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Extending scaled-interaction adaptive-partitioning
QM/MM to covalently bonded systems†

Zeng-hui Yang,∗ab

Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simu-
lations of large systems that can be partitioned into active and environmental regions. Adaptive-
partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change
during the simulation. AP methods achieve continuous potential energy surface (PES) by intro-
ducing buffer regions in which atoms have both QM and MM characters. Most of the existing
AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for
systems with many atoms in buffer regions. Although one can lower the computational cost by
grouping atoms into fragments, this may not be possible for all systems, especially for applications
in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs
from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the
flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of
isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by
the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form
cannot treat covalently bonded systems properly. In this work, I show that a simple modification
to the SISPA method improves the treatment of covalently bonded systems. I also study the effect
of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm.
I demonstrate the methods with simple molecules and bulk solids.

1 Introduction
Quantum mechanics/molecular mechanics (QM/MM)1–7 meth-
ods combine the accuracy of QM methods and the computational
efficiency of MM methods, allowing accurate atomistic simula-
tion of large systems. QM/MM methods partition the system
into QM and MM subsystems corresponding to the active and
the environmental regions. Such a partition is predetermined in
regular QM/MM, which is unfavorable when active regions are
not stationary or liable to change during the simulation, such as
in solution systems8–10 or transport processes11–13. Adaptive-
partitioning (AP) QM/MM6,7,14–23 addresses this problem by al-
lowing the partitioning of the system to change during the sim-
ulation. Various criteria for partitioning the system on the fly
have been developed, such as partition by distances to active
sites14,15,17,18,20,21, by number24, by density25,26, by stress27,

a Microsystem and Terahertz Research Center, China Academy of Engineering Physics,
Chengdu, China 610200. Tel: +86-28-65726068; E-mail: yangzenghui@mtrc.ac.cn
b Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang,
China 621000.
† Electronic Supplementary Information (ESI) available: details on the scaling of
interactions in the DFTB method, the COMB potential and the CHARMM force field,
and the derivation of the z-vector method in the density-corrected pre-scaled algo-
rithm. See DOI: 00.0000/00000000.

and by error indicator23, with the first one being the most com-
monly used criterion. AP-QM/MM introduces buffer regions to
remove discontinuities in the potential energy surface (PES) as
the partitioning changes. Atoms in buffer regions have both QM
and MM characters. In the following, I denote atoms in the QM,
buffer, or MM regions as QM atoms, buffer atoms, or MM atoms
respectively.

The first AP-QM/MM method by Rode et al.14 mixes the QM
and MM forces on buffer atoms to ensure a smooth transition.
The main flaw of such force-based methods is the potential energy
being unavailable. Many of the more recent adaptive QM/MM
methods are energy-based, where the potential energy is ob-
tained by mixing QM and MM potential energies of different par-
titions17,18,20. In each partition, a selection of buffer atoms are
treated as QM atoms and the others treated as MM atoms. These
methods require more than one QM calculations per time step.

The permuted adaptive partitioning (PAP)17 is the most com-
prehensive energy-based AP-QM/MM method. It includes 2Nbuf

partitions, where Nbuf is the number of buffer atoms. The com-
putational cost of PAP becomes prohibitively high when there
are more than a few buffer atoms due to the high number of
QM calculations. One can group atoms into fragments to re-
duce the number of partitions in some cases, such as treating
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solute molecules17 or different sections of a biological chan-
nel12 as a whole instead of as individual atoms. This needs a
thorough understanding of the system under study, and a gen-
eral grouping scheme that retains the key characteristics of the
original system is yet to be found. Significant development has
been made in developing AP-QM/MM methods with much fewer
configurations, such as the sorted adaptive partitioning (SAP)17,
difference-based adaptive solvation (DAS)18, size-consistent mul-
tipartitioning (SCMP)20, and so on. These methods only requires
Nbuf QM calculations per time step, still higher than that of regu-
lar QM/MM.

