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Abstract: Formaldehyde is a ubiquitous and high toxicity gas. It is an essential task to 

efficient detect owing to their toxicity and diffusion. In this work, we studied on the 

detection of trace amount of formaldehyde based on hollow Co3O4 nanostructure. It is 

found that Co3O4 hollow spheres with different structures shows distinct sensing 

performance towards formaldehyde at room temperature, the response value of 

nanosheet modified Co3O4 towards 100 ppm formaldehyde will reach 35 in 18 second, 

and the nanoparticle modified Co3O4 hollow sphere will reach 2.1 in 18 second, 17 in 

300 second. The nanosheet modified and nanoparticle modified Co3O4 hollow sphere 

will reach 4 and 20 in 10 second towards 100 ppm formaldehyde at room temperature. 

As room temperature, the sensors do not response towards NH3, CO, etc. The sensing 

mechanism was proposed based on the theoretical and experimental results. The 

Co3O4 sensor shows that potential utility in CH2O quick sensing at room temperature.  
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1. Introduction 

Aldehyde is a high toxic organic vapor and carcinogenic substance, which have been 

recognized as air pollutants by U.S. Environmental Protection Agency. [1] Aldehyde 

can be found in the surrounding air of polluted zones as well as most cities. [2] And 

more seriously is that aldehyde keep existence in indoor and do durative harm to 

humans. [3]  

  Until now, much work has been done about sensing for aldehyde, various method 

has been applied to detect formaldehyde, such as fluorescent method, [4] 

sophisticated optical methods, [5] gas chromatography, [6] quartz crystal 

microbalance sensor [7] and gas sensor. [8] Sensing of aldehyde by gas sensor has its 

advantage for the low price and easy operation. SnO2,[9] ZnO,[10] TiO2,[11] 

In2O3,[12] WO3[13] have been studied for sensing of formaldehyde. The structure of 

the sensing material shows great influence to the sensing performance of the gas 

sensor. According to the numerous studies, large surface area and porosity can 

enhance the sensing performance. [14, 15] But there is still not much work on 

selective gas detection both on experiment work or theoretical work.   

  Co3O4, a p-type semiconductor with the direct band gap of 2.06 eV, [16] shows 

significant performance in catalysis, [17, 18] energy storage, [19] water splitting, [20] 

and gas sensing. [21] Especially, P-type semiconductor are promising materials for 

high-performance gas sensors. [22] Co3O4 have been used for sensing for ethanol, [23] 

NH3, [24] NO2, [25] CO. [26] In 2014, D. K. Lee and H. Song report on Co3O4 

hollow sphere on sensing for aldehyde, and the sensing limit can reach 50 ppb at the 
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operation temperature of 220 
o
C. [27] Aihua Yuan et. al. synthesis the concave Co3O4 

octahedral and the sensor’s response are 3 for 1000 ppm formaldehyde at the 

operation temperature of 200 
o
C. [28] Mingzhe Zhang find that hollow nanotubes 

response towards 50 ppm aldehyde being 6.5 at 180 
o
C. [28] 

In this work, we report the sensing ability of Co3O4 towards aldehyde at room 

temperature. The hollow sphere based Co3O4 nanostructure shows selective aldehyde 

response, and do not response to CO, acetone, NH3, etc. We hypothesis that the 

sensing ability comes from the adsorption ability towards aldehyde gas molecule. The 

surface oxygen species and the surface nanosheet structure can enhance the sensing 

ability towards aldehyde.     

2. Experimental 

2.1 Chemicals and Reagents  

Cobalt nitrate hexahydrate (Co(NO3)2•6H2O) and glycerol were purchased from 

Sinopharm Chemical Reagent Corporation, isopropanol, ethanol, formaldehyde 

aqueous solution (37 %) were purchased from Beijing Chemical Works. All the 

above chemicals were used without any purification and distilled water were 

used in the experiment.  

