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Abstract 

 

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is a novel 

human coronavirus strain (HCoV) initially reported in December 2019 in Wuhan City, China 

causing pneumonia-like symptoms and other respiratory tract illness. It’s higher transmission 

and infection rate has successfully enabled it to have a global spread over a matter of small time. 

With 6,529,240 cases and about 385,264 deaths, this pandemic has become a global concern 

with certain drugs and vaccines failing at later clinical trials. 

 

Materials and Methods: Phylogenetic Analysis, Haplotype Network, Analysis of conserved genes 

and population-level variants, Using conserved genes as targets for drug designing, Docking 

studies and Molecular Dynamics (MD) simulations to predict the stability of Drug-Ligand 

Complex. 

 

Results: We identified the most common haplotypes from the haplotype network and at least 

seven different clusters were found signifying seven different viral lineages across the globe. We 

studied the mutation frequency across the SARS-CoV-2 viral genome. The conserved genes and 

population level variants were analyzed and NSP10, Nucleoprotein, Plpro and 3CLpro which 

were conserved at the highest threshold were used as drug targets for molecular dynamics 

simulations. Darifenacin, Nebivolol, Bictegravir, Alvimopan and Irbesartan are among the 

potential drugs which are suggested for further pre-clinical and clinical trials. 
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Significance: This particular study provides a comprehensive targeting of the conserved genes as 

a novel approach for drug targeting. The conserved gene approach could also be of a big use 

while designing vaccines and cure. Mutations in the viral genome make the designing of the 

drugs a challenging task which has a higher risk of failure at later clinical trials. This approach of 

targeting the stable genes for drug discovery would provide a better therapeutic approach and 

confidence in the successive clinical trials. We also identified the global level spread of SARS-

CoV-2 and mutation frequencies across the viral genome. Our study gives insights of the origin 

and global spread of the SARS-CoV-2. The data provided in this study can further be used by 

other groups to understand and combat Covid 19. 
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Introduction 

 

The 2019 novel coronavirus strain (2019-nCoV, later officially named SARS-CoV-2) which was 

initially reported in Wuhan, Hubei Province, People's Republic of China (PRC) belongs to the 

coronaviridae family of viruses that possess a positive-sense single-stranded RNA genome [1] 

[2]. Compared to the previous outbreaks of severe acute respiratory syndrome coronavirus 

(SARS-CoV) in 2003 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, 

2019-nCoV has higher transmission and infection rate with an increasing mortality rate [3]. The 

SARS-CoV-2 genome like other members of the betacoronavirus family has a long ORF1ab 

polyprotein at the 5′ end, which is followed by a set of four major structural proteins, including 

the spike surface glycoprotein, small envelope protein, matrix protein, and nucleocapsid protein 

(Figure 1) [4] The 2019-nCoV strain and SARS-CoV share a genome sequence homology of about 

79%. The 2019-nCoV has a greater similarity to the SARS-like bat CoVs (MG772933) than the 

SARS-CoV [1]. The high similarity of receptor-binding domain (RBD) in Spike-protein and several 

other analyses reveals that SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as 

receptor, just like SARS-CoV. Coronavirus via the S protein on the surface identifies the 

corresponding receptor on the target cell thereby making its entry into the host cell [5]. The 

higher transmissibility and infection rate of 2019-nCoV as compared to SARS-CoV is attributed to 

the higher binding affinity of SARS-CoV-2 to the ACE2 receptors [6] [7]. In one of the structure 

model analysis, SARS-CoV-2 showed a 10-fold higher binding affinity for ACE-2 as compared to 

that of SARS-CoV [7]. The similarity of sequences between SARS-CoV-2 and SARS-CoV allows 

utilization of the known protein structures to quickly build a model for drug discovery on this 

new SARS-CoV-2. In addition, genomic studies of COVID-19 samples have also proven 



instrumental in preventing a second wave of the epidemic in countries like New Zealand and The 

United Kingdom where lockdown restrictions have eased [8]. A comprehensive genomic study 

could identify the start of community spread immediately and could help in imposing 

restrictions that could prevent a second wave [9].  

 

As of June 4, 2020, a total of 6,529,240 cases of COVID-19 occurring in at least 213 countries and 

territories were reported, with approximately 5.9% of fatality rate (385,264/6,529,240). The 

coronavirus similar to other RNA viruses is characterized by significant genetic variability and 

high recombination rate which boosts them to be easily distributed among humans and animals 

in different geographic locations [10]. Numerous coronavirus strains exist within the human and 

animal populations without causing life threatening diseases [11] However in certain rare cases 

there is genetic recombination of viruses which produces infectious strains which are pathogenic 

to humans [12]. What makes SARS-CoV-2 more powerful is the mutation events that allow 

structural changes in the virus. One of the recent studies suggests the existence of three central 

variants of SARS-CoV-2 distinguished by amino acid changes [13]. We urgently need therapeutic 

options to combat this virus infection.  

 

In this study we performed wide array analysis to systematically identify drug targets. Firstly, we  

performed phylogeny and haplotype analysis which approximately identified seven different 

clusters based on the haplotype network suggesting the presence of seven different variants of 

SARS-CoV-2. We also found the genes that are conserved and the population level variants. In 

this study, we also highlight the mutation frequencies across the viral genome. We then 

identified the stable genes which have stretches of conserved regions and thereby can be used 

as efficient Drug-targets. Using this as our base, we identified 4 genes which are stable and 

conserved in all the strains. We used them as our targets in in-silico drug designing, molecular 

docking and molecular dynamics simulations. Given the fast mutation rate of these viruses our 

approach of targeting the stable genes through small molecules would provide a better 

therapeutic approach and confidence in the successive clinical trials. This study provides new 

insights into the evolution of COVID-19, identifies the divergence pattern and spread of the virus 

at the population level and utilises a unique and efficient method of targeting the stable genes 

for the drug discovery approach.  

 

Materials and Methods 

 

The complete high throughput FASTA file for 363 nCOV2 viral genomes were downloaded from 

GISAID on March 17th (Global Initiative on Sharing All Influenza Data; https://www.gisaid.org/) 

with acknowledgment (Supplementary File 1). While the number of sequences has increased 

drastically over time, this set of 363 genomes represent the genome sequenced from diverse 

regions. Sequences and annotations of the reference genome of SARS-CoV-2 (NC_045512) and 
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other related viruses were downloaded from GenBank and GISAID. Among these 363 sequences, 

358 were from humans, four were from pangolin and one from bat.   

 

Phylogeny Analysis 

 

Four reference sequences (KF294457.1, AY278489.2, MG772933.1, and MG772934.1) were 

added to the 358 sequences from humans and the alignment was done with Mafft [14] and 

MEGA software [15] (version 7.450). The phylogenetic tree was computed using the Neighbour-

Joining(NJ) method. A bootstrap value of 1,000 replicates was applied to yield a robust 

phylogeny. The tree was rooted at KF294457.1 and visualized using the Interactive Tree of Life 

[16]. The branch lengths of the tree are not proportional to the phylogenetic distance.  

