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ABSTRACT  

 
Site-specific characterization of glycosylation requires intact glycopeptide analysis, and recent 
efforts have focused on how to best interrogate glycopeptides using tandem mass spectrometry 
(MS/MS). Beam-type collisional activation, i.e., higher-energy collisional dissociation (HCD), has 
been a valuable approach, but stepped collision energy HCD (sceHCD) and electron transfer 
dissociation with HCD supplemental activation (EThcD) have emerged as potentially more 
suitable alternatives. Both sceHCD and EThcD have been used with success in large-scale 
glycoproteomic experiments, but they each incur some degree of compromise. Most progress has 
occurred in the area N-glycoproteomics. There is growing interest in extending this progress to 
O-glycoproteomics, which necessitates comparisons of method performance for the two classes 
of glycopeptides. Here, we systematically explore the advantages and disadvantages of 
conventional HCD, sceHCD, ETD, and EThcD for intact glycopeptide analysis and determine their 
suitability for both N- and O-glycoproteomic applications. For N-glycopeptides, HCD and sceHCD 
generate similar numbers of identifications, although sceHCD generally provides higher quality 
spectra. Both significantly outperform EThcD methods in terms of identifications, indicating that 
ETD-based methods are not required for routine N-glycoproteomics even if they can generate 
higher quality spectra. Conversely, ETD-based methods, especially EThcD, are indispensable for 
site-specific analyses of O-glycopeptides. Our data show that O-glycopeptides cannot be robustly 
characterized with HCD-centric methods that are sufficient for N-glycopeptides, and 
glycoproteomic methods aiming to characterize O-glycopeptides must be constructed 
accordingly. 
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INTRODUCTION 
 
Protein glycosylation is a complex post-translational modification that governs a diverse range of 

biological functions, serving as a biophysical and biochemical interface at the cell surface.1 

Glycosylation can be grouped into two main classes, N- and O-linked, where glycans are attached 

at asparagine or serine/threonine resides, respectively. The pool of glycans that decorate proteins 

is heterogeneous, which leads to extensive microheterogeneity across glycosites; moreover, N-

glycosites fundamentally differ from O-glycosites in both the glycans that modify them and the 

regions of proteins where they generally occur.2 Thus, intact glycopeptide characterization – 

which provides the opportunity to probe microheterogeneity by localizing glycan modifications to 

specific residues – is an imperative, yet challenging, component to modern glycoproteomic 

analysis. Tandem mass spectrometry (MS/MS) serves as the center piece in these efforts, but 

the path to glycopeptide identification is not one dimensional. Numerous approaches comprise 

the glycoproteomics toolkit, and efforts to improve our analytical methods are ongoing.3–9   

 

Beam-type collisional activation, termed higher-energy collisional dissociation (HCD) on Orbitrap 

systems,10 and electron transfer dissociation (ETD) are two of the more widely used MS/MS 

dissociation methods for glycopeptide characterization.10–15  They are complementary to each 

other; ETD generates mostly c/z●-type peptide backbone fragments that retain intact glycan 

moieties with few glycan dissociation events, while HCD fragments glycans and also produces 

b/y-type peptide backbone fragments that tend to lose all or part of their glycan modifications 

during the activation process.16–20 Many approaches pair the two dissociation methods within the 

same analysis to capitalize on their complementary nature.21–29 In fact, HCD followed by product-

dependent ETD (HCD-pd-ETD) has become arguably the most common glycoproteomic method 

to incorporate ETD. Here glycopeptide specific oxonium ions derived from glycan fragmentation 

in “scout HCD” scans are used to trigger subsequent ETD fragmentation of the putative 

glycopeptide precursor.30–32 

 

One challenge of ETD-based fragmentation is poor dissociation efficiency, especially for low 

charge-density precursors like glycopeptides.15 To address this issue, hybrid methods that use 

vibrational activation to provide supplemental energy for ETD reactions have emerged and gained 

traction in glycoproteomics, with the most popular being ETD followed by supplemental HCD 

(EThcD).33–45 Even so, HCD remains widely used in N-glycoproteomics.46–57 Tryptic N-

glycopeptides tend to harbor only one potential glycosite, as defined by its sequon N-X-S/T, where 

X represents any amino acid other than proline, which limits dependence on peptide fragments 

that retain intact glycans. HCD of N-glycopeptides also often generates b/y-type fragments that 

retain a N-acetylglucosamine (GlcNAc) moiety that provide clues to glycosite localization. 

Conversely, O-glycopeptides generally have multiple serine and/or threonine residues that serve 

as potential glycosites, so O-glycoproteomic methods largely utilize ETD and EThcD to localize 

modified residues using c/z●-type fragments that retain the intact glycan.58–74 

 

Recently, several groups have observed that higher HCD collision energies tend to provide better 

peptide backbone fragmentation, while lower collision energies are often advantageous for glycan 

fragmentation, and as such, have opted for stepped collision energy HCD (sceHCD) methods.75–

77 In the sceHCD regime, total precursor ion accumulation time per scan is divided into multiple 

(usually three) equal parts, and ions accumulated in each separate event are fragmented at 

different HCD collision energies. Product ions from each dissociation step are collected in the 
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same reaction cell prior to mass analysis and are then analyzed together in one MS/MS scan. In 

2017, Liu et al. used sceHCD methods for identification of ~10,000 N-glycosites from five mouse 

tissues,78 which contributed to its popularity in recent N-glycopeptide analysis.79–86 A few studies 

have looked to extend the application of sceHCD to O-glycopeptides,75,76,79,87,88 but this has not 

been as widespread. Limited comparisons between sceHCD and ETD methods have been 

performed for N-glycopeptides,78 as have comparisons of HCD and EThcD for O-

glycopeptides;64,69 however, a comprehensive head-to-head comparison of standard HCD, 

sceHCD, ETD, and EThcD has not been reported. 

 

Here, we systematically explore the advantages and disadvantages of sceHCD and EThcD for 

intact glycopeptide analysis, put the methods in context with their canonical HCD and ETD 

counterparts, and comment on their suitability for both N- and O-glycoproteomic applications. We 

test 14 product-dependent triggering methods (i.e., HCD-pd-X, where X is a MS/MS dissociation 

type) and also evaluate several HCD-pd-X methods relative to traditional data-dependent 

acquisition (DDA). We compare standard HCD, sceHCD, ETD, and EThcD for tryptic N-

glycopeptides generated from a panel of glycoprotein standards, in addition to N-glycopeptides 

enriched from tryptic digests of HEK 293 whole cell lysates. We also test each method using O-

glycopeptides generated with the recently characterized mucinase, StcE, to comment on O-

glycoproteomic performance.89 In all, we show that while HCD and sceHCD are sufficient for most 

N-glycoproteomic applications, they are ill-suited for site-specific O-glycoproteomic analysis. 

