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Abstract Thermoset polymers are an area of intense research due to their low cost,             
ease of processing, environmental resistance, and unique physical properties. The favorable           
properties of this class of polymers have many applications in aerospace, automotive, marine,             
and sports equipment industries. Molecular simulations of thermosets are frequently used to            
model formation of the polymer network, and to predict the thermomechanical properties. These             
simulations usually require custom algorithms that are not easily accessible to non-experts and             
not suited for high throughput screening. To address these issues, we have developed a robust               
cross-linking algorithm that can incorporate different types of chemistries and leverage           
GPU-enabled molecular dynamics simulations. Automated simulation analysis tools for         
cross-linking simulations are also presented. Using four well known epoxy/amine formulations           
as a foundational case study and benzoxazine as an example of how additional chemistries can               
be modeled, we demonstrate the power of the algorithm to accurately predict curing and              
thermophysical properties. These tools are able to streamline the thermoset simulation process,            
opening up avenues to in-silico high throughput screening  for advanced material development. 
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I. Introduction 
Thermoset and network polymers are an integral part of the composites industry and             

comprise ~25% of the global plastics market [1]. Polymeric materials based on thermosets have              
a wide range of applications including aerospace, military, marine, and high performance            
consumer products. Composite materials with a specific range of physical properties are            
specified early on in the design process to enable product requirements to be met.              
Thermomechanical properties of thermosets are often the most important for industrial           
applications and are determined by both chemistry, molecular structure and network topology.            
Optimization of these properties for a specific application usually involves costly experiments            
and lengthy design projects.  

Atomistic simulations of thermosets can reduce costs and accelerate the development           
cycle of new materials. For the case of thermoset polymers, modeling the evolution of the               
network structure formed during the cure cycle and prediction of thermomechanical performance            
can provide insight towards the structure-function relationship. With the advances in           
computational modeling due to technological breakthroughs in CPU and GPU-based computing,           
the need for costly experimental testing can be reduced through the use of simulations for               
determination of relevant thermoset properties. Previous work in the area of thermoset polymer             
simulations has demonstrated the ability to predict a variety of thermomechanical properties in             
agreement with experimental measurements (2 and references within). To date, simulation           
protocols developed to initialize thermoset polymer networks are generally specialized for a            
particular chemistry, sequestered within specific research groups, or require expert-level          
knowledge of the underlying simulation code to be useful. In this work, we present a               
crosslinking protocol that utilizes SMARTS (SMiles ARbitrary Target Specification) patterns [3]           
to specify the exact polymerization chemistry that takes place during the cross-linking process to              
allow for increased versatility/flexibility in application to a multiple chemistries..  

The new cross-linking protocol is described with the simulation of the curing process of              
four well-known epoxy/amine systems and their thermophysical properties. To demonstrate the           
versatility of the algorithm in handling non-epoxy based chemistries, cross-linking of a            
benzoxazine system is also described. Using automated cross-linking analysis functionality, we           
are able to track the evolution of physical properties for each system as the cross-linking               
simulation proceeds. Once polymeric networks are formed, thermophysical simulations are used           
to predict properties including the glass transition temperature (Tg) and the coefficient of thermal              
expansion. The ability to create polymer network structures and subsequently predict engineering            
relevant properties enables development of polymer systems that are optimized for targeted            
application.  

  
II. Results  
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A cross-linking algorithm protocol was created that is versatile and capable of handling             
different types of chemistries and cross-linking procedures, depending on the system of interest.             
The details of the protocol are described using four epoxy-amine chemistries. To further             
demonstrate the utility of the tool, crosslinking of a benzoxazine system without any             
modification to the crosslinking protocol is also performed.  