 

 

Haplotype Network 

 

DnaSP v6.12.03 was used to define sequence sets and generate multi-sequence aligned 

haplotype data in nexus file format [17]. The trait segment was included in the nexus data file 

for visualisation and drawing of haplotype networks based on the haplotypes generated by the 

DnaSP. PopART v1.7 was used to draw the haplotype network based on the haplotype generated 

by DnaSP [18]. 

 

 

Conserved Gene and Population level Variants 

 

The 358 sequences from humans were aligned using online MAFFT’s closely related viral genome 

alignment tool [14] with the reference sequence NC_045512. FFT-NS-fragment method was 

used for alignment with the parameters --reorder --adjustdirection --keeplength --mapout --

anysymbol. Default gap penalty of 1.53 and offset value of 0.0 was used. The number of 

mutations were counted for each nucleotide position using NC_045512 as reference. The 

ambiguous bases, Ns and gaps were not treated as  mutations.  

 

A sliding frame method was used to identify the conserved genes across all the sequences. The 

programs used for this analysis are publicly shared on GitHub 

(https://github.com/DevangLiya/CRAM). A master sequence consisting of 1 for the nucleotide 

position that is conserved across all the genomes and 0 for the nucleotide position that is not 

conserved was produced for the given alignment. A frame of size 100 was moved across the 

entire length of this master sequence and each instance of frame was given a score between 0 

and 100 to represent the level of conservation by counting the number of 1s in that frame. 

Starting position of every frame between the given threshold is reported. The nucleotide 
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sequence corresponding to the conserved frames were reconstructed by adding 100 nucleotides 

(equal to the frame length) to the reported positions and the sequence was then BLASTed to get 

the corresponding genes [19]. A few more nucleotides were added on the both ends of the 

sequence when BLAST did not yield any satisfactory match. The dataset of 358 sequences was 

divided into the eight population level datasets consisting of China, Japan, Asia (India, Singapore, 

Cambodia, Nepal, Vietnam, Taiwan, Hong Kong, Thailand, South Korea), Europe (France, Finland, 

Netherlands, Czech Republic, Switzerland, Italy, Portugal, Germany, Luxembourg, Sweden, 

Belgium), UK (England, Wales, Ireland), North America (USA and Canada), Oceania (Australia and 

New Zealand), and Rest of America (Mexico, Chile, Brazil). These sequences were then aligned 

and visualized in MEGA.  

 

 

Protein Structure Modelling  

 

Complete 3D structures for the four stable proteins (NSP10, Nucleoprotein, Plpro and 3CLpro) of 

SARS-CoV-2 selected from the above analysis are currently not available. We therefore tried to 

construct the 3D structures by homology modeling. The sequence of the proteins were blasted 

against the NCBI database and the suitable templates were selected for the modeling. The 3D 

structure models for the proteins screened were modeled by comparative protein modeling 

methods using the SWISS-MODEL server (http://swissmodel.expasy.org) [20]. The structure-

based alignment obtained were used and SWISS-MODEL was used in the optimized mode to 

minimize energy. Models are made according to the target template alignment and the per-

residue and the global model quality was accessed using the QMEAN and Global Model Quality 

Estimate(GMQE) scoring functions.  The GMQE score gives an estimate of accuracy of tertiary 

structure of the protein models. The Q-Mean on the other hand gives an impression of the 

quality of the submitted model based on its physicochemical properties and then generates a 

value referring to the overall quality of the structure.  

 

Validation of Models  

 

RAMPAGE Ramachandran plot analysis was used for verification of 3D structures. It provides the 

number of residues in the favored, allowed, and outlier region [21]. If a good proportion of 

residues lie in the favored and allowed region, then the model is predicted to be good. The 

quality of the models were also accessed using PROSA, PROCHECK and Verify 3D [22] [23] [24]. 

Both PROCHECK and RAMPAGE analyze the stereochemical quality of the submitted models 

based on its phi/psi angle arrangement and then generates Ramachandran plots which 

highlights the percentage of residues in the favored, allowed or in outlier regions. If a greater 

proportion of the residues lie in the favored and allowed region then the model is considered to 

be good. ProSa on the other hand does a comparative analysis by calculating the potential 

http://swissmodel.expasy.org/


energy of the protein models and comparing them to the experimental structures deposited in 

the PDB. The Z-Scores obtained from each model suggest that the structures are comparable to 

the NMR structures of similar size. Verify3D evaluates the local quality of the protein model on 

the basis of structure-sequence compatibility to generate a compatibility value for each residue 

of the protein.  A model with 80% of their residues with a 3D-1D score equal to or higher than 

0.2 is considered to be a high quality structure. 

  

Virtual Screening and Molecular Docking 

 

In order to perform a structure-based virtual screening e-LEA3D,( 

http://chemoinfo.ipmc.cnrs.fr/) which uses PLANTS (Protein-Ligand ANT System) algorithm was 

used. In order to find the binding site around a residue metaPocket 2.0 software was used [25]. 

The virtual screening was done on the basis of docking with the list of FDA approved drugs. The 

drug-like property and the lipinski’s rule of 5 was further used to filter the most suitable drugs. 

The docking score provided by the e-LEA3D was used to screen the drugs for further analysis. 

 

The ADME (Absorption, Distribution, Metabolism, and Excretion) analysis was performed using 

the SwissADME(http://www.swissadme.ch/) [26] web server to compute the physicochemical 

descriptors as well as to predict ADME parameters, pharmacokinetic properties. The toxicity 

analysis for each drug was performed using the ProTox software. After the ADMET analysis the 

drugs were then moved to the next phase for MD simulations [27]. 

 

Molecular Dynamic simulations 

 

The unbound proteins and Protein-drug complexes were subjected to MD simulation for 25ns to 

mimic the physiological state of protein molecules. The simulation was performed with 

GROMACS 2019 (M.J. Abraham) utilizing the GROMOS96 43a1 force field parameters [28]. The 

topologies of the drug molecules were modeled using the PRODRG web server [29]. The system 

was made electrostatically neutral by adding counter ions and the complexes were solvated 

within 10 SPC/E water cube [28] [30]. The whole system was then energy minimized in multiple 

steps using the steepest descent method. The temperature of the entire system was raised up to 

300 K for a time scale of 100ps. Two different phases of equilibration were performed-first with 

constant pressure and temperature (NPT) and the other with steady volume and temperature 

(NVT) [31]. The trajectory file of simulated system was then used for calculation of various 

structural parameters like the Root Mean Square Deviation (RMSD), Root Mean Square 

Fluctuations (RMSF), Radius of Gyration (Rg), Intermolecular Hydrogen Bonding (H-bonding) and 

Solvent-Accessible Surface Area (SASA)  to understand the structural behavior of the protein-

drug complexes [32]. 