2.2 Synthesis of the Co3O4 hollow spheres  

Cobalt glycerolate microsphere precursor were prepared by a solvothermal 

method described previously [31]. Typically, 8 mL glycerol (108.6 mmol) was 

dissolved in 30 mL isopropanol (391.8 mmol), a transparent solution can be 

formed under stirring for 1 h, then 0.3 g Co(NO3)2 (1.031 mmol) was added and 
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the mixture were stirred for 1 h to form a homogeneous and transparent 

solution. The solution was transferred into a 50 mL autoclave with Teflon-line. 

The autoclave was heated to 180 
o
C for 6 h. After the autoclave was cooled 

done to room temperature, the result precipitate was carefully collected and 

washed with absolute ethanol, then at 6000 rpm for 3 times. Finally, the 

precipitate was dried at 60 
o
C overnight.  

  Hollow cobalt oxide was synthesized by simply calcination of the cobalt 

glycerolate in the air at 350 
o
C, 450 

o
C, 550 

o
C, 650 

o
C, 750 

o
C with a heating 

rate at 1 
o
C/min.  

  Cobalt oxide nanosheet modified hollow spheres were synthesized by two 

steps according to the previous work. [31] Typically, 0.1 g cobalt glycerolate 

were dispersed in 20 mL distilled water. Then the mixture was transferred to a 

50 mL autoclave with Teflon line. The autoclave was heated at 160 
o
C for 6 h 

to get cobalt hydroxide. The green cobalt hydroxide was washed with ethanol 

and dried at 60 
o
C overnight. Then calcite the cobalt hydroxide at 300 

o
C, 400 

o
C and 500 

o
C at a rate of 1 

o
C/min and hold for 2 h in the air atmosphere. 

2.3 Characterization 

The X-ray diffraction information of the materials were collected on a Rigaku 

D/MAX 2550 with Cu Kα anode (λ=1.5418 Å). The SEM, TEM and HRTEM images 

were taken on a JEOL JSM-6700F Scanning electron microscope and a FEI Tecnai 

G2 S-Twim F20 transmission electron microscope. The element composition and 

chemical state information of the materials were analysed by X-ray photoelectron 
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spectroscopy on a Thermo Fisher Escalab 250. N2 adsorption/desorption isotherms 

test were performed on a Micromeritics ASAP 2020M system. The infrared spectra of 

the material were acquired by a Bruker IFS 66V/S FTIR spectrometer with KBr 

pellets of mixture of the sample and dry KBr powder fabricated by a press machine. 

2.4 Sensor fabrication and testing 

A commercially available alumina ceramic tube was used as substrate for 

testing the performance of the gas sensor. Two Au electrode connected with 

four Pt wires were attached on the surface of the alumina substrate. A certain 

amount of Co3O4 materials were dispersed in 1 mL ethanol to form a black 

slurry, then the slurry was put onto the surface of the alumina ceramic 

substrate. After ethanol were volatile into the air, the Co3O4 material were 

attached to the surface. Then a Ni-Cr alloy heating coil were carefully passed 

through the inner channel of the substrate to ensure the sensor could be heated 

at a setting power. The sensor was aged at 200 
o
C for 12 h to get good stability 

and then test on a CGS-8 Gas Sensing Measurement System (Beijing Elite Tech 

Company). The resistance of the sensor can be measured online by the sensing 

system. The sensing test were performed in a 1 L chamber of static gas system. 

Formaldehyde solution (37 %) were used to generate the formaldehyde gas 

vapour at different concentration. To ensure the gas concentration, the 

generated formaldehyde gas was kept at room temperature (25 
o
C) for about 2 

hours to get balance before the test. The operation temperature was set at room 

temperature (25 
o
C). To ensure the results, the humidity was identical at 20 % 
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during the test. To help the gas molecules desorb from the surface of the sensor 

and sensor recover to beginning stage, a heating period of 30 second to a few 

minutes at 200 
o
C were applied. 