In the case of epoxy-based thermosets, amine-based hardeners are typically used to            
polymerize the matrix. The epoxide ring of the epoxy molecule reacts with primary and              
secondary amines via a ring opening process. Primary amines will react with the alpha carbon of                
the epoxide ring, leading to the formation of a secondary amine and a hydroxyl group (Figure 1)                 
[4]. To define this chemical reaction in a molecular model SMARTS patterns are utilized to               
define the two bonds to be broken with a high level of specificity. For epoxy/amine mixtures, the                 
user can define both primary and secondary amines together or as separate reactions. Several              
studies have shown that reaction rates of primary versus secondary amines are different, but              
there is some disagreement to the relative reaction ratio [5-7]. Multiple reactions can also be               
defined, including those initiated by hydroxyl groups, but are not the subject of this work. The                
majority of molecular simulation reports on thermosets do not incorporate different reactive            
rates, and in some cases require opening of the epoxide rings prior to forming the crosslinking                
bond [8-13]. These intermediate molecules are not necessarily representative of the crosslinking            
reaction, and can be avoided by properly defining SMARTS patterns for the N-H and C-O bonds                
of the two species. The reaction coordinates can then be defined by the distance between the two                 
reactive bonds. The distance criteria can be set to define a minimum distance required for bond                
formation, along with a cutoff distance. The cutoff distance can greatly affect the topology of the                
polymer network. As the equilibrium bond length of an N-C bond is 1.41Å, the cutoff distance                
should be 3-4 times this length to prevent unnecessarily high energy bonds from being created               
[13]. Our cross-linking algorithm allows the distance criteria, including the incremental step size,             
to be controlled by the user and can be adjusted based on the reaction(s) being modeled but                 
suggested values discussed later in this work allow for reasonable structures to be obtained.  

Once the chemistry and distance criteria are defined, the details of the cross-linking             
procedure is set (Figure 2). The process of forming multiple, simultaneous crosslinking bonds             
influences the resulting network topology and thermomechanical properties [14]. By gradually           
introducing new bonds and equilibrating the intermediate structures, the simulation is able to             
mimic the curing the process. Several parameters in the crosslinking are adjustable based on the               
specific system. First, the number of simultaneous cross-links per iteration is defined. A             
crosslinking iteration can be defined as the number of simultaneous cross links formed in the               
simulation, followed by force field typing and a short MD equilibration stage. Crosslinking             
algorithms often require partial charge fitting and subsequent equilibration when generating the            
force field terms for the new crosslinked bonds [9]. These methods are diverse, not well               
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documented and computationally expensive [9, 13-17]. Utilizing the OPLS2005 force field, a            
robust force field developed for condensed phase simulations, automatic force field typing can be              
applied, avoiding the aforementioned charge equilibration process [18-21].  

In addition to controlling the number of crosslinks formed per iteration, the target cure              
percentage can also be defined. As the system becomes highly crosslinked, above 80% for              
epoxy-amine thermosets, the number of available reactive groups decreases and the steric            
constraints increases substantially and may never fall within the distance cutoff. Depending on             
the property of interest to the user, the final crosslink saturation percentage can be adjusted               
accordingly. To limit the computational time required for a crosslinking simulation with a high              
target saturation, a maximum number of unproductive crosslinking iterations is set. An            
unproductive crosslinking iteration occurs when no crosslinks can be made with the user-defined             
distance criteria. Following both successful and unsuccessful crosslinking iterations the MD           
equilibration protocol is performed, allowing fluctuations in the system to occur that may allow              
for crosslinking in subsequent iterations.  

The MD equilibration step in each iteration is designed to minimize high energy states              
from newly formed bonds and adjust for the changing topology of the system. The simulation               
time, temperature, and integration time step can be independently adjusted for the equilibration             
of the system curing the curing process. One common system property that is often used to                
measure MD simulation stability is density [22]. If the density of the system is rapidly               
fluctuating, longer simulation times may be necessary for equilibration. Previous crosslinking           
algorithms do not adjust for longer simulation times on the fly, which may lead to poorly                
equilibrated structures or insufficient sampling required to reach a high degree of crosslinking             
saturation [2 and references within]. To address this issue a density convergence criteria was              
enforced allowing the density to stabilize through multiple MD equilibration stages. The density             
convergence is determined by comparing the average and standard deviation over the last 20% of               
the simulation. If the standard deviation is not less than 5% of the average, it is not considered                  
converged. The process is repeated until the target saturation is reached, or the maximum number               
of unproductive cross-linking attempts (with MD equilibration) has been reached. By utilizing            
GPU acceleration, computational times required for these equilibration stages is reduced. This            
capability helps accelerate the equilibration stage, which can be rate limiting depending on the              
size of the system, and produce more equilibrated thermoset structures. 
 