The scaled interaction single partition adaptive (SISPA)21 is
an energy-based AP-QM/MM method that only require one QM
calculation per time step. Instead of averaging over partitions,
SISPA carries out one QM calculation in an averaged sense with
scaled interactions. The compuational cost is usually dominated
by the QM calculation, so SISPA is similar in this aspect as reg-
ular QM/MM methods, making it a promising method for large
systems. SISPA is developed for weakly-bonded systems such as
solutions. Covalent interactions between QM and MM subsys-
tems are not included, making it unsuitable for the calculation
of chemical reactions. Furthermore, the scaled interactions lead
to non-trivial changes, with the most obvious one being that the
QM charge density and wavefunction tend to those of isolated
atoms/fragments near the buffer/MM boundary. This might be
acceptable for weakly-bonded systems, but the effects on cova-
lently bonded systems remain to be checked.

In this paper, I extend the SISPA method to covalently bonded
systems by developing a simple modification to the scaling
scheme of the SISPA, which scales the covalent and non-covalent
interactions differently so that the covalent interactions between
QM and MM representations of the atoms are included. To study
the impact of correcting the QM charge density, I develop a cor-
rection algorithm while preserving the continuity of the PES. I
demonstrate the methods with small molecules and bulk silicon.

2 Method

In this section, I first briefly review the PAP and SISPA methods.
I then describe the modifications to the SISPA scaling scheme of
interactions, and finish with the density-corrected pre-scaled QM
algorithm.

2.1 A brief review of PAP and SISPA

I follow the common practice of partitioning the system into
QM, buffer and MM regions by distances to the centers of ac-
tive sites14,15,17,18,20,21. These centers are pre-chosen atoms or
positions in the system, and their associated QM and buffer re-
gions are spherical and spherical shell shaped with pre-defined
radii and thicknesses. Fig. 1 illustrates the partitioning of the
system.

Buffer regions ensure a continuous PES as atoms move between
QM and MM regions. Each atom in the system is assigned a scal-
ing factor λ , signifying the QM character of the atom. λ equals to
1 or 0 for QM or MM atoms, respectively. The scaling factor of a
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Fig. 1 Illustration of the partitioning by distance scheme with dots repre-
senting atoms. The color of the dots represent scaling factors defined in
Eq. (1), with blue being λ = 0 and red being λ = 1. RQM

ζ
and W buf

ζ
are the

radius of the QM region and the thickness of the buffer region associated
with center ζ , and Rα,ζ is the distance between atom α and center ζ .

buffer atom α is17:

λα = 1−∏
ζ

(1−λα,ζ ), (1)

where λα,ζ denotes the scaling factor of α with respect to center
ζ :

λα,ζ = 10λ̃
3
α,ζ −15λ̃

4
α,ζ +6λ̃

5
α,ζ . (2)

λ̃α,ζ in Eq. (2) is

λ̃α,ζ =
RQM

ζ
+W buf

ζ
−Rα,ζ

W buf
ζ

θ(Rα,ζ −RQM
ζ

)

×θ(RQM
ζ

+W buf
ζ
−Rα,ζ )+θ(RQM

ζ
−Rα,ζ ),

(3)

where θ is the Heaviside step function, RQM
ζ

and W buf
ζ

are the
radius of the QM region and the thickness of the buffer region
of center ζ , and Rα,ζ is the distance between buffer atom α and
center ζ .

The PAP potential energy is a weighted sum of the potential
energies of all partitions

V PAP = ∑
P

wPVP, (4)

where VP is the regular QM/MM potential energy evaluated on
partition P, and the weight of partition P is

wP =
QMP

∏
α

MMP

∏
β

λα (1−λβ ). (5)
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Many AP-QM/MM methods17,18,20 improve the computational ef-
ficiency by only including some of the partitions in the summa-
tion.

Unlike the PAP method, a buffer atom in SISPA has both QM
and MM representations at the same time. The QM and MM rep-
resentations of the same atom do not interact with each other.
Interactions between atoms are scaled in both the QM and MM
calculations. The SISPA potential energy is

V SISPA =V QM,SISPA +V MM,SISPA, (6)

where V QM,SISPA and V MM,SISPA are the potential energies of
scaled QM and MM calculations, each carried out once. Table
1 shows the scaling factors of interactions, in which δ is the Kro-
necker δ notation.

Table 1 Scaling factors of interactions of the SISPA method between
atoms α and β

QM calculation
α β Scaling
QM QM λα λβ (1−δαβ )+δαβ

QM MM λα (1−λβ )(1−δαβ )

MM calculation
MM MM (1−λα )(1−λβ )(1−δαβ )+δαβ

The scaled QM calculation lacks formal justification and can be
thought as yielding an ‘averaged’ electronic structure. The SISPA
method therefore trades rigorousness with higher computational
efficiency. Unlike AP-QM/MM methods with multiple QM calcula-
tions per time step, the SISPA energy and forces have a non-linear
dependency on the scaling factors, as can be seen with the simple
model system in the ESI of this paper.