2.5 Simulation and models 

The setting of calculation model and relative parameters were chosen according 

to the literature. [31, 32] 

  The theoretical study uses the Vienna ab initio simulation package (VASP) 

to perform formaldehyde adsorption behavior on Co3O4 surface. And 

generalized gradient approximation (GGA) in the form of 

Perdew-Burke-Ernzerhof (PBE) was applied to the electronic structure.  

  The calculation for the adsorption of formaldehyde on the (110) plane were 

based on GGA+U method of VASP package. U-J= 5.0 eV were chosen to fit 

the experimental band gap. 

3. Results and Discussion  

3.1. Phase, Composition and morphology of cobalt glycerolate precursor  

The typical SEM, TEM of cobalt glycerolate were shown in Fig. 3(A). As 

shown in Fig. 3(A), the cobalt glycerolate shows sphere like morphology. The 

spheres are around 300 nm. The X-ray diffraction patterns of the cobalt 

glycerolate sample was shown in Fig. 3(B), the only peak at about 10
o
 shows 

the low crystallization. The FT-IR spectra of the cobalt glycerolate were in Fig. 

S1 the supporting information. 

3.2. Phase, Composition and morphology of cobalt oxide hollow spheres 
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The cobalt glycerolate were calcined in the air atmosphere to transfer into 

nanostructured Co3O4. Then the phase, composition and morphology of the 

cobalt oxide were examined. Fig. 4 shows the X-ray diffraction patterns of the 

cobalt oxide calcined at different temperature. The XRD pattern can be indexed 

to Co3O4 of cubic phase. And it shows better crystallization at the higher 

calcination temperature. 

Fig. 5 shows the typical SEM images of the cobalt oxide spheres by calcite 

the cobalt glycerolate precursor in the region ranging from 350 
o
C to 750 

o
C. 

As it can be seen, when calcited at 350 
o
C, the surface of the Co3O4 keep the 

sphere morphology (Fig. 5A). And it shows small hole on the surface. When 

calcite the cobalt glycerolate at 650 
o
C, the sphere morphology changes, it 

shows nanoparticles on the surface of the material and holes can be seen clearly 

(Fig. 5D). When calcinate the cobalt glycerolate at 750 
o
C, it can be seen 

clearly that the material can hardly keep the sphere’s morphology (Fig. 5E). 

The FT-IR spectroscopy of the Co3O4 were in Fig. S2 in supporting 

information. The O 1s and Co 2p XPS spectroscopy were shown in Fig. S3 and 

S4. The N2 absorption isotherm spectroscopy were shown in Fig. S5. Fig. 6 

shows typical TEM and HRTEM photo for the hollow Co3O4 calcite at 550 
o
C. 

Fig. 7 shows the XRD pattern of the cobalt oxide hollow sphere modified 

with nanosheet calcite the Co(OH)2 precursor at 300 
o
C, 400 

o
C, 500 

o
C. The 

diffraction peaks show that the materials are convert into Co3O4. (The XRD 

pattern of the Co(OH)2 are shown in Fig. S6) It can be seen clearly the cobalt 
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oxide nanosheet in Fig. S7 that calcite at 300 
o
C hold the structure of the 

nanosheet. Fig. 8 shows the typical TEM and HRTEM images of the cobalt 

oxide spheres modified with nanosheets calcite at 300 
o
C. When it was calcite 

at higher temperature, the nanosheet on the surface of the hollow sphere 

transferred into nanoparticles. (Fig. S7) And when calcite at 500 
o
C, the Co3O4 

shows nanorods morphology instead of nanosheet. It can be inferred that the 

nanosheet structure were transferred into nanorods at 500 
o
C. 

3.3. Sensing performance 

To investigate the sensing performance, the dynamic resistance curves for 300 

second towards formaldehyde gas of Co3O4 calcite at 350 
o
C to 750 

o
C were 

obtained at room temperature (Fig. 8). It is clear that sensor’s resistance 

decreases significantly when exposed to formaldehyde. The Co3O4 sensor 

calcite at 550 
o
C shows most prominent resistance decrease effect in 400 s. The 

sensing performance of Co3O4 nanosheet were also studied, the sensor 

fabricated by Co3O4 nanosheets also shows resistance decrease effect when 

exposed to formaldehyde. 