 

http://www.swissadme.ch/


Results and Discussions 

 

Phylogeny Analysis 

 

This viral network is a snapshot of the early stages of an epidemic before the phylogeny 

becomes obscured by subsequent migration and mutation. The question may be asked whether 

the rooting of the viral evolution can be achieved at this early stage by using the oldest available 

sampled genome as a root. The described core mutations are considered reliable as they have 

been verified and validated by a variety of contributing laboratories and sequencing platforms. 

The phylogeographic patterns in the network are potentially affected by distinctive migratory 

histories, founder events, and sample size. Nevertheless, it would be prudent to consider the 

possibility that mutational variants might modulate the clinical presentation and spread of the 

disease. The phylogenetic classification provided here may be used to rule out or confirm such 

effects when evaluating clinical and epidemiological outcomes of SARS-CoV-2 infection, and 

when designing treatment and, eventually, vaccines. We took the phylogenetic data submitted 

to GISAID and found out that Bat SL-CoV KF294457.1, MG772933.1 and MG772934.1 are the 

closest relative to 2019-nCoV and used them for rooting the phylogenetic tree. AY278489.2, a 

human SARS COV was taken as a distant relative [33]. Interestingly, although the differences are 

very small, the closest strain to the ancestor strain is not the one from Wuhan but from 

Germany and Finland (Figure 2). Shenzhen and Guangdong were the next before Wuhan could 

come. This can happen in 3 scenarios: the first scenario is that the virus from Wuhan mutated in 

such a manner that it came closer to the ancestral strain while traveling to Guangdong, 

Shenzhen, Finland and Germany. The next in the series is a strain from the Cruise ship Diamond 

Princess that went to the USA indicating that the strain in Wuhan and the one in the Cruise Ship 

of USA are closely linked. Further mutations resulted in the strains in Asia and rest of Europe 

along with Brazil, Mexico and Chile. The viruses in South Korea and Japan have even more 

mutations. The second scenario is very unlikely and it suggests that the virus originated in 

Germany and then mutated as it went to other places. In the second scenario, the virus would 

have infected Finland, Shenzhen, Guangdong and Wuhan in the starting and then it spread 

everywhere. This does not match with the historically reported cases and thus is unlikely. The 

third scenario is that all the sequences from Wuhan are not documented missing the most 

ancestral genome. 

Seven Viral clusters identified via haplotype network 

 

In order to understand the population level divergence of SARS-CoV-2 we tried to map the 

haplotype network and establish the relationship among the SARS-CoV-2 haplotypes from the 

genome data collected all over the globe. A total of 194 haplotypes were identified from 358 

SARS-CoV-2 genomes. Haplotype 1 had the highest prevalence and was present in diverse 



geographical locations (Figure 3). These haplotypes could be roughly classified into 7 different 

clusters signifying at least 7 distinct strains of the virus present over the globe. The main central 

hub consists of around 40-45% contribution from China followed by USA and Europe. However, 

the haplotype from the USA remains mostly inside the USA. It didn’t spread much indicating that 

the infected population in the USA are majorly isolated from the rest of the world. However, the 

haplotype from China and Europe spread everywhere indicating more connectivity of these 2 

regions with the rest of the world. The haplotype in the USA came from China possibly through 

the cruise ship Diamond Princess via Japan and then spread in the USA giving rise to all other 

haplotypes in the USA (Figure 3). Almost all the ancestral haplotypes in the USA correspond to 

cruise ship Diamond Princess. 

 

Identification of Conserved Genes and mutation frequency across viral genome 

 

To determine conserved regions we performed systematic sequence analysis which identified 

the conserved genes with different threshold conservation levels (Table 1). The population 

variant genes were also identified and highlighted on the basis of their geographic distribution 

(Table 2). Nucleotide positions 240, 3036, 8781, 11082, 14407, 23402, 28143, with reference to 

NC_045512 sequence, had mutation frequencies greater than 40 (Figure 4). This represents the 

highly mutating positions in the genome which we call the “Hotspot Zones”. These hotspot 

zones were distributed over the viral genome. Some of these zones lie in the NSP1, NSP3, NSP4, 

NSP6, NSP12, spike protein (S-protein) and ORF8 genes. For our further analysis we chose the 

proteins with the highest conservation thresholds. NSP10, Nucleoprotein,  PLpro, and 3CLpro 

were conserved targets which were chosen for drug targeting. Interestingly, Japan had the least 

number of variant genes whereas in Asia the population carried a diverse set of SNPs throughout 

the viral genome (Table 2). Similarly, China, Rest of America (Mexico, Chile, Brazil) and Europe 

had more number of variant genes as compared to other populations in the UK and North 

America. Orf1a polyprotein was found to be a variant in all the population (Table 2). 

 

Homology modeling of Stable targets and virtual screening of small molecules  

 

The three dimensional structure generated by SWISS-MODEL was checked for its quality based 

on several parameters (Table 3). For each of the proteins, the models were arranged with 

respect to the GMQE scoring functions and were checked for the local quality estimate and Z-

scores. The protein models which were best fit in all these parameters were accessed further for 

their quality (Supplementary Figure 1-4).  

 

All the four protein models had a greater proportion of residues in the favoured and allowed 

region in the Ramachandran Plot.  Prose Analysis revealed that structures are in the X-Ray/NMR 

structure fold and also have a greater stereochemical quality (Supplementary Figure 1-4). 



 

We used a Structure-Based drug designing and docking approach. We carried out the virtual 

screening of the drugs from the list of FDA approved drugs. In order to define the binding sites 

around the residue MetaPocket 2.0 metaserver was used to identify the ligand binding site on 

the protein surface. From the ligand binding site a binding site radius of 10 Å was defined and 

the docking was performed. The drugs which docked to the proteins with a higher docking score 

were considered for the further analysis. For each protein two drugs with highest scores were 

selected and were analysed further for the ADMET analysis and the MD simulations. 

 

The SWISSADME server was employed to predict the pharmacokinetic effects and to predict the 

likeliness of the drugs. All the seven drugs employed had good drug like characteristics. The 

toxicity of the drugs was predicted by ProTox and was deemed to be non-toxic. We were 

particularly interested to look at the interaction of the drugs with the surrounding residues in 

the protein. The interaction of the drugs with the protein residues can be visualised in Figure 5-

6. Taken together, our structure based approach identified good quality models of stable 

proteins in SARS-CoV-2 and potential small molecules against them. 

 

Molecular dynamics (MD) simulation 

 

Molecular Dynamics simulations are employed to study the strength and properties of the 

protein-drug complexes and their conformational changes on an atomic level. Various 

parameters such as RMSD, RMSF, Radius of Gyration, Intermolecular H-bonds, and SASA were 

calculated throughout the simulation trajectory to give insights on the structure of the proteins. 