Omitting the fragment corrections of the SISPA method, the
zero of energy is defined by

V SISPA
0 =

QM

∑
α

V QM
0,α +

MM

∑
A

V MM
0,A , (7)

where V QM
0,α and V MM

0,A are the unscaled QM and MM energies of
isolated atom α and A respectively. Since buffer atoms has both
QM and MM representations, they are included in both the sums
of Eq. (7).

The scaling factors in Table 1 assumes pairwise interactions.
Although SISPA can be applied to QM and MM methods with in-
teractions involving more than two bodies21, complications arise
in the implementation. To avoid such complications, I use the
density-functional tight-binding (DFTB)28–30 method as the QM
method in this paper. The charge-optimized many-body (COMB)
potential31–33 is chosen as the MM method for Silicon systems.
This choice is made only to demonstrate the effect of scaling and
to simplify the implementation. The compatibility of the QM and
MM methods must be carefully tested in real applications. For
organic molecules, I use the CHARMM34 force field as the MM
method. Refer to the ESI of this paper for details.

The pseudocode of the SISPA algorithm is shown below. The
inputs are atom positions {~Rα}, QM center positions {~Rζ } and

associated {RQM
ζ
} and W buf

ζ
. The outputs are the potential energy

V SISPA and forces. Transition forces due to scaling factors are
included implicitly. The procedure names are self-explanatory for
procedures not explicitly defined. The number of electrons of
the scaled QM calculation is the same as a regular unscaled QM
calculation.

procedure SCALINGQM(λα ,λβ )

return (λα λβ (1−δαβ )+δαβ )

procedure SCALINGQMMM(λα ,λA)

return (λα (1−λA)(1−δαA))

procedure SCALINGMM(λA,λB)

return ((1−λA)(1−λB)(1−δAB)+δAB)

procedure SCALEDMATRICES({~Rα},{λα},{~RA},{λA},{qMM
A },ρ)

for each α,β

do



for each µ ∈ α,ν ∈ β

do



λαβ ← SCALINGQM(λα ,λβ )

Hµν ← λαβ

〈
µ
∣∣Ĥ(ρ)

∣∣ν〉
Sµν ← λαβ 〈µ | ν〉
for each A

do


λαA← SCALINGQMMM(λα ,λA)

λαAβ ← SCALINGQM(λαA,λβ )

Hµν ← Hµν +λαAβ

〈
µ
∣∣Ĥext

A (qMM
A )

∣∣ν〉
return (H,S)

procedure QM({~Rα},{λα},{~RA},{λA},{qMM
A })

ρ ← INITIALDENSITYMATRIX({~Rα})
repeat
H,S← SCALEDMATRICES({~Rα},{λα},{~RA},{λA},{qMM

A },ρ)
V QM,{~Fα},{~FA},ρ ← DIAGONALIZE(H,S)

until ρ converged
for each α,A

do



λαA← SCALINGQMMM(λα ,λA)

Evdw
αA ← λαADISPERSION(~Rα ,~RA)

V QM←V QM +Evdw
αA

~Fα ← ~Fα −∇~Rα
Evdw

αA
~FA← ~FA−∇~RAEvdw

αA
return (V QM,{~Fα},{~FA})

procedure MM({~RA},{λA},{qMM
A })

for each A,B

do


λAB← SCALINGMM(λA,λB)

VAB← λABMMENERGY(~RA,~RB)

V MM←V MM +VAB
~FA← ~FA−∇~RA

VAB, ~FB← ~FB−∇~RB
VAB

return (V MM,{~FA})

procedure PARTITION({~Rα},{~Rζ },{R
QM
ζ
},{W buf

ζ
})

{λα}← Calculate according to Eq. (1)
return ({λα})

main
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{~Rα}← All atom positions,{~Rζ }← All QM center positions
λα ← PARTITION({~Rα},{~Rζ },{R

QM
ζ
},{W buf

ζ
})

comment: λα decides if atom α is a QM, buffer, or MM atom

P← QM and buffer atoms, Q← Buffer and MM atoms
V QM,{~FQM

α∈P},{~F
QM/MM
α∈Q }←

QM({~Rα∈P},{λα∈P},{~Rα∈Q},{λα∈Q},{qMM
α∈Q})

