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Abstract 

    The COVID-19 pandemic speaks to the need for drugs that are not only effective but also remain 

so given the mutation rate of COVID-19. To this end, we describe a strategy to design potential 

drugs that target RNA-dependent RNA polymerase (RDRP), a common conserved component of 

RNA viruses. We combine an RDRP structure dataset and all RDRP-ligand interaction fingerprints 

into an RDRP-targeted drug discovery procedure. In so doing we reveal the ligand-binding modes 

and RDRP structural characteristics. Specifically, four types of binding modes with corresponding 

binding pockets were determined, suggesting two major potential sub-pockets available for drug 

discovery. We screened a drug dataset of approximately 8,000 compounds against these binding 

pockets and presented the top ten small molecules as a starting point in further exploring the 

prevention of virus replication. In summary, the binding characteristics determined here help 

rationalize RDRP targeted drug discovery and provide insights into the specific binding 

mechanisms.  
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1. Introduction 

    As of June 1, 2020, the COVID-19 pandemic has caused a severe threat to global public health 

and infected over 6.3 million people. Consequently, researchers have focused on developing new 

testing techniques, vaccines, and drug design and repurposing to mitigate coronavirus SARS-CoV-

21-2. However, to date, there are no effective COVID-19-specific therapeutic agents being 

prescribed. Laboratory testing techniques have made breakthroughs - the FDA has recently granted 

an emergency use authorization for the Sofia 2 SARS Antigen FIA Covid-19 test3, which can 

detect the virus within minutes. Progress in detection is important but it does not speak to a 

treatment, hence the research community is paying more attention to finding a SARS-CoV-2 

vaccine and/or drug to mitigate the pandemic4. 

Drug discovery is thwarted by the multiple mutations found in the COVID-19 family5. Three 

distinct "variants" from the COVID-19 genomes sampled5 between December 24th 2019 and 

March 4th 2020 have been reported. Thus, it is challenging to design novel COVID-19 medications, 

which are not only effective, but remain so given the mutation rate.  

    Scientists have established COVID-19 as an RNA virus containing a single-stranded positive-

sense RNA genome1. RNA viruses have been the main cause of epidemics in the last two decades 

- SARS6 in 2003, MERS7 in 2012, Ebola8 in 2014, and Zika9-10 in 2015 and now COVID-19. RNA 

viruses are divided into 4 classes2: single positive-strand RNA ((+)ssRNA) such as SARS, MERS, 

and COVID-19; single negative-strand RNA ((−)ssRNA) such as Ebola; double-strand RNA 

(dsRNA); and retroviruses such as HIV11-12. These viruses replicate their genetic material within 

host cells13, hence one way to limit infection is to inhibit virus replication.  Apart from retroviruses, 

the other classes all contain a common component, RNA-dependent RNA polymerase (RDRP)14 

which catalyzes the replication of viral RNA and hence is a prime drug target. Multiple high-
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resolution RDRP 3D structures have been solved, each with a similar core architecture. Namely, a 

“cupped right hand” with 7 motifs (A-G) comprising “palm,” “fingers,” and “thumb” (Figure 1; 

Table S1)15-16. Here we propose a drug discovery scheme targeting the conserved RDRP.  

On April 29th 2020, NIH indicated the repurposed drug Remdesivir, targeting RDRP, shortened 

patients’ time to recovery by 4 days, or 31%. However, Remdesivir did not show significant 

efficacy in reducing mortality17 but it is a start in the quest for RDRP targeted drugs. Here we 

advance anti-COVID-19 drug R&D by revealing new features of the binding characteristics to 

RDRP using a computational pharmacology approach. 

 

Figure 1. Conserved motifs in the RDRP binding site (PDB id: 7BV2). 

     

We collected 375 PDB structures of RDRP catalytic domains and their complexes (as of Feb. 

26th 2020) from 46 RNA viruses including coronavirus as our RDRP dataset. Then, using 

computational pharmacology methods, including protein-ligand interaction fingerprints, we 

characterized the RDRP-ligand interactions to provide new insights into antiviral drug design and 

discovery. Finally, combining a virtual docking process with an antiviral compound library from 
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Drugbank (www.drugbank.ca), we determined specific potential inhibitors as drug repurposing 

opportunities, as well as gaining new insights into possible modes of inhibition.  