Instead, EThcD is the premier choice for O-glycopeptide characterization, despite excitement 

about the potential of sceHCD. We also discuss how these results affect continued efforts toward 

improving our analytical toolkit, including choices of instrument platforms and software 

development for data analysis. 

 

EXPERIMENTAL 

A standard glycoprotein mixture, a pool of N-glycopeptides enriched from HEK293 whole cell 

lysate, and a mixture of recombinant mucins were analyzed using multiple MS/MS dissociation 

methods. The standard glycoprotein mixture consisted of eight glycoproteins: bovine fetuin 

(P12763), bovine alpha-1-acid glycoprotein (Q3SZR3), recombinant human hemopexin 

(P02790), recombinant human CD14 (P08571), human fibronectin (P02751), human plasma 

protease C1 inhibitor (C1inh) (P05155), recombinant human CD59 (P13987), and recombinant 

human platelet glycoprotein 1b alpha (GP1ba) (P07359). Figure S1 depicts glycosites in these 

standard glycoproteins. Twenty micrograms of each protein were combined prior to tryptic 

digestion, and approximately 2 ug of total peptide was injected per LC-MS/MS analysis. HEK293 

cells were lysed, 1 mg was digested with trypsin using an S-trap protocol,90 and glycopeptides 

were enriched using a SAX-ERLIC solid-phase extraction method24 prior to LC-MS/MS. The 

mucin mixture consisted of recombinant human GP1ba (P07359), recombinant human leukosialin 

(CD43) (P16150), recombinant human MUC16 (Q8WXI7.3), and recombinant human P-selectin 

glycoprotein ligand 1 (PSGL1) (Q14242). Proteins (10 ug each) were digested individually similar 

to previously describe methods using a 3-hour StcE digestion, followed by an overnight PNGaseF 

incubation, and a 12-hour tryptic digestion.89 Following digestion, peptides were combined in 

equal parts by mass for the four proteins and analyzed by LC-MS/MS (approximately 2 ug total 

peptides per injection). Fourteen product-dependent methods were constructed using different 

dissociation types as the triggered scan, i.e.., HCD-pd-X, where X a dissociation type defined in 

Figure 1a. The numbers used in all methods indicate normalized collision energy (nce) settings 

used for collisional dissociation, and the “A±B” values for sceHCD method indicate the central 
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nce (A) and the step size (B) in either direction from the central value. To construct these methods, 

we explored nine HCD collision energies individually to understand how each collision energy 

used in standard HCD and sceHCD contribute to performance (Figure S2). (Glyco)peptide 

mixtures were separated using an EasySpray column packed with C18 PepMap material and a 

Dionex Ultimate 300 LC pump. All LC-MS/MS methods were 90 minutes total, and each method 

was run in technical triplicate, except for the HEK293 glycopeptides, which we only injected once 

per dissociation method. Scout HCD scans use a normalized collision energy of 36, a resolving 

power of 30,000 at 200 m/z, and an automatically determined scan range (Auto Normal) 

calculated based on precursor m/z with the first mass set to 100 m/z. Triggered MS/MS scans 

utilized the Orbitrap high mass range (120 m/z to 4,000 m/z), which has been shown to benefit 

glycopeptide analysis,91 and a resolving power of 30,000. ETD and EThcD methods used 

calibrated charge dependent parameters for calculating reagent AGC targets and ion-ion reaction 

times.92 Product-dependent triggering required at least two ions from the following list to be 

present in the top 20 most abundant  peaks in a spectrum within a 25 ppm tolerance: 126.055, 

138.0549, 144.0655, 168.0654, 186.076, 204.0865, 274.0921, 292,1027, and 366.1395 m/z. 

Several 90-minute standard DDA methods were also tested, where the desired dissociation 

method was used for all precursors without a scout HCD or triggering event. All raw data were 

searched Byonic.93 For the standard glycoprotein mix, N- and O-glycopeptide searches were 

conducted separately,94 each using the same fasta sequence file specific to the mixture. 

Glycopeptides from the HEK293 lysate were searched using a focused database95 created from 

prior data-dependent proteomic analyses. Mucin O-glycopeptides were searched using a specific 

mucin fasta sequence file. The N-glycan database for both the standard glycoprotein mixture and 

HEK293 N-glycopeptide searches consisted of 286 unique compositions, of which HexNAc(1) 

was not included. The O-glycan database used for the O-glycopeptide searches consisted of nine 

common O-glycans. Following Byonic searches, results files were filtered and fragmentation 

statistics were calculated using scripts written in C# using the C# Mass Spectrometry Language 

(CSMSL, https://github.com/dbaileychess/CSMSL). Filtering Byonic search results is necessary 

to retain only high-quality identifications and minimize false positives.96 Filtering metrics included 

a Byonic score greater than or equal to 200, a logProb value greater than or equal to 2, and 

peptide length greater than 4 residues. A maximum of three glycosites were allowed for any one 

glycopeptide. Data was graphed using OriginPro 2018. For box plots, median and quartile values 

are provided by the center line and box boundaries, respectively. Whiskers show 10th and 90th 

percentiles, and the small square indicates the average. More method details are available in the 

Supplemental Experimental Methods. 

 

RESULTS AND DISCUSSION 

We systematically compare HCD, sceHCD, ETD, and EThcD for their performance in 

characterizing intact N- and O-glycopeptides. With variations in normalized collision energies 

amongst these four dissociation types, we created fourteen product-dependent methods. Figure 

1a shows the method structure we chose for comparing these methods, where we use product-

dependent triggering to maximize the time spent on glycopeptide analysis. In these HCD-pd-X 

methods, a scout HCD scan provides product ions from collisional dissociation of precursors in a 

data-dependent fashion. The presence of glycopeptide specific oxonium ions (see Experimental 

and Supplemental Methods) then triggers a scan of specific dissociation type X to fragment the 

glycopeptide, where X is one of the fourteen methods shown. Note, the letters next to each 

method are used as identification codes in subsequent figures. Figure 1b and 1c depict sceHCD 

and EThcD scan events, respectively, to illustrate what happens to ions prior to mass analysis. 

https://github.com/dbaileychess/CSMSL
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We consider several figures of merit beyond merely numbers of identifications as we compare 

methods, including: 1) degree of peptide backbone sequence coverage, 2) degree of glycan 

sequence coverage, 3) proportion of signal in different fragment ion types (i.e., oxonium ions, Y-

type ions, and peptide backbone fragment ions), 4) percentage of spectra that enable confident 

glycosite localization, 5) percentage of spectra that contain fragments with glycans (intact or 

fragments) retained, and 6) proportions of total ion current that can be confidently 

annotated/explained in identified spectra. In order to ensure quality identifications, glycopeptide 

spectral matches (glycoPSMs) returned from Byonic for all methods were filtered to have a Byonic 

score greater than or equal to 200, a logProb score greater than or equal to 2, and a peptide 

length equal to five residues or greater. 