  Then, the sensing performance of the best Co3O4 sensors towards different 

concentration of formaldehyde vapors were studied. As shown in Fig. 10, the 

h-Co3O4-550 
o
C (Fig. 10A) and s-Co3O4-300 

o
C (Fig. 10B) sensor shows 

performance towards formaldehyde gas vapor at the concentration of 1 ppm, 5 

ppm, 10 ppm, 50 ppm and 100 ppm. And the sensing response faster towards a 

higher concentration of formaldehyde. For the same exposure time for 
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formaldehyde, the resistance change is much higher at high formaldehyde 

concentration. The response value (Rg/Ra) of h-Co3O4-550 
o
C sensor can reach 

17 after exposed to 100 ppm CH2O gas vapor for 300 s. And the response value 

of s-Co3O4-300 
o
C can reach 35 in 18 s after exposed to 100 ppm CH2O gas 

vapor. The h-Co3O4-550 
o
C sensor shows response value of 2.1 in 18 s at the 

same time. It shows that the s-Co3O4 shows better response towards CH2O than 

h-Co3O4 at room temperature.  

  Dynamic sensing test were also studied on both Co3O4 hollow spheres and 

nanosheets. (Fig. S8 in supporting information). For the sensor’s resistance 

cannot recover in a short time, each time after the sensor were exposed to 

formaldehyde gas vapor, a heating pulse at 200 
o
C for 30 seconds were 

performed to accelerate the desorption of formaldehyde molecules.  

  The selectivity towards various kinds of gas vapor were shown in Fig. 11. 

The sensing response were collected for exposure of the sensor for 10 seconds 

in 100 ppm gas vapors. The Co3O4 shows no response towards H2, CO, CH4, 

acetone, NH3. And the sensor response value towards formaldehyde in 10 

second are 4 and 20, respectively. 

3.4. Sensing mechanism 

Usually, the sensing response towards aldehyde were based on the oxidation of 

formaldehyde molecules, and the sensing temperature is mostly set at about 200 

o
C to help accelerate the oxidation reaction. At room temperature, gases are 

prone to be just adsorb on the nanomaterial and the oxidation effect is much 
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less prominent. In our previous work, we find the sensing behavior based on the 

electron transfer between amine molecules and In2O3 at room temperature. [33]         

  In this work, we study the Co3O4 response behavior at room temperature. We 

hypothesis it was induced by the adsorption effect and perform simulation of 

the adsorption behavior applying the VASP package. {110} plane of Co3O4 

have been used to study the surface properties of cubic Co3O4. [34, 35] 

Formaldehyde molecules behavior that absorbed on the (110) plane of Co3O4 

were optimized. The absorption energy (Eads) was calculated according to the 

formula: 

△Eads=Eads-Esurf-Egas 

The adsorption energy was -2.83 eV. The negative adsorption energy means 

that the absorption behavior being exothermal process and the system is stable. 

[36] The density of states analysis can tell the electronic conductivity 

properties. It can be seen from Fig. that the density of states of Co3O4 at 

valance band as well as conduction band is elevated after CH2O were simulated 

absorbed on the surface of the {110} plane of Co3O4. And the aldehyde 

molecules show density of state at the adsorption of formaldehyde has its 

HOMO energy close to the top of VB, then the electron can more easily move 

to the VB of Co3O4. [34] And the resistance of Co3O4 is elevated since that the 

amount of hole carrier is reduced. [22] It can be found that the adsorption of 

formaldehyde will the density state of Co3O4 nanomaterial on the nearby of 

conduction band. And the XPS data (Fig. S3 and S4) shows that the O 1s 
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spectra of h-Co3O4-550 has the composition of the active oxygen species at 532 

eV. The active oxygen species help formaldehyde absorption.  