To illustrate the dynamics, and conformational stability of the protein-drug complexes, the 

protein-drug complexes were subjected to MD simulations for a period of 25ns. The binding of 

the drugs Cilostazol and Elvitegravir destabilized the PLpro complex. Thereby Plpro was not 

short-listed for further downstream analysis. There were several interactions of Bictegravir and 

Nebivolol with the Nucleoprotein complex (Nucleoprotein-Bictegravir: Arg68, Gly124, Asn126; 

Nucleoprotein-Nebivolol: Pro67, Arg68, Tyr123, Ile131, Val133, Ala134). Alvimopan interacted 

with NSP10 at residues Asp82, His83, Phe89, Cys90, and Lys93 whereas Irbesartan had 

interactions with NSP10 at Cys74, His83, Pro84, Cys90, Leu92 and Leu112. While Darifenacin has 

some contacts with 3CLpro at Asn142, Asn214, Val303, Phe305, Nebivolol interacted with the 

3CLpro at Lys751 and Thr763 residues (Figure 5, 6). The results of the MD simulations are 

summarised in table 4 provided below (Table 4). A superimposition of the protein-ligand 

complexes before and after the simulation has been provided below (Figure 7). 

 

 

 



An overview of the proteins chosen for MD simulation 

 

The proteins that were found to be conserved from the previous analyses were studied in detail. 

The interaction map of these SARS-CoV-2 proteins from the study by Gordon et al., 2020 reveals 

targets for drug repurposing [34].  

 

Nucleoprotein: 

The nucleoprotein (N-Protein) is a highly charged, multifunctional, basic protein of 422 amino 

acids which binds to the viral RNA during the virion assembly and leads to formation of the 

helical nucleocapsid [35]. The N protein and spike protein (S-protein) are encoded by all 

coronaviruses. The nucleocapsid (N) protein of COVID-19 has nearly 90% amino acid sequence 

identity with SARS-CoV [36]. However, we observed that the spike protein is not conserved in 

different variants of SARS-CoV-2 above 90% threshold. The N protein forms complexes with 

genomic RNA and creates a capsid around the enclosed nucleic acid [35]. It also assists in RNA 

synthesis and affects the host cell responses such as cell cycle and translation  [37]. It plays an 

important role in virion assembly and enhances the efficiency of the virus transcription and 

assembly [37]. The interaction map of N-protein reveals that the N-protein interacts with human 

protein that are responsible for RNA processing and Stress Granule Regulation [34]. This 

indicates that similar to the N-protein of SARS-CoV, The N-protein of SARS-CoV-2 also plays an 

important role in suppressing the RNA interference (RNAi) to overcome the host defense. 

Previous studies have shown that 15 human proteins interact with the N-protein of SARS-CoV-2 

[34]. Out of the 15 human proteins interacting with the N-protein, CSNK2B, CSNK2A2 and LARP1 

might be plausible drug targets.  

3CLpro 

3-chymotrypsin-like cysteine protease (3CLpro) or the NSP5 is also a non structural protein 

encoded by ORF1a/1b. The SARS-CoV2 replication process involves a series of proteolytic 

cleavage of the polypeptide to generate various proteins [7]. Among these serial cleavages, the 

3CL protease plays a critical role at 11 distinct cleavage sites, and is vital for the replication of 

virus particles [4]. Further, 3CLpro’s location at the 3’ end causes the protein to express 

excessive variability which in turn makes it a potential target for COVID-19 drugs. The interaction 

map of 3CLpro reveals only one human protein-HDAC2, an enzyme responsible for removing the 

acetyl groups from lysine residues of core histones [34].HDAC2 plays an important role in 

regulating the epigenetic features and gene expression patterns in human cells. All of the above 

make 3CLpro a suitable target for anti-coronavirus drugs. 

 

 



NSP10 

NSP10 is one of the 16 non-structural proteins (NSP1–16) encoded by ORF1a/1b that comprise 

the RNA-synthesizing machinery of SARS-CoV2. The NSP10 subunit contains two zinc fingers and 

is known to interact with the NSP14 and NSP16 subunits to increase their 3′-5′ exoribonuclease 

and 2′-O-methyltransferase activities respectively [38]. Existing literature indicates that this 

interaction between NSP10 and NSP14 subunits is crucial for the viral replication process as 

mutations in NSP10 that abolished the interaction are known to have yielded replication-

negative virus [38]. The network  map for NSP10 reveals that the protein interacts with several 

proteins responsible for endomembrane compartments and vesicle trafficking pathways [34]. 

Among these human-proteins are the AP2 (AP2A2 and AP2M1) proteins that are associated with 

clathrin-mediated endocytosis [34]. Interaction of NSP10 with these human-proteins are 

hypothesized to modify endomembrane compartments to favor coronavirus replication [34]. 

 

Root Mean Square Deviation (RMSD) 

 

The Root Mean Square Deviation (RMSD) analysis is an important step towards measuring the 

stability of the protein-ligand complex. A stable RMSD indicates that the binding of the protein-

drug complex does not cause any significant changes in the structure of the protein. 

  

Nucleoprotein: 

 

It is evident that the RMSD of the Free Nucleoprotein, Nucleoprotein-Bictegravir, and 

Nucleoprotein-Nebivolol has remained mostly stable throughout the simulation. The Free 

Nucleoprotein stabilized at around 6 ns and remained stable throughout the simulation except 

for a spike at around 17 ns and another at around 19 ns. The RMSD of the Nucleoprotein-

Nebivolol complex on the other hand stabilized at around 8 ns and maintained stability 

throughout except for minor peaks between 15ns and 20ns. The RMSD of the Nucleoprotein-

Bictegravir complex starts to stabilize a little later at around 10ns and remains stabilized except 

for a small dip at around 22ns (Figure 8 A). 

 

3CLpro: 

 

From the RMSD plot of 3CLpro, we can see that the free form of the protein has stabilized earlier 

in the simulation at around 2ns and remains stabilized till the end. The 3CLpro-Darifenacin and 

the 3CLpro-Nebivolol complex get stabilized at around 4ns and stay stabilized to the end except 

for a minor instability in the 3CLpro-Nebivolol complex at around 6ns (Figure 9 A). 

 



NSP10: 

 

Figure 10 A reveals that the RMSD of the Free NSP10 protein, NSP10-Alvimopan, and NSP10-

Irbesartan complexes are stabilized. The RMSD of the Free NSP10 protein stabilizes at around 

7ns and maintains stability until 25ns. The NSP10-Alvimopan complex attains stability at around 

5ns and remains stable throughout the simulation barring a small dip at around 20ns. The 

NSP10-Irbesartan complex, on the other hand, reaches stability comparatively later at around 

8ns and remains stabilized throughout. These results indicate that the drugs did not significantly 

influence the structural stability of the NSP10 protein. In particular, the NSP10-Alvimopan 

complex has an average RMSD that is very close to the RMSD of the drug-free form of NSP10 

(Figure 10 A).  