 

N-Glycopeptides 

The average number of localized N-glycopeptide spectral matches (N-glycoPSMs) for each 

method are summarized in Figure 2a. Localization here, and throughout this work, is defined as 

the unambiguous assignment of a glycosite within a glycopeptide (discussed further below). The 

advantage for generating identifications is clear for HCD and sceHCD methods, and both HCD35 

and HCD40 outperform sceHCD methods in terms of identification numbers. Looking at peptide 

sequence coverage and glycan sequence coverage in Figures 2b and 2c, however, it is clear that 

HCD methods sacrifice peptide fragmentation quality for glycan fragmentation quality or vice 

versa, while sceHCD methods provide quality fragmentation for both moieties. sceHCD30±10, 

sceHCD30±18, and sceHCD35±15 all provide good peptide and glycan sequence coverage with 

similar identification numbers, with a slight identification advantage for sceHCD30±10. EThcD15, 

EThcD25, and EThcD35 all generate superior peptide sequence coverage for all methods, and 

EThcD25 also excels at glycan fragmentation. ETD and EThcD scans are significantly slower 

than HCD and sceHCD scans, however, resulting in significantly fewer MS/MS acquisitions 

(Figure S3). This speed issue limits their effectiveness compared to the collision-based 

alternatives despite the superior fragmentation quality. 

 

We next compared the types of localization evidence each method generated for N-glycosites 

(Figure 3). There are three ways to localize glycosites: 1) intact fragments, where peptide 

backbone fragments retain glycan moieties to enable unambiguous glycosite assignment; 2) 

HexNAc-retaining fragments, where peptide backbone fragments lose most of the glycan moiety 

but retain the initiating HexNAc monosaccharide for a mass shift of +203.0794 Da (for N-

glycopeptides this is a GlcNAc residue) to show which amino acid harbored the glycan; and 3) 

the presence of only one potential glycosite in the peptide sequence. More than 90% of the total 

N-glycoPSMs that passed the post-Byonic filtering were localized successfully for EThcD 

methods, sceHCD methods, and HCD30-40 methods (Figure S4a).  Figure 3a shows that the 

majority (>~90%) of localized N-glycoPSMs from ETD, EThcD15, and EThcD25 spectra have 

evidence for localization via intact (c/z●-type) fragments, compared to only ~60% of EThcD35 

localized N-glycoPSMs. Recent work has shown that the site of glycan attachment and the glycan 

itself can affect localization with ETD.97,98 Here we see that EThcD methods identify N-

glycopeptides with glycosites distributed more evenly across the peptide backbone (Figure S5), 

potentially mitigating some glycan/glycosite localization dependency of ETD.  

 

HCD methods steadily decrease their proportion of b/y-type fragments that retain intact glycans 

as collision energies increase, while sceHCD25±15 generates the most localized N-glycoPSMs 

with intact glycan-retaining fragments (~20% of spectra), followed by sceHCD30±10. On the other 
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hand, HCD30 provides the largest proportion of N-glycoPSMs that can be localized with HexNAc-

retaining fragments (~80%), and sceHCD30±10 and sceHCD35±5 are highest of the sceHCD 

methods (just under ~70%) (Figure 3b). Regardless of the spectral evidence provided by intact 

or HexNAc-retaining peptide backbone fragments, the majority (>93%) of all N-glycoPSMs could 

be localized purely on the presence of only one glycosite, except for ETD and HCD (~82% each) 

– meaning little spectral evidence is needed for a confident localization (Figure 3c). That said, N- 

and O-glycosites can be contained within the same glycopeptide, which would confound this one 

glycosite assumption and would thus require spectral evidence for localization. Furthermore, for 

longer glycopeptides that are characterized using middle-down approaches, the presence of 

multiple N-glycosites necessitates the use of electron-driven activation to generate intact 

fragments to properly localize each glycan.99 Only a handful of N-glycoPSMs here were identified 

with multiple N-glycosites (mostly using ETD-based methods), with only ~5 identifications have 

spectral evidence to localize both glycan modifications (Figure S6).  In this dataset, >90% of ETD, 

EThcD15, and EThcD25 localized N-glycoPSMs have spectral evidence for localization (i.e., 

intact and/or HexNAc-retaining peptide backbone fragments), while only ~60-80% of localized N-

glycoPSMs are supported by spectral evidence for EThcD35, HCD methods, and sceHCD 

methods (Figure S4b). Example spectra from C1inh derived N-glycopeptides with similar glycan 

modifications illustrate the two different special evidence types, i.e., intact fragments in EThcD25 

(Figure 3d) and HexNAc-retaining fragments in sceHCD30±10 (Figure 3e). 

 

Figure S7 illustrates the number of different product ion types each method generates in N-

glycoPSMs, including peptide backbone fragments, peptide backbone fragments that have a 

glycan neutral loss, peptide backbone fragments that retain a HexNAc moiety, Y-type ions (which 

present the intact peptide plus a fragment of original glycan along glycosidic bonds), and oxonium/ 

B-type ions that represent only glycan moieties. Note, “peptide backbone fragments” include both 

those that are not expected to harbor a glycan and those that are seen with an intact glycan, while 

“glycan neutral loss fragments” include peptide fragments that have fully lost the glycan or retain 

only a HexNAc remnant. Interestingly, while peptide backbone fragments retaining the intact 

glycan mass can be observed in HCD and sceHCD, they are far more the exception than the rule 

(Figure S7b). Peptide fragments retaining the intact glycan are readily observed in ETD and 

EThcD spectra but become less frequent as supplemental HCD collision energy increases in 

EThcD.   Also, while Y-type fragments can be useful for indicating some glycan structural 

information, some Y-type ions observed here are likely the result of more than one-glycosidic 

cleavage, which are not as useful or reliable for structural determination. ETD and EThcD 

methods generate more peptide backbone fragments, with a small fraction of HexNAc-remnant 

fragments present, while HCD and sceHCD methods produce as many, if not more, neutral loss 

fragments than standard peptide fragments. Approximately half of the neutral loss fragments in 

HCD and sceHCD spectra are HexNAc-remnant fragments, although this differs slightly based on 

method. Figure S8 summarizes these distributions by comparing the median number of 

fragments for each method, delineated by fragment type. The trends in numbers of fragments 

explain the sequences coverages seen in Figure 2, and they translate to the amount of 

explainable signal (total ion current) in spectra from each dissociation type (Figure S9). Figure 

S10 shows the distribution of explainable signal between four different fragment types. EThcD 25 

distributes signal between peptide backbone fragments, Y-type ions, and oxonium ions most 

evenly of any dissociation method while also minimizing signal from peptide backbone fragments 

with neutral losses. The majority of signal in HCD and sceHCD spectra is in glycan-related 

channels, i.e., Y-type fragments and oxonium ions, although peptide backbone fragment signal 
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generally increases with higher collision energies. In general, EThcD methods provide the highest 

quality fragmentation. 