Modeling the curing process of epoxy/amine systems To validate the utility of the      
cross-linking algorithm we performed cross-linking simulations on four well-known         
epoxy/amine systems (Figure 3). These systems have either been experimentally validated and/or            
have been modeled previously. Before building a highly cross-linked network, we first generated             
a set of amorphous systems for all four mixtures. Systems were built so that the reactive group                 
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stoichiometry was 1:1. Diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of             
bisphenol F (DGEBF) both have a functionality of two, and 3,3-Diamino Diphenyl Sulfone             
(3,3-DDS) and the 4,4-DDS isomer have a functionality of four and tris(4-aminophenyl)amine            
(TAPA) six, so the relative monomer ratios were adjusted to ensure all systems have a one to one                  
ratio of epoxide to amine functional groups. It is important to point out that with molecular                
models of thermoset polymers, it is difficult to capture the entire network architecture topology              
unless the system is sufficiently large to account for finite size effects. A recent study indicated                
that relatively small system sizes (less than 5k atoms) can decrease the accuracy of              
thermo-mechanical property predictions like the glass transition temperature [23]. To avoid this            
issue, we built systems in system sizes close to or exceeding 19k atoms. The system size used in                  
this study was determined to be sufficient to study the majority of cases described by performing                
simulations at a smaller simulation size (close to or exceeding 10K) and confirming that the               
conclusions remained consistent. A total of 10 replicates were simulated for all four systems. As               
the crosslinking and thermophysical properties protocols both utilize GPU enabled MD, the            
simulation times are tractable to obtain results on multiple systems and replicates within a short               
period of time.  

After relaxing each system as described in Simulation Procedures section, a final stage 
with a high temperature (800K) was run for 5ns to prepare for the crosslinking simulation to 
converge the density within 5% at the temperature determined to be most appropriate for 
cross-linking these systems. The high temperature is necessary during crosslinking to reduce the 
bond energy and also to allow enhanced sampling of the reactive groups due to increased 
molecular mobility to form more crosslinks. Simulation temperatures for crosslinking thermosets 
are frequently higher than those used in experiment and can affect the final cure saturation [2]. 
To quantify this effect, we chose one system and ran crosslinking simulations over a range of 
temperatures. The equilibrated DGEBA/3,3-DDS system was crosslinking at 100K to 900K at 
100K intervals (Figure 4a). Above 600K, the system was able to achieve a final saturation of 
90% or greater. At temperatures above 700K, the final cure was above 96%. This lead us to 
choose 800K as the crosslinking temperature for the other three systems. The resulting structures 
were all cured above 95%, a higher percentage than most systems previously studied [2 and 
references within].  This suggests that high cure percentages can be achieved with high 
temperature cross-linking.  

At a molecular level, the increasing cure with temperature can be explained by increased 
sampling of phase space, allowing amine and epoxy groups to come within reactive distances 
more frequently. To minimize the steric clashes further, we limited the maximum number of 
cross-links formed in each iteration to 1-2% of the effective curing saturation and set the 
maximum cross-linking distance between the amine nitrogen and the oxirane alpha carbon to 5 
Å. Forming bonds between reaction sites above this cutoff exceeds the normal bond distance by 
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4 times,  leading to high energy configurations and system instability [10].    
We next sought to determine the optimal simulation time required for equilibration at 

each iteration by asking what affect equilibration times have on the final cure percentage. Using 
the DGEBA/3,3-DDS system, we crosslinked the system with varying equilibration simulation 
times. Equilibration times of 25ps or greater per iteration produced highly cross-linked systems 
above 95% final saturation (Figure 4b). The final cure did not change significantly with 
simulation times longer than 50ps. Optimizing these parameters is important not only for 
obtaining high cure percentages, but also balancing simulation time. If a user wishes to use this 
tool in a high throughput screening method to explore more chemical space with either the resin 
or reactants, longer simulations are not necessarily beneficial. Resulting thermoset networks 
from crosslinking simulations, and the quality of each result, need to be analyzed before 
subjecting them to thermophysical prediction protocols.  