 

Radius of Gyration(Rg) 

 

The radius of gyration is a key parameter of the Protein-Drug complex that is used to study the 

folding properties and conformations of the protein-drug complexes. A comparatively high 

radius of gyration value indicates that a protein molecule is packed loosely while a lower radius 

of gyration value indicates a protein structure that is more compact. A more compact protein 

indicates that the drug molecule has not significantly interfered with the folding mechanism of 

the protein. 

 

NucleoProtein: 

In the case of Nucleoprotein, the radius of gyration of Nucleoprotein-Bictegravir complex and 

the Nucleoprotein-Nebivolol complex is found to be close to that of the unbound protein. The 

average Rg value of Unbound Nucleoprotein, Nucleoprotein-Bictegravir complex and 

Nucleoprotein-Nebivolol complex is found to be 1.45 nm, 1.44 nm, and  1.46 nm respectively. 

However, this difference in the mean radius of gyration between drugs is not significant as they 

are well within the standard deviation of the respective complexes. The minor variations in 

radius of gyration can be attributed to the conformational changes that the protein-drug 

complex undergoes (Figure 8 B).  

 

3CLpro Protein: 

In the case of 3CLpro, the compactness of the protein is found to be unaffected by the binding of 

the drugs as they have similar radius of gyration. The average Radius of gyration value of 

Unbound 3CLpro Protein, 3CLPro-Nebivolol complex, and 3CLPro-Darifenacin complex is found 

to be 2.45 nm, 2.44 nm, and 2.46  nm respectively. The differences in the radius of gyration are 

well within the standard deviation of the respective proteins. We also observe a gradual 

decrease in Radius of gyration value of the protein-ligand complexes. This indicates that the 



secondary structure of the protein is not significantly affected by the binding of the drugs (Figure 

9 B). 

 

NSP10: 

The mean radius of gyration for the Free-NSP10, NSP10-Alvimopan complex, and NSP10-

Irbesartan complex is found to be 1.37, 1.39, and 1.40 respectively. Although the mean radius of 

gyration indicates that the NSP10-Irbesartan and NSP10-Alvimopan complexes are not as 

compact as the Free-NSP10 complex. The radius of gyration plot (Figure 10 B) reveals that the 

final conformations of the Free-NSP10 and NSP10-Alvimopan complex have a very similar radius 

of gyrations. This indicates that the binding of Alvimopan has not affected the foldability of the 

protein. The binding of Irbesartan on the other hand slightly affects the foldability of the protein. 

 

Intermolecular Hydrogen Bonding 

 

The number of intermolecular hydrogen bonds is an important parameter that can be used to 

quantify the binding affinity between the protein and the drug molecule. The presence of a large 

number of H-bonds between protein and drug molecules signifies a strong binding between the 

molecules. 

 

Nucleoprotein: 

We observed the maximum number of 7 hydrogen bonds between the protein and drug in both 

the Nucleoprotein-Bictegravir complex and the Nucleoprotein-Nebivolol complex. The average 

value of intermolecular H-bonds is 3 for Nucleoprotein-Nebivolol complex while 2 for 

Nucleoprotein-Bictegravir complex. The significant number of hydrogen bonds shows that drug 

molecules have a high affinity towards the active site of Nucleoprotein (Figure 8 C). 

 

3CLpro: 

In the case of 3CLpro, the maximum number of intermolecular hydrogen bonds in the 3CLpro-

Nebivolol complex and the  3CLpro-Darifenacin complex is found to be 6 and 3 respectively. The 

average number of intermolecular H-bonds for both 3CLpro-Nebivolol complex and 3CLpro-

Darifenacin complex was found to be 1. Unlike the 3CLpro-Darifenacin complex where Hydrogen 

bonds can be observed since the start of the simulation, the hydrogen bonds in 3CLpro-

Nebivolol complex start appearing only after 13ns. (Figure 9 C) 

 

NSP10: 

In the case of NSP10, both NSP10-Alvimopan and NSP10-Irbesartan complexes have a maximum 

of 3 Hydrogen bonds between the protein and the drug.  The average number of intermolecular 

hydrogen bonds is 1 in the case of Irbesartan and less than one in the case of Alvimopan. This 



indicates that the Drug-protein affinity is higher in the case of Irbesartan than in the case of 

Alvimopan (Figure 10 C).  

 

Root Mean Square Fluctuations (RMSF) 

 

Root Mean Square Fluctuations (RMSF) is a vital structural parameter that is used to quantify the 

flexibility and rigidity of the protein-drug complexes. Since the RMSF measures the deviations of 

residue from its initial position, it is also highly useful in exploring the conformational flexibility 

of the protein-drug complexes. In all three proteins, the RMSF at the binding sites was below 

0.2nm. This indicates that the drugs kept close contact with their binding pockets during the MD 

simulations. 

 

Nucleoprotein: 

In the case of Nucleoprotein, we observed the highest fluctuations between 400-700 atoms 

stretch. The average RMSF values of Nucleoprotein, Nucleoprotein-Bictegravir complex and 

Nucleoprotein-Nebivolol were found to be 0.203nm, 0.219nm and 0.216nm respectively. 

Further, the RMSF of most residues of the protein is found to be stable below 0.3 nm thereby 

preserving the flexibility of the protein (Figure 8 D).  

 

3CLpro: 

In the case of 3CLpro, we observe high fluctuations throughout the protein chain in both free 

protein and protein-drug complexes. No major differences are observed in the RMSF profiles of 

the free protein and protein-drug complexes. The average RMSF values of 3CLpro, 3CLpro-

Darifenacin complex, and 3CLpro-Nebivolol were found to be  0.163nm, 0.169nm and 0.162nm 

respectively (Figure 9 D). These mean RMSF value indicates that the binding of Darifenacin and 

Nebivolol preserve the flexibility of the protein. 

 

NSP10: 

The RMSF profile of NSP10 and its complexes reveal that the protein has high fluctuations 

between the 600 and 1000 atom loop. The overall RMSF profile of free NSP10 is found to be 

similar to that of the drug-complexes. The average RMSF of free NSP10, NSP10-Alvimopan and 

NSP10-Irbesartan was found to be 0.209, 0.194, and 0.176 respectively. This indicates that there 

might be a slight loss of flexibility from the binding of the drug molecules (Figure 10 D). 

 

Solvent Accessible Surface Area analysis (SASA) 

 

To better understand the solvent Hydrophobic and Hydrophilic behaviour of the protein-drug 

complexes, solvent accessible surface area analysis (SASA) was performed. These results 



indicated that all the proteins-ligand complexes are well solvated after the binding of drug 

molecules. 