 

We repeated our comparison of methods for N-glycopeptides enriched from HEK293 whole cell 

lysate using eight of the methods tested for the standard glycoprotein mixture. Figure 4a shows 

the number of N-glycoPSMs identified for the eight methods, and it also provides a comparison 

to standard DDA analyses for two HCD and two sceHCD methods. The superior performance of 

the HCD and sceHCD is again evident, but perhaps more striking is the significantly higher 

number of identifications with standard DDA methods compared to product-dependent methods. 

One reason for this is that the identifications in the scout HCD scans in HCD-pd-X methods have 

not been included in our results so far (as to not confound data interpretation of each individual 

method), which removes one-third to one-half of total N-glycoPSMs. Figure 4b demonstrates that 

the two methods are more evenly matched when also including N-glycoPSMs from scout HCD 

scans, although the standard DDA methods still have the slight advantage. Note, the advantages 

of fragmentation quality, especially for sceHCD methods, are  

not applicable to the identifications from scout HCD scans. These results highlight that product-

dependent methods may not be necessary in samples that have been enriched  

for N-glycopeptides; the majority of precursors in such samples are glycopeptides, and thus 

screening precursors via the scout HCD scan is unnecessary. This does not hold true for the 

standard glycoprotein mix, where HCD-p-X methods significantly outperform standard DDA 

methods (Figure 4c). The standard glycoprotein mixture was not enriched, meaning many non-

glycosylated peptides are present along with glycopeptides. This discrepancy highlights how 

product-dependent methods are advantageous for samples with low N-glycopeptide enrichment 

efficiency (i.e., where little to no enrichment is performed), but they are not always necessary for 

high enrichment efficiency samples. In all, our data from both the standard glycoprotein mixture 

and the HEK293 N-glycopeptides show that HCD and sceHCD methods are sufficient for standard 

N-glycoproteomics, despite the superior spectral quality of EThcD methods.  

 

O-glycopeptides 

We first searched the standard glycoprotein mixture data set for O-glycopeptides because several 

of these glycoproteins are known to have O-glycosites. While some spectra, especially EThcD 

spectra, were confidently identified, the number of localized O-glycoPSMs was lower than desired 

to draw conclusions (Figure S11). Instead, we opted to generate a new sample for O-

glycopeptide interrogation using the professional mucinase, StcE, which cleaves specifically in 

glycosylated mucin domains.89 StcE is particularly important for characterizing densely O-

glycosylated mucin proteins because mucin domains are largely impervious to other proteases. 

Canonical proteolysis (e.g., with trypsin, chymotrypsin) generates O-glycopeptides tens to 

hundreds of residues in length, comprising mostly serine, threonine, and proline residues (so-

called PTS domains). Furthermore, the majority of serine and threonine residues in these 

stretches are O-glycosylated. These O-glycopeptides are effectively impossible to sequence at 

all, much less with any site-specificity of O-glycosite localization. StcE recognizes glycosylated 

serine and threonine residues in these PTS domains, cleaving to produce O-glycopeptides more 

amenable to MS analysis. Using PNGaseF to deglycosylate N-glycosites and a combination of 

StcE and trypsin for peptide backbone proteolysis, we digested four recombinant mucins and 

analyzed them with twelve HCD-pd-X methods (Figure 5). Contrary to the N-glycopeptide 

analysis above, EThcD significantly outperformed all other methods for O-glycopeptide 

identification (Figure 5a), even with similar differences in acquisition rate seen in the N-
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glycopeptide data set (Figure S3). Surprisingly, peptide sequence coverage was consistently 

good across EThcD, HCD, and sceHCD data for O-glycopeptide spectra (Figure 5b). Glycan 

sequence coverage was moderate for EThcD and HCD methods, was non-existent for ETD 

(which generates virtually no Y-type fragments), and was most favorable for sceHCD methods 

except sceHCD35±5 (Figure 5c). 

 

The superior performance of EThcD was enabled by the retention of intact glycan moieties on 

peptide backbone fragment ions (Figure 6). ETD, EThcD, HCD, and sceHCD all produced 

sufficient numbers of peptide backbone fragments (Figure 5b, FigureS7a), but the majority of 

HCD and sceHCD peptide fragments had glycan neutral losses (Figure S7b). In contrast, ~99% 

of localized O-glycoPSMs could be localized using intact peptide backbone fragments for ETD, 

EThcD15, and EThcD25 (~94% for EThcD35). While some HexNAc-retaining fragments were 

detected in EThcD, HCD, and sceHCD spectra (Figure S7c), these are often not sufficient for 

glycosite localization in O-glycopeptides because multiple serine and/or threonine residues lead 

to ambiguity. This is further supported by the lower percentage of O-glycoPSMs that could be 

localized due to the presence of only one potential glycosite (Figure 7b). This is largely expected 

for O-glycopeptides derived from mucins, which have dense regions of glycosylation and 

repeating domains rich in serine and threonines, but 68% of tryptic peptides from the standard 

glycoprotein mixture also harbor more than one serine or threonine (Figure S12b) – indicating 

that this is a phenomenon common to O-glycopeptides. Consequently (and similarly to N-

glycopeptides, Figure S6), multiply glycosylated O-glycopeptides were detected in ETD and 

EThcD methods while the O-glycopeptides that were identified by HCD and sceHCD were 

exclusively singly modified species (Figure 6c). 

 

Figure 7 provides an illustrative example of how HCD fails and EThcD succeeds at characterizing 

O-glycopeptides. The peptide TKPVSLLESTKKTIPELDQPPK from platelet glycoprotein 1b alpha 

(GP1ba, CD42) is the result of combined StcE and trypsin cleavage at the N- and C-terminus, 

respectively. HCD and sceHCD spectra generate high scoring spectral matches that have 

numerous peptide backbone fragments (Figure 7a), but all of the b/y-type fragments that would 

explain the assigned glycosites are missing glycan modifications (as indicated by the “~” symbol). 