 Analysis of MD simulations frequently requires custom scripting, particularly for 
complicated workflows like crosslinking. We developed automated analyses that can speed up 
the process, allowing researchers to efficiently analyze the data. The analyses were developed to 
present the data in a way that gives the user insight on the physical changes occurring during the 
cure process. For epoxy-based resin systems, one important physical change that occurs while 
curing is volume shrinkage. As more crosslinks are formed throughout the system, the distance 
between monomers and oligomers decreases. This effect has been observed experimentally and 
is an important factor when designing new formulations [24-25]. While volume shrinkage is 
measurable via experiment, the effects of chemical shrinkage depend on several factors including 
thermal expansion and final cure percentage. These properties typically depend on the molecular 
structure and are not easily accessible with experimental methods. Simulation methods, however, 
can measure exact changes in chemical structures and bulk physical properties of the molecular 
system.  

An analysis feature was designed to gather not only volume information, but also other 
physical parameters and crosslinking statistics at each iteration. The changes in volume were 
collected for the four representative epoxy systems (Figure 5). For the four systems, volume 
decreased linearly as the cure simulation progressed with final volume shrinkage ranging from 
1% to 2% for structures cooled to  800K. This linear relationship between reduction of volume 
and increasing cure is in agreement with experiment [26-28].  The total shrinkage from curing 
simulations has been reported for several systems, ranging from 4-12% [22, 29-30]. While our 
recorded shrinkage is lower than experimental value, behavior of the CTE as the crosslinking 
progresses is consistent to reported behavior for highly crosslinked systems using both 
experiment and other molecular simulations [31,32]. In the experimental study, the maximum 
volume shrinkage for the thermoset occurred after gelation and depended on the overall 
crosslinking density. The authors attributed this effect to entropic changes through a dropoff of 
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molecular packing efficiency in a highly cured polymeric network. Based on the experimental 
and simulation studies, we can conclude that the lower final volume shrinkage values reported 
here are a result of the crosslinker’s ability to achieve high final crosslinking cure percentages, 
>95%, reducing ability of the network to pack efficiency and may more accurately reflect the 
cure process itself. We do not attempt to explain the detailed molecular basis of this observation, 
but future work can aim to study the morphology of thermoset networks and the thermodynamic 
contributions, both enthalpic and entropic, to curing. 

Gelation is a distinguishing feature of thermoset polymers as it represents the point in the 
cure cycle where the largest molecule percolates through the entire sample [2]. As a thermoset 
polymer approaches the gel point, its viscosity approaches infinity, and elastic properties of the 
system change dramatically. Gel points are often difficult to estimate experimentally using either 
dynamic mechanical analysis (DMA) or dynamic rheology. Theoretical gel points can be 
calculated, requiring only the functionality of the prepolymer and the crosslinking agent and their 
stereochemistry. Flory derived this equation (1) as:  

 
                                                                                                                          (1) rp2 = 1

(f−1)(g−1)
   

 
where r is the stoichiometric ratio, p is the gel point, f is the functionality of the epoxy and g the 
functionality of the crosslinking agent [33]. In molecular simulations, the gel point can be 
approximated using the weight averaged reduced molecular weights of the largest molecules as 
the system cures [34]. Using this method, we approximated the the gel points from each 
simulation and found them to be within 5-7% of their respective theoretical values (Figure 6). It 
is important to point out that both of these methods assume perfect reaction stoichiometry. 
Off-stoichiometric effects on physical property prediction can be studied by altering the epoxy to 
amine ratios.  