V MM,{~FMM
α∈Q}←MM({~Rα∈Q},{λα∈Q},{qMM

α∈Q})
return (V QM +V MM,{~FQM

α +~FQM/MM
α +~FMM

α })

2.2 Treatment of covalent interactions

For PAP and related methods, covalent bonds cut by the QM/MM
boundary of a certain partition can be treated with link atoms35

or other techniques in regular QM/MM3. The same cannot be
done for SISPA due to scaled interactions. In this section, I present
a simple modification to the SISPA scaling for treating covalent
interactions between QM and MM representations of atoms, and
I develop a method correcting the QM charge density in buffer
regions.

2.2.1 Scaled interaction for covalently bonded systems

The SISPA method employs electrostatic embedding2,36, so that
scaled non-covalent interactions (such as electrostatic and disper-
sion) between QM and MM representations are included in the
QM Hamiltonian. In the QM calculation, non-covalent interac-
tions switches smoothly between their QM and MM descriptions.
The resulting QM potential energy and forces would be reason-
able if covalent interactions are insignificant in the system, such
as in solutions.21 If the covalent interaction is non-negligible,
however, SISPA would yield unphysical results. This is due to
covalent interactions between QM and MM representations not
being able to be represented as a modification to the QM Hamil-
tonian, so that they are missing from both the QM and the MM
calculations in SISPA.

In regular QM/MM methods, similar problems arise when the
QM/MM boundary cut through covalent bonds2–4. A commonly
used correction is to add extra link atoms to the QM calculation to
represent the cut bond2,37–43. Other methods such as capping po-
tentials44, effective fragment potentials45, localized orbitals46–48

and so on have been proposed. SISPA with its scaled QM calcu-
lation is incompatible with these corrections, however, since all
the covalent bonds involving buffer atoms can be seen as being
partially ‘cut’ due to scaling.

I modify the SISPA method by scaling covalent and non-
covalent interactions differently, so that the missing covalent in-
teractions between QM and MM representations are included in
the MM calculation. This can be seen as treating these covalent
interactions with mechanical embedding2,36. Table 2 lists the
modified scaling factors of interactions (denoted as ‘mod-SISPA’ in
the following). This modification requires that the MM potential
can be decomposed into covalent and non-covalent contributions.
Since the scaling of the QM calculation does not change from
SISPA, this modification does not solve the problem of QM charge
density tending to that of isolated atoms near the buffer/MM
boundary in SISPA. A part of the QM-QM covalent interaction
is therefore still missing for mod-SISPA. I attempt to address this

problem in the next section.

Table 2 Modified scaling factors of interactions that distinguishes be-
tween covalent and other interactions between atoms α and β (‘C’ and
‘N’ means covalent and non-covalent interactions, respectively)

QM calculation
α β Type Scaling
QM QM CN λα λβ (1−δαβ )+δαβ

QM MM N λα (1−λβ )(1−δαβ )

MM calculation
MM MM C (1−λα λβ )(1−δαβ )+δαβ

MM MM N (1−λα )(1−λβ )(1−δαβ )+δαβ

The pseudocode of the mod-SISPA algorithm that is different
from SISPA is shown below, which is the way the MM interaction
is scaled according to Table 2.
procedure SCALINGMMCOVALENT(λA,λB)

return ((1−λAλB)(1−δAB)+δAB)

procedure SCALINGMMNONCOVALENT(λA,λB)

return ((1−λA)(1−λB)(1−δAB)+δAB)

procedure MM({~RA},{λA},{qMM
A })

for each A,B

do



λ C
AB← SCALINGMMCOVALENT(λA,λB)

λ N
AB← SCALINGMMNONCOVALENT(λA,λB)

VAB← λ C
ABMMCOVALENTENERGY(~RA,~RB)

+λ N
ABMMNONCOVALENTENERGY(~RA,~RB)

V MM←V MM +VAB
~FA← ~FA−∇~RA

VAB, ~FB← ~FB−∇~RB
VAB

return (V MM,{~FA})

2.2.2 Density-corrected pre-scaled algorithm for QM calcu-
lation

Link atoms in regular QM/MM not only add back the missing co-
valent interaction between QM and MM atoms, but also corrects
the QM charge density and the wavefunction near the QM/MM
boundary. Without them, one obtain unphysical wavefunctions
with dangling bonds at the QM/MM boundary. The SISPA method
also suffers from unphysical QM charge density and wavefunc-
tion. In many cases, density-driven errors is the dominant error in
density-functional49–51 QM calculations52, and the accuracy can
be improved by correcting the charge density53. mod-SISPA of Ta-
ble 2 compensates the missing QM-MM interaction with MM-MM
covalent interaction, but does not solve the problem of unphysical
charge density.