The correct total glycan composition, HexNAc(2)Hex(2)NeuAc(3), is assigned to the sequence 

but the localization assignments are entirely incorrect. An EThcD spectrum of the same precursor 

shows extensive peptide backbone fragmentation, and the peptide fragments retain intact 

glycan(s) (Figure 7b). This spectral evidence enables confident, unambiguous assignment of 

glycan compositions to two threonine sites (indicated in red). The need for unambiguous glycosite 

assignment is further emphasized by the presence of multiple glycoforms of this peptide, as 

shown in Figures 7c and 7d. EThcD correctly localizes glycans, including a di-sialylated core-1 

structure, to three different glycosites in different glycoforms. HCD and sceHCD are blind to the 

locations of each glycan, making glycoform analysis impossible, whereas EThcD has the ability 

to assign site-specificity even for multiply sialylated O-glycopeptides. We did not see evidence for 

positional isomers of the reported glycopeptides in these spectra, but multiple glycoforms of the 

same peptide sequence can complicate spectral interpretation. This underscores the need for 

continued development of analysis tools to interpret complex glycopeptide spectra resulting from 

multiple glycoforms. Note, O-glycan structures were not determined from the spectra but rather 

depict the most common structures known for these glycans (with linkage information purposefully 

omitted). Interestingly, GP1ba was also in the standard glycoprotein mixture that was digested 

with trypsin only. In that data set, where only a handful of localized O-glycopeptides were 
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confidently identified, EThcD provided localized O-glycoPSMs only for singly glycosylated O-

glycopeptides from this same region of GP1ba. The ability to confidently characterize the doubly 

and triply glycosylated species in the StcE+trypsin mucin O-glycopeptide mixture highlights the 

value StcE adds to O-glycoproteomic workflows. 

 

Our data shows that HCD and sceHCD are generally not reliable at generating fragment ion types 

sufficient for robust O-glycopeptide characterization. This shortcoming of HCD and sceHCD for 

O-glycopeptides is underscored by the reliance on ETD-based methods for O-glycopeptides even 

when O-glycan are simplified to truncated forms, i.e., the SimpleCell system,100–105 and by the 

lack of ability to localize O-glycopeptide spectra in limited previous studies investigating O-

glycopeptides with HCD and sceHCD spectra.69,79,87 Some studies have reported the retention of 

O-glycans on b/y-type peptide backbone fragments during collision-based O-glycopeptide 

fragmentation.76,106 Indeed, the tens of O-glycoPSMs localized by HCD and sceHCD methods in 

this study were able to be localized mainly due to HexNAc-retaining b/y-type ions (which is N-

acetylgalactosamine, or GalNAc, residue in mucin-type O-glycopeptides). However, this 

represents less than ~8-15% of the total O-glycoPSM identifications retained after post-Byonic 

filtering for HCD and sceHCD methods, compared to a ~65% localization rate of total O-

glycoPSMs for EThcD25 (Figure S12a). Others have used HCD in combination with trypsin and 

proteinase K or pronase proteolysis to make short peptides with few possible glycosites with some 

success.107–109 While this strategy may be effective at generating short glycopeptides that can be 

successfully characterized with HCD, non-specific digestions create issues with database 

searching, both in increasing search space and time requirements and also in increased rates of 

false identifications. Thus, the more straightforward approach is to utilize EThcD methods. A 

recent development that may mitigate this requirement is the O-glycoprotease called OpeRATOR, 

which cleaves N-terminal residue.110,111 This is an exciting proposition that could have significant 

impact on O-glycoproteomic methods, allowing researchers to capitalize on the benefits of HCD 

and sceHCD methods. That said, O-glycoproteomic applications with OpeRATOR likely need 

further testing to understand how many missed cleavages occur that would create internally 

glycosylated residues to confound localization in HCD or sceHCD spectra. 

 

 

Comparisons between N- and O-glycopeptide data 

Beyond the intra-class comparison of methods for N- and O-glycopeptide mixtures, our data 

allows comparisons across data sets to identify spectral features inherent to each class of 

glycopeptide. Perhaps one of the most intriguing differences between N- and O-glycopeptides is 

the generation of peptide backbone fragments under different conditions. N-glycopeptides show 

a dependency on collision energy for the number of peptide sequencing ions generated (Figure 

S6) and the subsequent peptide sequence coverage achieved (Figure 2b).  O-glycopeptides, on 

the other hand, generate a larger number of peptide backbone fragments than N-glycopeptides 

(Figure S7 and S8) and have higher peptide sequence coverage values, with less variation based 

on collision energy or HCD vs. sceHCD (Figure 5b). More peptide backbone fragments retaining 

intact glycan masses were observed in EThcD spectra of O-glycopeptides compared to N-

glycopeptides, which is likely because more glycosites are present throughout the sequence 

(Figure 6c and Figures S6 and S7). The number of neutral-loss-associated peptide backbone 

fragments was also greater for O-glycopeptides, including EThcD methods. This supports a 

recent report by Kelly and Dodds, where they found that O-glycopeptides require lower collision 

energies for precursor depletion for a small pool of O-glycopeptides.88 Although some increase in 
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the number of neutral loss associated backbone fragments can likely be attributed to the greater 

number of potential glycosites, this also shows that the dissociation thresholds for GalNac-Ser/Thr 

may be lower than GlcNAc-Asn. Conversely, N-glycopeptides generated more Y-type and 

oxonium/B-type ions than O-glycopeptides, likely explained by the larger size of N-glycans.  

 

Figures S14-S16 provide distributions of precursor peptide lengths, m/z values, and charge state 

distributions of identified N- and O-glycoPSMs for each method. As expected, EThcD methods 

extend the m/z range of ETD for successfully identified glycopeptides, making their distributions 

more similar to HCD and EThcD methods. Peptide lengths of identified glycopeptides are 

generally similar between the different methods, and identified O-glycopeptides tend to be slightly 

longer than N-glycopeptides on average. Even though all methods across both glycopeptide 

classes had the same settings for precursor charge state selection, fewer z = 2 N-glycopeptides 

were identified relative to O-glycopeptides while more highly charged N-glycopeptides were 

sequenced. This observation could be both by peptide sequence dependent (as O-glycopeptides 

tend to be less enriched for basic residues) and glycan dependent (as smaller O-glycans are less 

likely to carry a positive charge). The majority of identifications from HCD and sceHCD methods 

for both classes of glycopeptides were z = 3 precursors, although this was generally more 

prevalent for O-glycopeptides, while ETD-based methods broadened the charge state 

distributions of N- and O-glycoPSMs. 

