): 993-1001.

24. Krovat EM, Steindl T, Langer T. Recent advances in docking and scoring. Curr Comp Aided Drug Design. 2005; 1: 93-102.

25. Bikadi Z, Demko L, Hazai E. Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys. 2007; 461:225-34.

26. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003 Nov 27; 426(6965):450-4.

27. Chen SY, Chu CC, Jiang CL, Duh PD. The Vasodilating Effect and Angiotensin Converting Enzyme Inhibition Activity of Three Dietary Flavonols: Comparsion between Myricetin, Quercetin and Morin, *in vitro*. J Food Nutr Res.2019; 7(5): 347-354.