  The surface area shows enhanced sensing behavior towards formaldehyde 

vapor. The Co3O4 hollow spheres calcite at 550 
o
C exhibit the highest surface 

area. (9.8 m
2
/g) And the N2 absorption isothermal spectra (Fig. S5) also shows 

that h-Co3O4-550 has the highest surface area. And the sensor shows better 

sensing performance towards the same concentration of formaldehyde.  

  And the nanosheet structure also shows enhancement for the sensing 

performance. That Co3O4 nanosheet calcite at 300 
o
C exhibit the best sensing 

performance, which is consistence with the structure get from SEM as well as 

TEM. 

 

Conclusion 

In summary, we report aldehyde sensing performance at room temperature 

based on Co3O4 hollow spheres with different nanostructures. Both Co3O4 

hollow spheres and nanosheets modified Co3O4 hollow spheres show response 

towards aldehyde at room temperature. And the response performance of 

nanosheets towards formaldehyde is much better than the nanoparticle 

construct Co3O4 hollow spheres. The surface oxygen species can enhance the 

sensing performance. And the Co3O4 hollow spheres shows nearly no response 

towards other common gas like CO, NH3, acetone, etc.  
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Figure captions: 

Fig. 1 Scheme for synthesis for Co3O4 hollow spheres. 

Fig. 2 Scheme for synthesis for Co3O4 nanosheets. 

Fig. 3 (A) SEM and TEM (B) XRD for the cobalt glycerolate. 

Fig. 4 XRD for h-Co3O4 (Co3O4 hollow spheres) calcite at 350 
o
C-750 

o
C. 

Fig. 5 SEM for h-Co3O4 calcite at (A)350 
o
C, (B)450 

o
C, (C)550 

o
C, (D)650 

o
C, 

(E) 750 
o
C.  

Fig. 6 TEM for h-Co3O4 hollow spheres calcite at 550 
o
C. 

Fig. 7 XRD for s-Co3O4 (Co3O4 nanosheets) calcite from 300 
o
C to 500 

o
C. 

Fig. 8 SEM and TEM for Co3O4 nanosheets. 

Fig. 9 The sensing performance of (A) h-Co3O4 (Co3O4 hollow spheres) and (B) 

s-Co3O4 (Co3O4 nanosheets) towards 10 ppm aldehyde operate at room 

temperature. 

Fig. 10 The sensing performance of (A) h-Co3O4 (Co3O4 hollow spheres) 

calcite at 550 
o
C) and (B) s-Co3O4 (Co3O4 nanosheets calcite at 300 

o
C) 

towards different concentration of aldehyde. 

Fig. 11 The selectivity towards various kind of gas of 100 ppm after exposure 

for 10 sec. 

Fig. 12 The DOS states of Co3O4 crystal before and after adsorption of 

aldehyde. 
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1. Room temperature sensing of formaldehyde by fabricate of Co3O4

nanostructures.

2. Selective response towards aldehyde gas, while not response towards

NH3, CO, etc.

3. The relationship between the nanostructure and the sensing

performance.
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Fig. S1. The FT-IR spectra of cobalt glycerolate. 

 

 

 

Fig. S2. Typical FT-IR spectra of hollow Co3O4. (h-Co3O4-550) 
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Fig. S3. O 1s XPS spectroscopy for h-Co3O4. 

 

 

 

 

 

Fig. S4. Co 2p XPS spectroscopy for h-Co3O4. 
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Fig. S5. N2 absorption isotherm spectra for h-Co3O4. 

 

 

Fig. S6. XRD pattern for Co(OH)2 nanosheet. 
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Fig. S7. SEM spectra for (A) Co(OH)2 and Co3O4 calcite at (B) 300 oC, (C) 400 oC, (D) 500 oC. 
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Fig. S8. Dynamic response curve of (A) h-Co3O4-550 and (B) s-Co3O4-300. 
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