 

Given these complementary trends in peptide and glycan fragment generation, the amount of 

signal that could be explained for the different fragmentation methods was approximately the 

same for both classes (Figure S9). The distribution of signal, however, varied greatly between N-

glycopeptides (Figure S10) and O-glycopeptides (Figure S13). HCD and sceHCD spectra of N-

glycopeptides were dominated by oxonium ions, and the proportion of Y-type ion signal steadily 

decreased with increasing collision energy, accompanied by an increase in peptide backbone 

fragment signal. HCD and sceHCD of O-glycopeptides had more balanced signal distributions, 

with noticeably larger proportions of peptide backbone fragments that had neutral losses. N-

glycopeptide EThcD spectra had more signal occupied by oxonium ions and Y-type ions at higher 

collision energies, while O-glycopeptide EThcD spectra had more than half of their signal in 

peptide fragment channels. Again, this is likely due to larger N-glycans compared to O-glycans, 

but these are important spectral features to consider when developing algorithms to score N- and 

O-glycopeptide spectra. The Delta Mod Score, which is the drop in Byonic score from the top-

scoring identification to the second-best identification, showed drastically different distributions 

for N- and O-glycopeptides (Figure S17). According to Byonic documentation, Delta Mod Scores 

below 20 indicate dubious modification site assignments while scores above 40 mean the 

reported identification is significantly better than other candidates. These distributions further 

support the relative ease of localizing N-glycopeptides with both sceHCD and EThcD methods 

(albeit with different levels of confidence) compared to the challenge of O-glycosite localization. 

 

Despite the evidence of higher quality spectra for EThcD for both N- and O-glycopeptides, Byonic 

appears to under-score EThcD spectra relative to HCD and sceHCD for both classes (Figure 

S18). For each glycopeptide identification, we compared the best scoring scout HCD scan to the 

best scoring spectrum from triggered dissociation methods. EThcD spectra had a higher score 

than scout HCD spectra for only 45-55% of identifications. Comparatively, HCD35 and 40 

outscore their scout HCD scans 86% and 93% of the time, and sceHCD30 spectra outscore ~70-

90% of corresponding scout HCD spectra. The problem is even more exacerbated for O-
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glycopeptides, where EThcD25 and EThcD35 outscore scout HCD spectra only ~10% and ~32% 

of the time, compared to >75% for most HCD and sceHCD methods. This is likely because Byonic 

was not designed specifically for glycopeptide spectral analysis, weights high intensity matching 

fragments favorably, and rewards the presence of expected fragments (even b/y-type fragments 

that have complete glycan loss)112 – which may give an unfair advantage to HCD spectra over 

ETD and EThcD. Regardless, this highlights the need to incorporate spectral features specific to 

glycopeptide dissociation as search algorithms continue to progress. Such changes could include 

weighting peptide backbone fragments that retain an intact glycan or HexNAc moiety as the most 

important matched peaks in a spectrum. This could allow more nuanced analyses of glycoforms 

and the presence of multiple positional isoforms present within the same spectrum. Localization 

algorithms that leverage this type of information are widely used in phosphoproteomics,113 but 

have remained largely absent in glycoproteomics. Considering the general lack of structural 

information derived from the majority of intact glycopeptide studies, peptide fragment scores 

should likely be weighted more heavily that Y-type ions (and certainly more heavily than oxonium 

ions, regardless their abundance).  

 

Even so, Y-type ions can be useful and are known features of glycopeptide HCD and sceHCD 

spectra, especially Y1 ions (peptide+GlcNAc) in N-glycopeptide spectra and Y0 (peptide with no 

glycan) in O-glycopeptide spectra.114 Figure S19 shows the percentage of ETD, EThcD, HCD, 

and sceHCD spectra that have Y0, Y1, and two different Y2 ions, peptide+HexNAc(2) vs. 

peptide+HexNAc(1)Hex(1). Note, these data do not comment on abundance of Y-type ions, 

merely their presence in spectra. As expected, Y1 is seen in the vast majority of HCD and sceHCD 

N-glycopeptide spectra, although higher collision energies (e.g., HCD40) reduce its presence. Y0 

is also expected for N-glycopeptides, although to a lesser degree,115 as is observed. Y1 is present 

in the majority (>80%) of EThcD25 and EThcD35 N-glycopeptide spectra as well, while Y0 is only 

in ~35% and 60%, respectively. The pattern of Y0 and Y1 ions effectively flips for O-glycopeptides, 

where Y0 is more often present, especially in EThcD25, EThcD35, and sceHCD spectra. Y1 is 

less reliably observed in O-glycopeptide spectra, although still in relatively high proportions (60-

80%) for EThcD25, EThcD35, and sceHCD30 methods. Y2 peptide+HexNAc(2) occurs frequently 

(>80%) in N-glycopeptide spectra in lower to middle HCD energies (20-30 nce) and sceHCD30 

methods, while it is less frequently observed in EThcD and higher energy HCD spectra. This Y2 

ion is rarely (<20%) observed in O-glycopeptide spectra, as it would be a GalNAc-GlcNAc moiety 

indicative of core-2 O-glycans (which occurs less frequently in the recombinant mucins used in 

this study). However, higher HCD energies tend to be more favorable for generating it in O-

glycopeptide spectra where it should exist. The more common Y2 species for O-glycopeptides, 

peptide+HexNAc(1)Hex(1), is not a possibility for N-glycopeptides but represents the common 

core-1 O-glycan structure (GalNAc-Gal). sceHCD methods appear to be the most favorable 

fragmentation conditions for generating this Y2 ion, although it was also observed in ~50% of 

EThcD25 and EThcD35 O-glycopeptide spectra. The presence of these Y-type ions can be useful 

when designing search strategies best suited for dissociation type and glycopeptide class. 

 

Pap et al. recently compared HCD and EThcD for O-glycopeptides and observed larger oxonium 

(B-type) glycan fragments in EThcD spectra.64 Large oxonium ions can be valuable in confirming 

glycan composition and determining structural aspects of the sugar. One such ion was the 

HexNAc(1)Hex(1)NeuAc(1) fragment, 657.2349 m/z, which can be present in both N- and O-

glycopeptide spectra. We screened spectra that had at least one of the two NeuAc oxonium ions 

(274.0921 m/z and/or 292.1027 m/z) for the presence of 657 m/z (Figure S19). EThcD methods, 
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sceHCD methods except sceHCD35±5, and HCD20-25 all generated the 657 m/z oxonium ion in 

at least 80% of N-glycopeptide spectra, with EThcD25 having the highest percentage at ~96% of 

spectra. Higher energy HCD activation, however, caused a precipitous loss of the 657 m/z peak. 

For O-glycopeptides, the 657 m/z peak was most often observed in sceHCD30 spectra (~80%), 

while only 70-75% of EThcD25 and EThcD35 spectra had the fragment. This is slightly lower than 

reported by Pap et al., but it highlights that EThcD, sceHCD, and lower energy HCD can retain 

useful higher mass oxonium ions. 