 

2. Results 

2.1. RDRP global structure and COVID-19 - RDRP binding site similarity 

The 375 released RDRP PDB structures from 46 different RNA viruses belong to 3 classes: 

(-)ssRNA (8),  dsRNA (9), and (+)ssRNA viruses (29) as shown on the RDRP dendrogram (Figure 

2a, and Table S2). Of the 375, 141 have ligands bound. The global structural similarity between 

all RDRP catalytic domains and COVID-19 RDRP was calculated (see Methods) (Figure 2b). The 

lowest similarity (see Methods), 0.33, is from bacteria, Escherichia coli (UniProt P0A6P1). The 

top three viruses with RDRP similarity above 0.65 are Poliovirus type 1 (UniProt P03300), 

Hepatitis C virus genotype 2a  (UniProt Q99IB8 ), and Hepatitis C virus genotype 1b (UniProt 

P26663). In sum, structurally, the RDRP catalytic domains have high global structural similarity 

to COVID-19. Not surprisingly, with such high global structure similarity, the binding sites are 

highly similar (Figure 2c). Thus, the keys differences lie in the subtle details.   
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Figure 2. (a) RDRP structure dataset. The tree branches are color-coded by RNA virus 

categories. Each leaf indicates a PDB structure, and the PDB names are color-coded by different 

viruses. (b) Similarity of catalytic domains between all RDRPs and COVID-19 RDRP. (c) 

Alignment of all binding sites within the RDRP dataset. 

 

2.2. RDRP ligand-binding characteristics 

   Using the COVID-19 RDRP binding site as a template, 141 binding sites were aligned (see 

Methods). Removing the columns of amino acids without encoded interaction information, each 

aligned binding site consists of 123 columns of amino acids – the interaction fingerprint  (Table 

S3). According to the similarity of interaction fingerprints among all complexes it was possible to 

divide the binding modes into four classes, where each class contains multiple PDB structures 

from different kinds of viruses (Table 1). Each class possesses distinct binding characteristics 

(Figure 3).  

Table 1. Clustered binding modes and the corresponding structural ids and UniProt entries. 

Classes PDB ids UniProt entries 
ClassI 5F3T, 5F3Z, 5F41, 5HMX, 5HMY, 5HMZ, 5HN0, 5I3P, 5I3Q, 5JJR, 5JJS Q6YMS4 

ClassII 
1GX6, 1HI0, 1HI1, 1N1H, 1N35, 1N38, 1NB6, 1RA7, 1S49, 1UON, 1UVN, 2ILY, 2ILZ, 
2IM0, 2IM1, 2IM2, 2IM3, 2J7U, 2J7W, 2JLG, 2R7X, 2XI3, 3AVT, 3AVW, 3AVX, 3AVY, 
3VNU, 3VNV, 3VWS, 4A8F, 4A8K, 4FWT, 4HDG, 4HDH, 4RY5, 4WTA, 4WTC, 4WTD, 
4WTE, 4WTF, 4WTG, 4WTI, 4WTJ, 4WTK, 4WTL, 4WTM, 5IQ6, 5UJ2, 7BV2 

O37061, O92972, P03300, P0A6P1, 
P0CK31, P11124, P19711, P26663, 
P27395, P27915, P27958, 
Q6YMS4, Q99IB8, P0DTD1 

ClassIII 3FQK, 3FQL, 4KAI, 4KB7, 4KBI, 4KE5, 5PZK, 5PZM, 5PZN, 5PZO, 5PZP, 5QJ0, 5QJ1, 
5TWM, 5TWN, 5W2E, 6MVP P26663, Q99IB8, Q9WMX2 