 

The Solvent Accessible Surface Area analysis revealed that no major differences are observed in 

the SASA profiles of Nucleoprotein and its protein-drug complexes. The mean SASA values for 

the free Nucleoprotein, Nucleoprotein-Bictegravir complex and Nucleoprotein-Nebivolol 

complex were 73.959 nm2, 74.005 nm2, and 77.085 nm2 respectively (Figure 8 E). The average 

SASA values of 3CLpro, 3CLpro-Darifenacin complex and 3CLpro-Nebivolol complex are found to 

be 232.278 nm2, 237.846 nm2, and 234.738 nm2, respectively (Figure 9 E). In the case of NSP10, 

the Free NSP10 Protein, NSP10-Alvimopan complex, and NSP10-Irbesartan complex are found to 

have average SASA values of 66.666 nm2, 67.3879 nm2, and 70.351 nm2 respectively (Figure 10 

E). No major differences are observed in the SASA profiles of these complexes. 

 

Side-Effects of the drugs chosen for targeting 

 

The drugs selected for repurposing are Alvimopan, Nebivolol, Darifenacin, Irbesartan and 

Bictegravir. 3CLpro is targeted by Darifenacin and Nebivolol, NSP10 is targeted by Irbesartan and 

Alvimopan and Nucleoprotein is targeted by Nebivolol and Bictegravir. Alvimopan a selective 

peripherally acting mu-opioid receptor antagonist is used for accelerating upper and lower 

gastrointestinal tract recovery after a bowel resection [39]. Nebivolol is a beta blocker that is 

used to treat hypertension and heart failure  [40]. Bictegravir is an integrase inhibitor class virial 

drug that is used to treat HIV and other retroviral diseases  [41]. Irbesartan is an angiotensin 

receptor blocker that is used to treat hypertension and to protect the kidneys from damage due 

to diabetes [42]. Irbesartan is also used to prevent heart attacks by lowering blood pressure [43]. 

Darifenacin is a medication to treat urinary incontinence [44]. Darifenacin interacts with the M3 

muscarinic acetylcholine receptors, which mediate bladder muscle contractions [45]. The side 

effects of these drugs were analysed from the SIDER database of drugs and side effects 

(http://sideeffects.embl.de/about/).  This revealed that the major side effects of these FDA 

approved drugs are Headache, Dizziness, Diarrhoea and Constipation. In addition to these, back 

pain and dry mouth were also observed in the case of Darifenacin. 

 

Conclusion 

 

The genomic organisation of SARS-CoV-2 is similar to other beta-coronaviruses which consists of 

a 5′-untranslated region (UTR), a replicase complex (orf1ab) encoding non-structural proteins 

(NSPs), a spike protein (S) gene, envelope protein (E) gene, a membrane protein (M) gene, a 

nucleocapsid protein (N) gene, 3′-UTR, and several unidentified non-structural open reading 

frames [4]. The rapid transmission and infection rate of SARS-CoV-2 can be attributed to the high 

mutation rates. Nucleotide substitution has often been one of the most studied mechanisms in 

http://sideeffects.embl.de/about/


the viral evolution process [46]. The mutation events in the viral genome contribute to structural 

changes in the proteins thereby making it a difficult therapeutic target. This is one of the 

essential parameters which needs to be reconsidered in the drug-development process for a 

successful and effective design of therapeutics.  

 

Understanding the phylogeny and the analysis of the mutations was thereby an important step 

to design effective methods to identify the list of conserved genes and the population level 

divergence of the genes. Report suggests a closely related bat coronavirus strain with 96.2% 

similarity to that of the SARS-CoV-2 [47]. The three scenarios predicted in this paper needs to be 

investigated further in order to know about proper ancestry and origins of these lineages. 

 

There have been several studies to find out the variant strains of the COVID-19 on a population 

level. In one of the recent studies the SARS-CoV-2 was found to have 3 central variants 

distinguished by amino acid changes [13]. In our study we tried to construct the haplotype 

network and qualitatively analyze the haplotypes to understand the population level divergence 

of the SARS-CoV-2. We observed that one of the haplotypes which correlates to the previous 

sequences obtained from Wuhan was the most divergent and was present across the globe at a 

higher frequency of occurrence. From the haplotype network it was evident that there were at 

least seven different lineages of SARS-CoV-2.  

 

This warranted an investigation into detailed perspective at the conserved genes and the 

population level variant genes. Based on different threshold levels of conservation, we divided 

them into different groups. NSP10, Nucleoprotein, PLpro and 3CLpro were some of the most 

conserved genes. These genes were chosen for drug screening, docking and molecular dynamic 

simulation.  However, PLpro was not stable throughout the simulations. So, it was not used in 

further analysis. This particular approach gave a better edge in the drug development process 

and serves as a better therapeutic method. We also studied the mutations in the SARS-CoV-2 

viral genome and analyzed the population level variant genes which can be found in Table 2. 

Nucleotide positions 240, 3036, 8781, 11082, 14407, 23402, 28143 were the hotspot zones with 

mutation frequencies greater than 40. Some of these residues are in the NSP1, NSP3, NSP4, 

NSP6, NSP12, spike protein (S-protein) and ORF8 genes.  

 

Chymotrypsin-like (3C-like protease, 3CLpro) and papain-like protease (PLP) are the non-

structural proteins which are key players in the proteolytic processing of viral polyproteins 

essential in the viral replication and can inhibit the host innate immune responses [48]. Both 

Darifenacin and Nebivolol docked to the 3CLpro complex with a higher docking score and were 

further analyzed for their interaction with the 3CLpro protein. The average RMSD of the Drug-

3CLpro complex is similar to that of the free protein. Both 3CLpro-Darifenacin and 3CLpro-

Nebivolol get stabilized around 4ns which shows the structural stability of the complex. Both the 



intermolecular H-bond analysis and the SASA analysis suggested that the proteins-drug 

complexes were stabilised after the binding of drug molecules to their active sites. 

Nucleoprotein was also conserved and its role in the virion assembly makes it a great 

therapeutic target. The RMSD values of Nucleoprotein-Drug complexes indicated that the 

complex remained stable throughout the run. A smaller Rg value for the Nucleoprotein-

Bictegravir complex as compared to the Nucleoprotein-Nebivolol complex suggested a more 

compact binding of the protein with the Bictegravir. The higher number of the intermolecular 

hydrogen bonds of both the drugs with their respective protein complexes shows the high 

affinity of the drug to the active site of the Nucleoprotein. A similar SASA profile of the Protein-

Drug complex to the free protein suggests structural stability after binding of the drugs.  NSP10 

has been shown to interact with NSP14 and this interaction most likely enables coronaviruses to 

reliably replicate their long RNA genome [38]. The drugs Alvimopan and Irbesartan which had 

higher docking scores during virtual screening were selected for the MD simulations. Both 

Alvimopan and Irbesartan make the NSP10 complex stabilised as evident from their MD analysis.  