 

One final observation compared low mass oxonium ions (Figure S20). Halim et al. showed that 

the ratio of low mass oxonium ions can indicate the presence of GalNAc (O-glycopeptide) or 

GlcNAc (N-glycopeptides) residues, and oxonium ions have since been used to classify 

glycopeptide classes and sialylation states.116–119 We calculated the ratio of 138.055 m/z and 

144.0655 m/z oxonium ions for all scout HCD scans from N- and O-glycopeptide data sets and 

plotted their distributions in Figure S20a. N- and O-glycopeptides have distinct distributions, as 

predicted, with most O-glycopeptides producing a ratio < 3 (median = 1.11) and most N-

glycopeptides producing a ratio > 5 (median = 16.04). A minor number of higher ratio values for 

O-glycopeptides likely come from species harboring core-2 glycans, which contain a GlcNAc 

residue. Higher energy HCD and sceHCD triggered scans for N-glycopeptides recapitulated ratios 

from scout HCD scans (Figure S20b), while EThcD35 and lower energy HCD methods slightly 

over estimated the ratio. Ratios could not be reliably calculated for ETD, EThcD15, or EThcD25 

spectra. For O-glycopeptides, ratios were detected in EThcD25, although the ratio was slightly 

underestimated (Figure S20c). Otherwise, EThcD35 and all HCD and sceHCD faithfully reported 

the 138/144 ratios seen in scout HCD scans. This shows that oxonium ion ratios can be 

successfully used in sceHCD method and in some EThcD scans, depending on the method 

parameters and glycopeptide class. 

 

CONCLUSIONS 

Ideally, N- and O-glycopeptides would share the same optimal dissociation method so that all 

classes could be analyzed with the same approaches. Here we compared HCD, sceHCD, ETD, 

and EThcD methods for mixtures of N- and O-glycopeptides, determining on their identification 

rates, spectral quality, and suitability for the different glycopeptide classes. Results are 

summarized in Table 1. Despite the superior spectral quality of EThcD, HCD and sceHCD 

methods provide more rapid scan acquisition rates to improve identifications and have 

fragmentation quality sufficient for N-glycopeptide identification. Only 60-80% of localized N-

glycoPSMs from HCD and sceHCD methods in this study had spectral evidence for the localized 

N-glycosite. The vast majority of N-glycosites, however, occur in sequences with only one N-

sequon, making peptide backbone and glycan composition identification acceptable. sceHCD 

methods provide a slight boost in spectral quality over standard HCD and, thus, are the 

recommended method for N-glycopeptides. sceHCD30±10 generally performed the best in this 

study, as has been reported elsewhere,78 yet a recent report argues that a method using stepped 

collision energies of 20/30/30 is superior.86 We saw that sceHCD35±15 also generally performs 

well, indicating that steps that cover a wide range of energies can be beneficial. On the contrary, 

HCD and sceHCD are mostly inadequate for site-specific O-glycopeptide analysis. Instead, 

EThcD methods are necessary due to challenges in localizing O-glycosites. EThcD25 gave the 

best localization rates, but EThcD35 provided slightly more O-glycoPSMs. Notably, proteolysis 

with the professional mucinase StcE also improved our ability to characterize O-glycopeptides 

with EThcD. 
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Our findings have important implications for many choices glycoproteomic researchers must face. 

First, MS instrument platforms govern access to dissociation methods, and it is crucial to know if 

desired experiments require access to ETD-enabled systems, such as Orbitrap Tribrid or solariX 

XR instruments,120–123 or can be successfully completed with HCD-centric systems, e.g., time-of-

flight instruments and the Q-Exactive or Exploris platforms.124,125 Looking forward, ion mobility is 

gaining traction in many proteomic arenas including glycoproteomics,126,127 and applications like 

trapped ion mobility spectrometry on the timsTOF system may prove valuable.128 That said, 

timsTOF instruments currently rely on collisional dissociation and may not yet be ready for O-

glycoproteomic applications, while the SNYAPT platforms offer traveling wave ion mobility 

spectrometry on an ETD-enabled system.129 A recently described ECD cell may bring electron-

driven dissociation to a wider breadth of instrument platforms, too.130,131 

 

Dissociation method choice also affects experimental design. sceHCD has been shown to benefit 

reporter ion generation without detrimental effects to peptide identification in isobaric labeling 

experiments,132 yet relatively few studies to date have employed isobaric labeling strategies for 

glycoproteomic experiments.44,50,133–137 Perhaps adoption of sceHCD methods for N-

glycopeptides will enable more widespread use of isobaric labels, while combinations of HCD and 

EThcD would still permit isobaric label-based quantitation in O-glycoproteomic workflows. 

Alternatively, the benefits of data-independent acquisition (DIA), which largely relies on collisional 

dissociation, have been shown for N-glycoproteomics.138–141 That said, there may be caveats for 

DIA methods for O-glycoproteomic applications because of the requirement of ETD-based 

methods. Indeed, Vakhrushev and co-workers recently reported a DIA method for O-

glycopeptides, but site-specific analysis came from separate ETD-based acquisitions.142 This 

perspective will be critical when mining old data sets for glycopeptide identifications, too, as this 

approach will likely better suited to N-glycopeptides than O-glycopeptides due to more ubiquitous 

HCD methods.143  

 

In addition to instrumentation and method development, data analysis software is required to 

interpret glycopeptide spectra, and choice of dissociation method currently dictates which analysis 

pipelines are available.144 A multitude of methods exist for interpretation of HCD and sceHCD 

spectra of N-glycopeptides,54,78,145–150 but many of these do not have ETD functionalities. Several 

approaches to interpret HCD and sceHCD spectra of O-glycopeptides are emerging,151–153 but 

strategies to couple these to concomitant ETD spectral analyses are only beginning to develop.63 

Byonic and Protein Prospector remain the two main pipelines to analyze ETD and EThcD spectra 

for glycoproteomics. If O-glycoproteome analysis is to improve, more software suites that can 

handle EThcD spectra must emerge, and we must keep improving Byonic and Protein Prospector 

as the tools we have in hand. We show here that N- and O-glycopeptides produce fundamentally 

different spectra, and tools tailored to each are needed. As such, we hope this dataset provides 

a useful resource to benchmark new software tools for both N- and O-glycoproteomic 

applications.  