In the following, I describe a density-corrected pre-scaled
(DCP) algorithm for studying the effect of correcting the charge
density in SISPA-like AP-QM/MM methods. The buffer regions in
SISPA ensure the continuity of both the charge density and the
PES as atoms move between the QM and MM regions. I split
these two purposes of buffer regions in DCP by introducing a sec-
ondary buffer region, so that the original buffer region (referred
to as the primary buffer region in the following) only ensures the
continuity of the PES, and the secondary buffer region ensures
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the continuity of the charge density.
I define the secondary buffer region of each center as a con-

centric spherical shell outside the corresponding primary buffer
region. The pre-scaling factors of all atoms are assigned accord-
ing to Eqs. (1), (2) and (3), with the RQM

ζ
and W buf

ζ
of Eq. (3)

replaced by RQM
ζ

+W prim
ζ

and W sec
ζ

, where W prim
ζ

and W sec
ζ

are the
thicknesses of the primary and secondary buffer regions of center
ζ respectively. Fig. 2 demonstrates the pre-scaling and scaling
factors with an 1D atom chain.
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Fig. 2 The pre-scaling and scaling factors of the DCP, illustrated with an
1D atom chain. (a) Pre-scaling factors in the self-consistent QM calcu-
lation of the first step. (b) Scaling factors in the non-self-consistent QM
calculation of the second step. The pre-scaling and scaling factors are
calculated with Eq. (2).

The DCP algorithm has two steps. In the first step, I carry out
a self-consistent QM calculation with interactions scaled with the
pre-scaling factors [Fig. 2(a)] and obtain the pre-scaled charge
density and wavefunction. These are kept unchanged in the sec-
ond step, and with them I carry out a non-self-consistent QM cal-
culation with interactions scaled with scaling factors [Fig. 2(b)],
which yields the QM potential energy and forces. The pre-scaled
first step is the same as a SISPA QM calculation with a bigger
QM region, and it ensures that the charge density and wavefunc-
tion change continuously as the QM subsystem change. The pre-
scaling factors of QM and primary-buffer atoms equal to 1, lead-
ing to a reasonable charge density inside the QM and primary
buffer regions. The QM-QM interactions involving primary buffer
atoms are therefore corrected. Although the charge density in the
secondary buffer region would still tend to that of isolated atoms,
the effect of having such unphysical charge density is countered
by the vanishing scaling factors of the secondary buffer atoms.

The Hellmann-Feynman theorem does not hold for DCP. The
QM forces therefore contain extra terms involving derivatives of
the KS orbitals. To avoid direct calculation of these derivatives54,
I derive the z-vector method55,56 for DCP. The extra computa-
tional cost of DCP comparing with SISPA is mainly composed
of the cost of two matrix diagonalizations, one of dimension
Nbasis×Nbasis, the other of dimension (Nocc×Nvirt)×(Nocc×Nvirt),
where Nbasis, Nocc and Nvirt are the number of basis functions,
of occupied and virtual orbitals, respectively. When using self-
consistent charge (SCC) DFTB29 as the QM method, the compu-
tational cost of DCP is higher due to its reliance on Mulliken-type
partial charges. Refer to the ESI of this paper for details.