While bulk physical properties of the system are important, tracking the actual reactive             
groups can provide insight into the morphology of the thermoset polymer. Reactive group             
concentrations, are often measured experimentally using near IR (NIR) spectroscopy. NIR is able             
to identify all the reactive groups (primary and secondary amines along with C-H epoxy bonds)               
and their products. While this method has been useful for quantifying amine reactivity, it is often                
difficult to track all chemical functionality of interest [35]. Using SMARTS patterns, any             
chemical substructure and its concentration can be identified during the cure cycle. For the              
DGEBA/3,3-DDS system, we tracked SMARTS patterns corresponding to primary and          
secondary amines, along with hydroxyl formation (Figure 7a). The general shapes of the curves              
for primary and secondary amines are in agreement with NIR data for other epoxy/amine              
systems [35]. In addition to quantifying the reactive groups and their products, SMARTS can be               
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used to provide some insight to morphology, specifically the location of unreactive groups or              
dangling ends. Figure 7b shows the location of the unreacted amine and epoxide groups in the                
simulation cell after curing to 98%. This type of analysis can be extended to study large                
structural motifs created during crosslinking, providing a molecular level picture of           
morphological changes as the polymer network is formed.  
 
Modeling the curing process of benzoxazine system 
To demonstrate the flexibility of cross-linking algorithm utilizing reactions defined SMARTS           
patterns, crosslinking of a benzoxazine system was performed. The same cross-linking algorithm            
as described in the epoxy-amine system was applied to the chain growth polymerization of a               
bisphenol-A based benzoxazine. Though the chemical details for this thermoset differ from the             
epoxy-amine case described in the previous section, the definition of cross-linking via two             
breaking bonds and two forming bonds allows for the application of the same cross-linking              
algorithm. 

The cross-linking reaction in this demonstration study was defined as ring opening            
followed by monomer connection (Figure 8) [36, 37]. A crosslinking of a single chemistry was               
performed at cure temperature (500 K) selected to best match the typical cure temperature [36].               
There is known dependency of the properties such as Tg of the final thermoset on the cure and                   
the purity of the benzoxazine, therefore a more thorough study of benzoxazine simulation is              
necessary to fully capture the effects of variation in network formation. The reduced molecular              
weight as well as change in volume and density are shown in Figure 8 and demonstrate the cure                  
progression in this example case. More detailed studies of benzoxazine thermosets are reserved             
for future publication. 

 
Glass transition temperature and volumetric coefficient of thermal expansion prediction
One of the most attractive properties of thermoset polymers is their high glass transition              
temperature [10]. Several experimental methods are available to estimate Tg and are widely used              
by engineers/researchers. Time scales of these experiments are generally much longer, on the             
order of minutes to hours, than accessible by even the most efficient MD codes. Given the                
cooling rate dependence of Tg, exact quantitative prediction from MD cooling simulations is not              
possible yet [4]. Despite the difference in time scales, several studies have shown molecular              
simulations do have predictive power when estimating Tg values [10-13]. Typically, most MD             
simulations overestimate the Tg by ~30K due to the fast cooling rates [2]. Using the four highly                 
crosslinked structures, we performed annealing simulations using the thermophysical properties          
workflow. Starting at 800K, each system was cooled to 100K at a rate of 0.5ns per kelvin with                  
steps of 10K. At each step, the density convergence criteria of 5% was applied to each 5ns                 
simulation at a given temperature, ensuring each density measurement was accurate across the             

8 

 



range of temperatures. This rate was deemed sufficient for this study by running of a slower rate                 
of 2ns per kelvin (data not shown). The comparison in Tg of the different systems was found to                  
be similar between the 2 ns/K versus 0.5 ns/K. The total simulation time at the rate of 2 ns/K for                    
each system was 1.44µs, representing significantly longer simulations than previous annealing           
simulations to estimate Tg [38-39]. These simulations required approximately one week of            
computational time on a single GPU even with the comparably slow rate. 