ClassIV 
2AX1, 2GIQ, 2JC0, 2JC1, 2YOJ, 3BR9, 3BSA, 3BSC, 3CDE, 3CO9, 3CSO, 3CVK, 3CWJ, 
3D28, 3D5M, 3E51, 3G86, 3GNV, 3GNW, 3GOL, 3GYN, 3H2L, 3H59, 3H5S, 3H5U, 3H98, 
3HKW, 3HKY, 3IGV, 3LKH, 3QGF, 3QGG, 3QGH, 3QGI, 3VQS, 3SKA, 3SKE, 3SKH, 
3TYQ, 3TYV, 3U4O, 3U4R, 3UPH, 3UPI, 4EAW, 4IH5, 4IH6, 4IH7, 4IZ0, 4JY0, 4MIA, 
4MIB, 4MK7, 4MK8, 4MK9, 4MKA, 4MKB, 4MZ4, 5PZL, 5TRH, 5TRI, 5TRJ, 5TRK 

O92972, P26663, P26664, 
Q9WMX2 
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Figure 3. Aligned binding-site-ligand matrix with the clustering of interaction fingerprints and 

the sequence conservation logo of interaction-involved amino acids. Each row represents the 

interaction fingerprint of one complex. Each column represents the interaction fingerprint 

contributed by the amino acid in the same spatial position across all binding sites. The purple 

area indicates that an interaction exists with the bound ligand in the corresponding RDRP 

complex and the corresponding column, and grey indicates no interaction. The dashed rectangles 

approximately delineate the unique characteristics of each class. 

 

Class I. There are 11 aligned PDB structures belonging to the same Dengue virus, (Uniprot entry: 

Q6YMS4) in this class (Table 1). The aligned binding sites have almost the same binding patterns 

(Figure 3). Within Motifs A-D and Motifs F-G there are no interaction fingerprints, however, 

conserved interaction fingerprints exist in Motif E, Helix1, and the Thumb domain, which implies 

the ligand binding site is located at the palm region and between Motif E and the Thumb domain 
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(Figure 4a). The residues L511, H512, and L514 of Helix1; C709 and S710 of Motif E provide the 

conserved interactions (Figure 4a). In the Thumb domain the interaction fingerprints of all 

complexes in the class are similar, especially in the columns marked with the dashed rectangle, 

(Figure 3). The role of this Class I binding pocket has been discussed by other groups previously18. 

Noble et al. inhibited enzyme activity through fragment screening18 identifying this binding pocket. 

As part of their study, by changing a phenyl to a thiophene, higher binding affinity was obtained, 

highlighting the role of this pocket in subsequent drug design. 

Class II. There are 50 PDB structures from 15 viruses (Table 1) in this class (Figure 3). Class II 

interaction fingerprints exist mainly in the region of Motifs A-D and Motifs F-G implying the 

ligand is located at the regions of “palm” and “fingers” (Figure 4b). Remdesivir is reported to bind 

in this subpocket16 where K551 and R553 located within Motif F, D623 located within Motif A, 

S682 located within Motif B, and D760 located within Motif C are the major contributors to ligand 

binding (PDB id 7bv2). While these amino acids are conserved, Remdesivir only provides 

moderate improvement in the recovery time of patients with severe symptoms of COVID-1919. 

Further exploring this binding site with compounds of higher binding affinity would seem 

warranted. 

Class III. There are 17 PDB structures belonging to three RNA viruses (Table 1) in this class. 

The interaction fingerprints are distributed in the regions Helix1, Motif C, Motif E, and the Thumb 

(Figure 3) which form a binding pocket to accommodate the ligand (Figure 4c).  Specifically, in 

Helix1 the three residues, P197, R200, and L204, provide the primary interactions with the ligand 

and are conserved in the class (Figure 3).  Motif C is a beta-hairpin folding (Figure 1) and on each 

strand there are  3 conserved amino acids (residue 314-316 and 319-321) contributing to forming 

the binding pocket (Figure 3 and 4c).  Within Motif E, L360, I363, S365, C366, and S368 provide 
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the main binding interactions (Figure 4c). Two conserved residues (L360 and I363) define a unique 

fingerprint for the class. Compared with the Class I binding pocket, both are composed of Helix1, 

Motif E, and the Thumb domain. However, the difference is that in Class III, Motif C is involved 

as well, thus the binding pockets partially overlap each other. In a previous report20, Mayland et 

al. discovered an inhibitor GSK-5852, which is just to target the Class III of pocket in HCV RDRP, 

to treat HCV infection20.  