 

In closing, this study is the first to comprehensively compare HCD, sceHCD, ETD, and EThcD in 

head-to-head methods for both N- and O-glycoproteomic analyses. With these data, we conclude 

that N-glycoproteomics should move forward with sceHCD methods while O-glycoproteomics 

must continue to rely on ETD and EThcD – a fact that is unlikely to change unless novel non-

collision-based dissociation methods emerge. This knowledge is not only informative to 
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glycoproteomic methodological choices made today, but is also instructional for future 

considerations in method and software development. 
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FIGURES 

 
Figure 1. Comparing glycopeptide dissociation methods for N- and O-glycopeptides. a) 

Several product-dependent (pd) methods, i.e., HCD-pd-X, were constructed to investigate 

glycopeptide fragmentation quality, where X refers to different the dissociation types shown. We 

compared ETD, EThcD with several collision energies, several conventional HCD collision 

energies, and several stepped collision energy (sce) HCD methods, where the number after the 

method indicates the normalized collision energy used and “±” in sceHCD methods indicates the 

step size in energy from the center value provided. Each method has an assigned letter (A-N), 

which is used for identification in subsequent figures. Schematics illustrate b) sceHCD30±10 and 

c) EThcD fragmentation prior to mass analysis. 
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Figure 2. Collision-based methods are sufficient for N-glycopeptides. a) The average 

number of localized N-glycopeptide spectral matches (N-glycoPSMs) is shown for technical 

triplicate analyses of tryptic peptides generated from a mixture of eight glycoproteins. Error bars 

show one standard deviation. Box plots show the distribution of b) peptide backbone sequence 

coverage (i.e., the proportion of peptide backbone bonds that can be explained by fragment ions) 

and c) glycan sequence coverage (i.e., the proportion of glycosidic bond cleavages observed) for 

N-glycopeptides identified with each method. Letters on the x-axes (A-N) correspond to the labels 

in Figure 1 and are grouped by method type. 
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Figure 3. Evidence for localized glycosites in N-glycopeptides. Three panels at the top 

provide the percentage total localized identifications that can be explained using a) intact peptide 

backbone fragments (i.e., that have no glycan neutral losses), b) peptide backbone fragments 

that retain the +203.0794 Da mass shift to indicate a remaining HexNAc fragment, or c) the 

presence of only one potential N-glycosite (i.e., one N-X-S/T sequon). Letters on the y-axes (A-

N) correspond to the labels in Figure 1 and are grouped by method type. d) An example of 

localization using intact fragments in an EThcD25 spectrum (precursor m/z: 1107.2990, z: 4). Ions 
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with a red star are important for localization, the majority of which retain the intact glycan mass. 

e) An example of localization using HexNAc-retaining (+203.0794) fragments in a sceHCD30±10 

spectrum (precursor m/z: 1040.9621, z: 4). Red stars show peptide ions that usefully retain the 

HexNAc moiety to show where the glycosite is. Blue circles indicate peptide fragments that did 

not retain the HexNAc mass and are not useful for localization, a common phenomenon in HCD 

and sceHCD spectra. Note, a fragment with a “~” denotes a peptide backbone fragment that does 

not retain any glycan, and both panels d and e show tryptic peptides from C1inh. Byonic color 

coding of annotated fragments show N-terminal peptide fragment ions in blue, C-terminal peptide 

fragment ions in red, and glycan-derived fragment ions in green.  

 

 
 
 
 
 

 
Figure 4. Trends hold true for N-glycopeptides enriched from complex lysate, but HCD-pd-

X methods are not always necessary. a) The number of localized N-glycoPSMs from 

glycopeptides enriched from HEK293 whole cell lysate are shown for a select number of HCD-

pd-X experiments. Also shown are four methods where product-dependent triggering was not 

used, but instead the dissociation method was used for every precursor (i.e., a standard DDA 

method, grey box). b) The number of localized N-glycoPSMs from enriched HEK293 lysate are 

shown for standard DDA methods (red) and for HCD-pd-X methods, where identifications are 

delineated as including only those from X fragmentation (yellow) or from both the scouting HCD 

and X spectra (blue). c) The same comparison as in panel (b) of a standard DDA and HCD-pd-X 

methods is shown for localized N-glycoPSMs from the mixture of standard glycoproteins. Note, 

the y-axes for all three panels are the same, with the definition at the left, and the three-color 

legend is only for panels b and c. 
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Figure 5. EThcD methods are significantly better at O-glycopeptide characterization. a) The 

average number of localized O-glycopeptide spectral matches (O-glycoPSMs) is shown for O-

glycopeptides generated from four recombinant mucin glycoproteins following enzymatic 

treatment with PNGaseF, trypsin, and StcE. Error bars show one standard deviation. Box plots 

show the distribution of b) peptide backbone sequence coverage and c) glycan sequence 

coverage for O-glycopeptides identified with each method. Letters on the x-axes (A-D,F-I, and K-

N) correspond to the labels in Figure 1 and are grouped by method type. 
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Figure 6. O-glycopeptides require localization using intact fragments, which enables 

localization of multiple O-glycosites per peptide. a) The percentage of total localized O-

glycopeptide identifications that can be explained using intact peptide backbone fragments. b) 

The percentage of total localized O-glycopeptide identifications that can be explained by the 

presence of only one potential O-glycosite. c) The proportions of localized O-glycoPSMs that 

were identified with one, two, or three glycosites. Letters (A-D,F-I, and K-N) on the y-axes for 

panels a and b (and the x-axis for panel c) correspond to the labels in Figure 1 and are grouped 

by method type. 
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Figure 7. Examples of why HCD fails and EThcD succeeds at O-glycosite localization. The 

peptide sequence TKPVSLLESTKKTIPELDQPPK, generated by combined StcE and trypsin 

cleavage of GP1b alpha, was detected with many different glycoforms in all methods. For HCD 

methods the glycosites and respective glycan compositions were defined without any spectral 

evidence, as exemplified in panel a), leading to incorrect localization (precursor m/z: 1014.4911, 

z: 4). No localized glycoPSM of this precursor was identified in any HCD or sceHCD analyses. 

Note, a fragment with a “~” denotes a peptide backbone fragment that does not retain any glycan. 

Panel b) is an EThcD spectrum of same precursor, where two glycosites are confidently localized 
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with defined glycan masses based on direct observation of intact peptide backbone product ions. 

Panel c) and d) show EThcD spectra of different precursors (precursor m/z: 943.0402, z: 5, and 

precursor m/z: 1001.4602, z: 5, respectively) that provide confident localization of three glycosites 

in same peptide sequence with different combinations of glycans, highlighting the need for 

localization in O-glycopeptide characterization. Annotation labels follow the same scheme as 

noted as the end of Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 1. Summary of dissociation method strengths for N- and O-glycopeptides. 

Performances of each HCD-pd-X method tested is considered for four figures of merit, i.e., 

acquisition speed, quality of peptide backbone fragmentation, quality of glycan fragmentation, and 

the ability to localize glycosites. HCD and sceHCD methods are recommended for N-

glycopeptides, and EThcD methods are recommended for O-glycopeptides. Although EThcD 

methods are superior for generating spectral evidence to support N-glycosite localization, 

acquisition speed, balance of peptide and glycan fragmentation, and general presence of only 

one N-glycosite per peptide make sceHCD methods the recommended choice for N-

glycopeptides. 
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