Estimation of Tg itself from molecular simulations is not a straightforward process as             
finite size effects and shorter time scales introduce noise, drastically affect the fitting process.              
Fitting procedures, including the popular bilinear method, rely on subjective definitions of the             
two regions and do not utilize all the data generated [40]. Recently, Patrone et al. proposed a                 
global nonlinear fitting method that makes use of an entire simulated annealing dataset and              
methods to estimate the uncertainty of their fitting method [22]. We adopted the hyperbola fit               
method from that work to estimate Tg from the density data as a function of temperature.                
Hyperbolic fits of each dataset produced Tg values based on the hyperbola center (Figure 9 and                
Table 1). The 95% confidence interval predicted from the hyperbola fit was also calculated to               
quantify the uncertainty between the 10 replicates of each system. The uncertainty ranged from              
5-26K (1-5.4% of simulated Tg)and demonstrates that the crosslink and Tg method provide             
consistent result across random initial conditions. 

In the cases with the 4 functional amines (3,3-DDS and 4,4-DDS), the trend in Tg is                
reproduced compared to experiment. The absolute value of the deviation between the simulation             
and experiments ranges from 7-17 K and when factoring in the difference in time scales between                
experiment and microsecond MD simulations, these values are in excellent agreement and            
consistent with previously reported computational studies [2 and references within]. The           
6-functional cured system (DGEBA-TAPA) shows a larger deviation from experiments and does            
not match the trend found in the other systems. The source of this discrepancy may be the                 
system size.   Future studies are needed to fully capture this potential impact. 

In addition to Tg, the coefficient of thermal expansion (CTE) is another critical property              
in material design that can be predicted using molecular simulation [16]. The volumetric             
coefficient of thermal expansion (ɑ) can be defined as: 
 

                                                                                                                                (2)( )α = 1
V  

0 ∂T
∂V

 P  

 
where V is the volume of the simulation cell at a given temperature T and V0 is the volume of the                     
simulation cell at a reference temperature [2]. This value can be calculated at any temperature               
above and below the Tg. For each system, we calculated CTE values at 300K and 600K, below                 
and above their Tg values, respectively. Experimental data on three of the systems,             
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DGEBA/DEGBF crosslinked with either 3,3-DDS or 4,4-DDS, were provided by [41] (Table 2).             
For the DEGBF/3,3-DDS system, [43] reported a linear glassy CTE of 57.2 µe/K from TMA               
experiments and 55.7 µe/K from their MD simulations while we obtained a value of 49.5 +/- 1.7                 
µe/K at 300K averaged over the 10 replicates. For the rubbery CTE, they reported a linear CTE                 
of 170.8 µe/K from experiment with our simulations estimating the CTE of 188.7 +/- 2.1 at                
600K. Li and Strachan analyzed the literature for predicted CTE values and found predicted              
values deviated from experiment by up to 40% [2].Our predicted values for the three systems (no                
CTE data was available for DGEBA/TAPA) deviated 13-26% from experimental values. The            
magnitude ranking of CTE for the three systems was also reproduced. The overall increased              
accuracy of our results compared to general simulation literature suggest that CTE prediction is              
possible with the combination of the discussed cross-linking method and slow annealing for             
property calculations.  
 