The binding of cilostazol and elvitegravir did not stabilize the PLpro complex. We thereby 

suggest Darifenacin, Nebivolol, Bictegravir, Alvimopan and Irbesartan as potential drugs for the 

clinical trials against SARS-CoV-2. Further, a BLAST search of human proteins with the selected 

SARS-CoV-2 proteins indicates that there are no human proteins that are similar to shortlisted 

viral proteins minimising the off target binding of the drugs. 

 

The SARS-CoV-2 pandemic was declared a Public Health Emergency of International Concern 

(PHEIC) by the World Health Organisation (WHO) on 30th January, 2020. Since then there have 

been several studies regarding drug designing and appropriate pre-clinical and clinical trials for 

drugs and vaccines. This particular study finds its significance in utilising the conserved genes as 

stable targets for drug designing which gives a greater confidence while testing the drugs in the 

clinical trials. The drugs Darifenacin, Nebivolol, Bictegravir, Alvimopan and Irbesartan targeted 

the stable genes 3CLpro, Nucleoprotein and NSP10 and were shown to stabilize the Drug-Protein 

complex in MD simulations. We also find the mutation frequency across the viral genome, the 

conserved genes and the population level variant genes which would greatly benefit the 

designing of vaccines and cure for SARS-CoV-2. Our haplotype network gives an impression of 

seven different viral strains spread across the globe with different frequencies and phylogenetic 

tree raises concerns about its origin. The drugs reported in this paper can be further analysed 

and used as an antiviral drug against SARS-CoV-2 upon further downstream analysis and 

appropriate clinical trials. 
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FIGURES 

 

 

 

 
Figure 1: A detailed schematic representation of the SARS-CoV-2 viral genome. The figure 

represents the detailed view of structural and non-structural proteins (NSPs).  

 

 

 

 

 



 
 

Figure 2: Phylogenetic tree representing 363 complete throughput SARS-CoV-2 genomes. 

Europe: France, Finland, Netherlands, Czech Republic, Ireland, Switzerland, England, Italy, 

Portugal, Germany, Luxembourg, Wales, Sweden, Belgium 

Asia:  India, Singapore, Cambodia, Nepal, Vietnam, Taiwan, Hong Kong, Thailand 

Reference: MG772933.1, MG772934.1, KF294457.1, AY278489.2  

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 3: Haplotype analysis of SARS-CoV-2 viruses. Haplotype Network of 358 SARS-CoV-2 viral 

genomes. The distribution of haplotypes over geographical areas were inserted as a part of the 

traits section in the Nexus file. The color code and its respective geographical distribution is 

marked on the bottom right corner. 

 

 

 

 



 
 

Figure 4: Mutation Frequency across the SARS-CoV-2 viral genome. The red lines represent the 

number of mutations at a particular nucleotide position. On the abscissa is the nucleotide 

numbered from 0 to 30,000. To better understand the mutations across the viral genome, the 

genomic representation of SARS-CoV-2 is provided in the bottom panel. The red ones in the 

bottom panel represent the non-structural proteins while the yellow ones represent Spike, E-

proteins and the N-proteins. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Drug-Protein interaction after docking. A. 3CLPro-Darifenacin interaction, B. 3CLPro-

Nebivolol interaction, C. NSP10-Alvimopan interaction, and D. NSP10-Isbesartan interaction. 

Drugs are in orange while the proteins are labelled in blue and the residues interacting with the 

drugs are highlighted in red. The contacts are shown in yellow.  

 

 

 

 

 



 
 

Figure 6: Drug-Protein interaction after docking. A. Nucleoprotein-Bictegravir interaction, B. 

Nucleoprotein-Nebivolol interaction, C. PL Pro-Cilostazol interaction, and D. PL Pro-Elvitegravir  

interaction. Drugs are in orange while the proteins are labelled in blue and the residues 

interacting with the drugs are highlighted in red. The contacts are shown in yellow.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 7: A superimposition of the protein-ligand complexes before and after the MD simulation. 

The Protein-ligand complex before the MD simulation is shown in magenta while the complex 

after the simulation is shown in cyan. 
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Figure 8: Analysis of RMSD, Radius of Gyration, Hydrogen Bonding, RMSF and SASA of 

Nucleoprotein and drugs Bictegravir and Nebivolol. A. Root-mean-square deviation of the Cɑ 

atoms, B. Radius of gyration (Rg) over the entire simulation, where the ordinate is Rg (nm) and 

the abscissa is time (ps), C. Total number of H-bond count throughout the simulation, D.  RMSF 

values over the entire simulation, where the ordinate is RMSF (nm) and the abscissa is residue, 

and E. Solvent accessible surface area (SASA), where the ordinate is SASA (nm2) and the abscissa 

is time (ps). 
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Figure 9: Analysis of RMSD, Radius of Gyration, Hydrogen Bonding, RMSF and SASA of 3CLpro 

Protein and drugs Darifenacin and Nebivolol. A. Root-mean-square deviation of the Cɑ atoms, B. 

Radius of gyration (Rg) over the entire simulation, where the ordinate is Rg (nm) and the 

abscissa is time (ps), C. Total number of H-bond count throughout the simulation, D.  RMSF 

values over the entire simulation, where the ordinate is RMSF (nm) and the abscissa is residue, 

and E. Solvent accessible surface area (SASA), where the ordinate is SASA (nm2) and the abscissa 

is time (ps). 
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Figure 10: Analysis of RMSD, Radius of Gyration, Hydrogen Bonding, RMSF and SASA of NSP10 

Protein and drugs Alvimopan and Irbesartan . A. Root-mean-square deviation of the Cɑ atoms, B. 

Radius of gyration (Rg) over the entire simulation, where the ordinate is Rg (nm) and the 

abscissa is time (ps), C. Total number of H-bond count throughout the simulation, D.  RMSF 

values over the entire simulation, where the ordinate is RMSF (nm) and the abscissa is residue, 

and E. Solvent accessible surface area (SASA), where the ordinate is SASA (nm2) and the abscissa 

is time (ps). 