Class IV. This is the largest class with 63 PDB structures belonging to 4 viruses (Table 1) and 

has interaction fingerprints most similar to Class I and Class III. Specifically, using an HCV 

complex (PDB id 3cwj) as the representative (Figure 4d), in the region of Helix1, F193, P197, and 

R200 interact with the ligand. Residues D318 and D319 from Motif C and residue C366 from 

Motif E are also conserved as was found in Class III. Distinct from Classes I and III, residues from 

Motif B participate in the binding interactions, notably N291. Another difference occurs in Motif 

E, only residue C366 from the hairpin loop interacts with the ligand, different from Class III which 

involves additional residues. Interestingly, within Motif E, the column where C366 is located is 

high conserved to provide the interaction as shown in the conserved logo (Figure 3). In the Thumb 

domain there are interactions not found in the other classes. Thus, in class IV the pocket is 

composed of the Thumb domain, Motifs B,C and E (Figure 4d).  

    In summary, according to our clustering, there are four distinct binding modes in the conserved 

core architecture of RDRP, each with different sub-pockets to accommodate diverse inhibitors. 

Classes I, III, and IV have Helix1 and Motif E always participating in ligand-binding interactions 

hence their binding pockets have a common overlap. Class II has a different sub-pocket which has 

been exploited as a primary target9 to fight COVID-199. 
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Figure 4. (a-d) classed binding patterns for the corresponding ClassI-IV (PDB ids: 5f3z, 7bv2, 

4ke5, and 3cwj, respectively). Note: Helix1 refers to the helix located upstream of Motif A in all 

RDRP structures. 

 

2.3. COVID-2019 RDRP-targeted drug screening 

With the above-mentioned binding classes in mind, we screened 7894 FDA-approved small-

molecule drugs targeting the RDRP catalytic domain. Two different sub-pockets were chosen as 

the binding pockets. one sub-pocket (sub-pocket 1) is located within Class II  and the other (sub-

pocket 2) is located in the area centered on the common region of Class I, III, and IV (See the two 
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sub-pockets highlighted with spheres21 in Figure S1).  Through virtual screening (see Methods), 

the top five highest scoring compounds against each sub-pocket are listed in Table 2. For sub-

pocket 1, there is an inhibitor of Factor Xa (Darexaban)22 which prevents venous 

thromboembolism by acting as an anticoagulant and antithrombotic after surgery, two inhibitors 

of histone deacetylase (4SC-202 and CUDC-907)23-24, an inhibitor of  dipeptidyl peptidase 4 

(DB07779)25, and an inhibitor of EGFR (Osimertinib)26. These sub-pocket 1 inhibitors interact 

with Motif A-D and F-G (Figure 5a). For comparison, Remdesivir (accession number: DB14761) 

is included in our compound lib and its docking score is 6.0 (Figure 4b), considerably less than 

our top scoring inhibitors.   

 

Table 2. The top five putative inhibitors for sub-pockets 1 and 2 with the docking score and their 

corresponding primary targets.  

Pockets Name Docking 
Score Primary Target 

Sub-pocket 1 

Darexaban 9.8 Factor Xa 
4SC-202 9.4 Histone deacetylases 
DB07779 9.1 Dipeptidyl peptidase 4 
Osimertinib 9.0 Epidermal growth factor receptor (EGFR) 

CUDC-907 8.9 
Phosphoinositide 3-kinase and Histone 
deacetylases 

Sub-pocket 2 

DB07005 8.4 Thrombospondin receptor 
LY-517717 8.2 Coagulation factor X 

Pentamidine 8.0 DNA and tRNA (cytosine(38)-C(5)) 
methyltransferase 

DB07074 8.0 Coagulation factor XI 
Nafamostat 7.9 Serine protease  

 

    Screening of sub-pocket 2 revealed five inhibitors with binding affinity > 7.9 (Figure 5b). It is 

noteworthy that two of the inhibitors (LY-517717 and DB07074)27 target coagulation factors X 

and XI, respectively. As blood thinners these drugs might have the added value of reducing blood 
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clotting which has been reported in COVID-19 patients28. Pentamidine is an agent to treat 

pneumocystis pneumonia in HIV-infected patients29. Nafamostat is a short-acting anticoagulant 

which acts as a serine protease inhibitor and reported to have antiviral properties30. As such it is 

undergoing a clinical trial in Japan.   