 
III. Discussion 
The need for a flexible, user-friendly cross-linking method to generate equilibrated atomistic             

models of highly cross-linked thermosets motivated the development of a general, robust, and             
efficient polymer cross-linking protocol. While previous methods require custom code, long           
simulation times and are difficult to reproduce, this method is intended to be accessible to the                
general modeling and materials engineering community and generate accurate results faster. To            
test the utility of the crosslinking algorithm, we took four epoxy/amine formulations and             
optimized the simulation parameters to generate highly crosslinked structures, well above 90%.            
In order to judge the quality of a crosslinked polymer model, automated analysis functionality              
was designed to monitor the physical and morphological changes that occur to the system during               
the simulation. Utilizing SMARTS theory, we are able to not only flexibly designate the reactive               
bonds for crosslinking but also analyze relevant structural motifs as curing progresses. By             
performing thermophysical properties calculations on the crosslinked systems, we are able to            
compare Tg predictions with experiment. The agreement between the results generated here and            
previous experimental works demonstrates the accuracy of the OPLS2005 force field while            
simultaneously leveraging GPU accelerated MD simulations. This can also be extended to            
predicting mechanical response of thermoset polymer networks, further increasing the modeling           
power to predict thermomechanical properties. While epoxy/amine systems were used in this            
study, any crosslinking chemistry can be simulated were the bonds broken and formed during the               
reaction are known. Systems where crosslinking contains multiple competing or sequential           
reactions steps/reactions, previously intractable with existing algorithms, can also be simulated           
with this method and will be explored in future work. 
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Methods 
 
Molecular models and Molecular Dynamics equilibration All model building and molecular           
dynamics simulations were performed using the Schrödinger Materials Science Suite version           
2016-4 [42]. The molecular models of DGEBA, DGEBF, 3,3-DDS, 4,4-DDS, and TAPA were             
built using the 2-D sketcher, and 3-D conformations were generated with the OPLS2005 force              
field [18-19]. Model systems of epoxy and amine molecules, with a 1 to 1 reactive group                
stoichiometry, were built using the Disordered System Builder at a low density (<0.5 g/cc). The               
resulting amorphous system was equilibrated using the Multistage Simulation Workflow panel           
with the compression protocol (a series of short MD relaxations and a compressive NPT MD               
simulation performed at high pressure to increase the density) and then further equilibrated at              
800K for 5ns with a NPT ensemble using the Nosé-Hoover thermostat [43] and             
Martyna-Tobias-Klein barostat [44]. All simulations were analyzed using the Materials Science           
MD analysis functionality. All MD simulations were performed using the Desmond Molecular            
Dynamics Engine [45, 46, 47].  
 
Crosslinking polymers with multiple reactions The curing stage of the thermoset was       
modeled using the Crosslink Polymers driver. Chemical reactions are set up in a stepwise              
manner using a distance-based criteria. The bonds broken and formed during the simulation are              
defined using SMARTS patterns [3]. The following SMARTS patterns were used: “N[H]” for             
primary and secondary amines and “[C;r3;H2]O” for the carbon-oxygen bond in the epoxide             
ring. The starting search radius for reactive bonds was set to 3 Å while maximum search distance                 
was set to 5 Å with a 0.5 A step. The number of cross-links performed at each iteration was                   
limited to 1-2% of all amine/epoxy reactions for each system. After the new bonds are formed at                 
each iteration, a 50ps multistep relaxation protocol is applied to relax the system. The simulation               
time was determined by cross-linking one system, DGEBA/3,3-DDS using the following values:            
5ps, 10ps, 25ps, 50ps, 100ps, 250ps and 400ps. To determine the optimum temperature, the              
DGEBA/3,3-DDS system, was cross-linked at the following temperature range: 100-900K with           
data collected at each 100K iterations. The four systems were then cross-linked at 800K with a                
50ps MD equilibration time. All crosslinking analysis was performed using the crosslink            
polymers analysis module.  
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Glass transition temperature prediction Glass transition temperatures of the cross-linked      
systems were calculated using the thermophysical properties driver. The systems were cooled            
from 800K to 100K at a rate of 0.5ns per Kelvin. At each temperature, a density convergence                 
criterion was applied to within 5% of the “running average”. For the systems studied in this                
work, no data points required additional simulation time to converge the density. The Tg was               
determined by performing a hyperbola fit to the density versus temperature data, a method              
discussed in [22]. The volumetric coefficient of thermal expansion was estimated by linear fits to               
the glass and rubbery regions of each dataset. CTE values were reported at both 300K and 600K.  
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Figure 1: Representative Epoxy-amine reaction. The initial reaction occurs between a primary amine of              