 



Tables 

 

 

Table 1: Detailed list of conserved genes arranged into their respective thresholds of 

conservation 

 

THRESHOLD   
 100-95 

THRESHOLD  
95-90 

THRESHOLD      
90-85 

THRESHOLD  
85-80 

THRESHOLD  
80-75 

Chain B, NSP10  
Chain A, 

Nucleocapsid 
protein  

ORF1a polyprotein  
ORF1ab 

polyprotein  

ORF1ab 
polyprotein, 

partial  

NSP10  
Chain A, Papain-
like proteinase  

Nucleocapsid 
phosphoprotein  

ORF1a 
polyprotein, 

partial  

Surface 
glycoprotein  

Membrane glycoprotein 3C-like proteinase NSP2  NSP3    

Nucleocapsid 
phosphoprotein, partial  

  ORF1ab polyprotein  
NSP3 (residues 

207-377)  
  

RNA binding domain of 
nucleocapsid protein  

    ADRP    

 

Table 2: Population wise variant genes arranged in reference to their geographical locations 

 

Oceania China Rest of America UK Japan North 
America 

Europe 

NSP3 ORF1a 
polyprotein, 

partial 

ORF1a 
polyprotein, 

partial 

ORF1ab 
polyprotein, 

partial 

ORF1a 
polyprotein

, partial 

ORF1a 
polyprotein, 

partial 

NSP13-pp1ab 

ORF1a 
polyprotein, 

partial 

ORF1a 
polyprotein 

ORF1ab 
polyprotein 

ORF1ab 
polyprotein 

ORF1a 
polyprotein 

NSP3 Chain A, 
Uridylate-specific 
endoribonuclease 

ORF1ab 
polyprotein 

Chain A, 
Uridylate-specific 
endoribonuclease 

ORF1a 
polyprotein 

NSP2 ORF10 
protein 

Chain A, 
Papain-like 
proteinase 

NSP15-pp1ab 
(endoRNAse) 

ORF1a 
polyprotein 

Chain A, Replicase 
polyprotein 1ab 

ORF1ab 
polyprotein, 

partial 

ORF1a 
polyprotein 

ORF10 
protein, 
partial 

Chain A, 
Peptidase 

C16 

ORF3a protein 



NSP4 Chain A, Non-
structural Protein 

3 

ORF1ab 
polyprotein 

Surface 
glycoprotein 

 ORF1a 
polyprotein 

Membrane 
glycoprotein, 

partial 

Spike 
glycoprotein 

Chain A, NSP3 
macrodomain 

ORF3a, partial Nucleocapsid 
phosphoprotein

, partial 

 ORF1ab 
polyprotein 

partial 

Membrane 
glycoprotein 

ORF3a 
protein 

NSP3 ORF3a protein Chain A, 
Nucleoprotein 

 ORF10 
protein 

ORF8 protein 

Surface 
glycoprotein 

ORF10 protein Nucleocapsid 
phosphoprotein

, partial 

Chain A, SARS-
CoV-2 

nucleocapsid 
protein 

 ORF10 
protein, 
partial 

ORF1ab 
polyprotein 

Surface 
glycoprotein

, partial 

ORF10 protein, 
partial 

Nucleocapsid 
phosphoprotein 

NSP2  Chain A, 
SARS-CoV-2 

NSP16 

NSP2 

ORF8 
protein, 
partial 

NSP14    Chain A, 2'-
O-

methyltransf
erase 

ORF1a 
polyprotein, 

partial 

ORF8 
protein 

      

ORF10 
protein 

      

 

 

 

Table 3:  Parameters for the validation of the homology modeled protein 

 

Proteins GMQE Score Q-Mean Z-Score 

PL-PRO 0.11 -0.28 -8.87 

Nucleoprotein 0.24 0.03 -5.03 

NSP10 0.86 -0.93 -3.58 

3CLPro 0.99 0.45 -7.2 

 

 



Table 4: A table illustrating the mean of various structural parameters for the simulated proteins 

and protein-ligand complexes 

 

Complex RMSD (nm) RMSF (nm) 
Radius of Gyration 

(nm) 
SASA 

(nm^2) 
H-bonds 

Free NSP-10 0.470361 0.20984 1.37233 66.6657 - 

NSP10-Alvimopan 0.525528 0.19471 1.38811 67.3879 0 

NSP10-Irbesartan 0.413957 0.17612 1.40021 70.351 1 

Free Nucleoprotein 0.24749 0.20316 1.45041 73.9592 - 

Nucleoprotein-
Nebivolol 

0.293992 0.21579 1.46075 77.0852 3 

Nucleoprotein-
Bictegravir 

0.342362 0.21871 1.44189 74.0045 2 

Free 3CL Protein 0.252472 0.16319 2.44544 232.278 - 

3CL pro-Darifenacin 0.237117 0.16895 2.45577 237.846 1 

3CL pro-Nebivolol 0.244245 0.16176 2.44327 234.738 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures 

 

A.  

   

B.  

 

Figure 1: Validation of the in silico predicted model of 3CLpro by ProSa and Verify3D.  A. 

Structure validation by ProSa, which shows the Z-score of the predicted model of 3CLpro (black 

dot), when compared to a non-redundant set of crystallographic structures (light blue dots) and 

NMR structures (dark blue dots). B. Structure validation by Verify3D, which shows the 3D-1D 

score for each atom of the predicted model of 3CLpro. The graphic shows that 94.28% of the 

residues of the in silico structure of 3CLpro presented a compatibility score of 0.2 or higher, 

which indicates that the structure is a high-quality model according to Verify3D. 

 

 



 

 

 

A.  

 

B.  

 

Figure 2: Validation of the in silico predicted model of NSP10 by ProSa and Verify3D.  A. 

Structure validation by ProSa, which shows the Z-score of the predicted model of NSP10 (black 

dot), when compared to a non-redundant set of crystallographic structures (light blue dots) and 

NMR structures (dark blue dots). B. Structure validation by Verify3D, which shows the 3D-1D 

score for each atom of the predicted model of NSP10. The graphic shows that 82.44% of the 

residues of the in silico structure of NSP10 presented a compatibility score of 0.2 or higher, 

which indicates that the structure is a high-quality model according to Verify3D. 

 

 



A.  

B.  

 

Figure 3: Validation of the in silico predicted model of Nucleoprotein by ProSa and Verify3D.  A. 

Structure validation by ProSa, which shows the Z-score of the predicted model of Nucleoprotein 

(black dot), when compared to a non-redundant set of crystallographic structures (light blue 

dots) and NMR structures (dark blue dots). B. Structure validation by Verify3D, which shows the 

3D-1D score for each atom of the predicted model of Nucleoprotein. The graphic shows that 

94.49% of the residues of the in silico structure of Nucleoprotein presented a compatibility score 

of 0.2 or higher, which indicates that the structure is a high-quality model according to Verify3D. 

 

 

 

 



A.  

B.  

 

Figure 4: Validation of the in silico predicted model of PLpro by ProSa and Verify3D.  A. Structure 

validation by ProSa, which shows the Z-score of the predicted model of PLpro (black dot), when 

compared to a non-redundant set of crystallographic structures (light blue dots) and NMR 

structures (dark blue dots). B. Structure validation by Verify3D, which shows the 3D-1D score for 

each atom of the predicted model of PLpro. The graphic shows that 95.85% of the residues of 

the in silico structure of PLpro presented a compatibility score of 0.2 or higher, which indicates 

that the structure is a high-quality model according to Verify3D. 

 

 

 

 

 

 