To summarize, we characterized RDRP binding pockets suggesting four classes of binding modes 

(Class I-IV), in silico screened against two completely different pockets (sub-pocket 1 and 2), and 

obtained a series of putative inhibitors with high binding-affinity. Further experimental validation 

is necessary. 

 

Figure 5. The putative inhibitors obtained via virtual screening (PDB id: 7bv2): (a) Targeting 

sub-pocket 1; (b) Targeting sub-pocket 2. 

 

3. Conclusion 

In the paper we explored the structural characteristics of the RDRP catalytic domain using a 

computational pharmacology method. More specifically, we focused on the ligand-binding 

characteristics of the RDRP binding site using a receptor-ligand interaction fingerprint strategy. 

We collected all RDRP structures and analyzed the conserved core structure. Across the entire 
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dataset a “cupped right hand” folding pattern and 7 conserved motifs characterize a high-similarity 

RDRP architecture. By analyzing these protein-ligand complexes with an overall shared 

architecture four different classes of binding modes were validated. Class II is based on the pocket 

consisting of Motifs A-D and F-G, whereas Classes I, III, and IV have distinct yet some 

overlapping characteristics, for example Helix1 and Motif E always participate in ligand binding. 

In terms of distinct characteristics, Class I has unique a unique binding mode in the Thumb domain, 

Class III in Motif E, and Class IV in Motifs B and E. Based on these RDRP-ligand binding features, 

multiple FDA drugs were screened to determine possible repurposing opportunities. The top 10 

inhibitors against the two most distinct sub-pockets are discussed. One is already part of a clinical 

trial as a potential COVID-19 drug. Results here provide further potential repurposing 

opportunities that need experimental analysis.  

 

4. Method 

4.1. Structural RDRP dataset 

We first counted the PDB ids of all RDRP structures by accessing the ProRule accession number 

of RDRP (PRU00539) using the PROSITE31 database and then downloaded all corresponding 

PDB structures25. As of Feb. 26 2020, 375 RDRP (EC 2.7.7.48) catalytic domain structures were 

deposited in the PDB (Table S2).  Among them were 141 ligand-bound complexes used here.  

4.2. Encoding function-site interaction fingerprints (Fs-IFPs) 

    Fs-IFP is to describe protein-ligand interaction characteristics at the functional site and to do so 

on a proteome-wide scale as detailed in previous applications32-35. Generally, the Fs-IFP method 

follows three steps. First step is to align all of binding sites. Here, the secondary structures of all 

RDRP catalytic domains were aligned against the COVID-19 RDRP structure template using the 
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sequence-independent structural alignment program TM-align with the default scoring function. 

TM-align results have a value between  0 and 1. >0.3 implies similar fold and > 0.5 implies the 

same fold36. The alignment of the binding sites was performed using SMAP with default 

parameters37-38. The COVID-19 RDRP-remdesivir complex (PDB id: 7bv2) was used as the 

template and residues within 15 Angstroms of the ligand defined the binding site39. Second step is 

to encode the Fs-IFPs. Here, the interaction fingerprints are encoded using a previously described 

interaction fingerprint method40. Third, along with the aligned binding sites, the comparable 

interaction fingerprints of each complex were obtained and clustered using the k-means method in 

the R package.   

4.3. High-throughput screening 

    7894 DrugBank-annotated drug molecules were downloaded from Drugbank as our compound 

library41. These drugs were docked to the RDRP catalytic domain using the docking software 

Surflex21 4.103. Using the distilled binding characteristics, multiple proto molecules were first 

obtained by predicting the binding pocket and protomol processing21. Then multiple proto 

molecules that bind different sub-pockets were chosen to screen the potential compounds using 

default parameters. All docked small molecules with different binding conformations were sorted 

based on the binding affinity score. The top five highest scoring molecules from different sub-

pockets were further analyzed. 

 

5. Supporting information 

   Conserved motifs A-G and their corresponding amino acid sequences (Table S1); The complete 

RDRP dataset (Table S2); The aligned ligand binding sites (Table S3). 
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