3’3’-DDS and one of the epoxide rings of DGEBA. After the first crosslinking reaction, the dimer created                 

now has one secondary amine, one primary amine and one epoxide group that may take place in                 

subsequent crosslinking reactions.  
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Figure 2: Cross-linking flowchart. The input parameters along with the amorphous system are             

used by the crosslink driver to determine the reactive groups, distance search criteria, and              

number of cross-links to be performed at each iteration. After the new bonds are formed and                

the force field typing is finished, the system is subject to a MD simulation. If a density                 

convergence criteria is imposed by the user, the driver will attempt to run MD until the                

convergence criteria is met. Once the MD steps are finished, a single iteration is considered               

completed. If the target saturation has not been met, the process is repeated until achieved or                

the maximum number of unsuccessful cross-linking attempts are reached. 
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Figure 3: Molecular structures of epoxy and amine molecules studied in this work.  
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Figure 4: Effect of cure temperature and       

equilibration time on final crosslink     

saturation. DGEBA/3,3-DDS was   

isothermally crosslinked using Schrödinger    

Materials Science Suite 16-4 at (a) a range        

of temperatures between 100 K and 900 K        

with a 50ps MD equilibration step and (b) at         

800 K with varying MD equilibration time       

periods. The final crosslink % for each       

simulation is plotted. 
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Figure 5: Evolution of physical properties      

during the cure cycle. The average (a)       

volume and (b) density during cure at 800K        

for each of the 4 epoxy/amine systems.       

Error bars denote the standard deviation of       

ten trials and are with in the magnitude of         

the figure point size if not visible.  
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Figure 6: Theoretical gel point estimation. The average largest and second largest MW species              

are plotted as a function of crosslink percentage for a) DGEBF/3,3-DDS, b) DGEBA/3,3-DDS, c)              

DGEBA/4,4-DDS and d) DGEBA/TAPA. Error bars denote the standard deviation of ten trials.  
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Figure 7: Tracking functional groups using      

SMARTS during crosslinking simulations.    

(a) The number of functional groups of       

interest are counted at each iteration of       

crosslinking using SMARTS patterns and     

averaged for 10 DGEBA/3’3’-DDS trials.     

Error bars denote the standard deviation of       

ten trials. (b) Representative snapshot from       

final crosslinked DGEBA/3’3’-DDS structure    

without periodic cell wrapping applied in      

visualization in order to show network      

connection developed during crosslinking.    

Functional groups are enlarged and colored      

to correspond to part a.  
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Figure 8: Benzoxazine thermoset resin cure. (a) polybenzoxazine cure reaction modeled within            

our simulations. (b) Estimation of benzoxazine gel point (c) Change in benzoxazine resin volume              

during cure at 500 K and (d) the change in the benzoxazine resin density during cure at 500 K .                    

All error bars denote the standard deviation of ten trials. 
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Figure 9: Predicted Glass Transition     

temperature. Representative data for single     

trial of DGEBA/3’3’-DDS. The systems     

density as a function of temperature is fit to         

a hyperbolic function where the hyperbolic      

center is used to determine Tg. The       

asymptotic regions are denoted using blue      

dotted lines and the asymptotic threshold      

at 90% is shown in yellow. [22] 
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Table 1. Properties for epoxy/amine thermoset polymers in this study.  

 

a
 Gel points were estimated from the peak of the second largest MW species. 

b
 Volume shrinkage was determined from the difference between the initial monomer and final cross-linked 

volume of each system at 300K. 

c
 Density values reported are for the cross-linked polymer. 

d
Experimental Tg values references: DGEBF/3,3-DDS [23], DGEBA/3,3-DDS [13], DGEBA/4,4-DDS [10],           

DGEBA/TAPA [48]. 

e
 Tg values were determined from hyperbola fits.  

f  
95% confidence interval predicted using hyperbolic fit methodology [23] for 10 replicates.  
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Table 2. Comparison of CTE from experiment and this study.  

 

a
 Experimental linear CTE values were taken from [41]. 
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