The pseudocode of the DCP algorithm that is different from
mod-SISPA is listed as the following. QM1 and QM2 correspond
to the pre-scaled self-consistent QM calculation and the scaled
non-self-consistent QM calculation respectively. ρ in the following

is the first-order reduced density matrix (1-RDM).
procedure QM1({~Rα},{λα},{~RA},{λA},{qMM

A })
ρ ← INITIALDENSITYMATRIX({~Rα})
repeat
H,S← SCALEDMATRICES({~Rα},{λα},{~RA},{λA},{qMM

A },ρ)
ρ ← DIAGONALIZE(H,S)

until ρ converged
return (ρ)

procedure QM2({~Rα},{λα},{~RA},{λA},{qMM
A },ρ)

H,S← SCALEDMATRICES({~Rα},{λα},{~RA},{λA},{qMM
A },ρ)

V QM,{~Fα},{~FA},ρ ← DIAGONALIZE(H,S)
for each α,A

do


λαA← SCALINGQMMM(λα ,λA)

Evdw
αA ← λαADISPERSION(~Rα ,~RA)

V QM←V QM +Evdw
αA ,

~Fα ← ~Fα −∇~Rα
Evdw

αA , ~FA← ~FA−∇~RAEvdw
αA

return (V QM,{~Fα},{~FA})

main
{~Rα}← All atom positions,{~Rζ }← All QM center positions
λα ← PARTITION({~Rα},{~Rζ },{R

QM
ζ
},{W prim

ζ
})

λ
pre
λ
← PARTITION({~Rα},{~Rζ },{R

QM
ζ

+W prim
ζ
},{W sec

ζ
})

P1← QM, primary and secondary buffer atoms
Q1← Secondary buffer and MM atoms
P2← QM and primary buffer atoms
Q2← Primary and secondary buffer and MM atoms
ρ ← QM1({~Rα∈P1},{λα∈P1},{~Rα∈Q1},{λα∈Q1},{qMM

α∈Q1})
V QM,{~FQM

α∈P2},{~F
QM/MM
α∈Q2 }←

QM2({~Rα∈P2},{λα∈P2},{~Rα∈Q2},{λα∈Q2},{qMM
α∈Q2},ρ)

V MM,{~FMM
α∈Q2}←MM({~Rα∈Q2},{λα∈Q2},{qMM

α∈Q2})
return (V QM +V MM,{~FQM

α +~FQM/MM
α +~FMM

α })

3 Results
In the following, I use bulk Silicon and small organic molecules
to demonstrate the methods. Silicon is an important material for
the semiconductor industry, and further development of semicon-
ductor technologies requires atomistic understanding of the pro-
cesses in semiconductor materials and devices. Many technologi-
cal processes in the fabrication of semiconductor devices happen
across a large distance and have obvious active sites. An example
is the ion implantation57–59 process in the fabrication of semi-
conductor devices, where the fast-moving primary knock-on atom
(PKA) lead to collision cascades60–62, involving both geometries
far from the equilibrium and a strongly perturbed local electronic
structure. It is found that electronic effects are essential in the
process61,63, and explicit treatment of electrons may yield results
highly different from those of classical MM64. Such processes
are suitable for AP-QM/MM studies, but it would be difficult to
develop a reasonable scheme that groups atoms into fragments
for such systems, and the computational cost of the simulation
with existing AP-QM/MM methods (except SISPA) would be very
high due to large number of QM calculations per time step. I
therefore use Silicon systems in the following to demonstrate the
methods. Since existing AP-QM/MM methods are mostly applied
to organic molecules, I also demonstrate the methods in small
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organic molecules to better assess their performances.

3.1 Computational details

I implement SISPA, mod-SISPA, DCP and the scaled COMB poten-
tial and scaled CHARMM force field in the LAMMPS65,66 code.
The scaled DFTB calculation is performed with a modified ver-
sion of the DFTB+67 code. Mod-SISPA scaling factors are used
for the DCP results in this paper, since it represents the part of the
covalent interaction missing from mod-SISPA.

SCC-DFTB29 extends the original DFTB method28 by including
atomic partial charges, which greatly improved the accuracy and
transferability of the method. I use SCC-DFTB as the QM method
for most of the calculations. The scaling of QM interactions in
SISPA-like methods can lead to instabilities in SCC-DFTB, how-
ever, and I have to switch to the original non-SCC DFTB as the
QM method in some of the following calculations. The partition
parameters of the following examples are chosen to illustrate the
behaviors of the methods, and they are not meant to be optimal.

For the following examples of Silicon systems, I cannot as-
sign fixed MM charges to atoms since all atoms are identical,
and charge equilibration (QEq)31,68 methods for MM would in-
troduce extra QM forces that depend on the derivative of MM
charges with respect to atom positions, which can be difficult to
calculate. To avoid complications, I set the MM charges to zero
for these examples. For the examples with organic molecules, the
MM charges are set to the standard values of the CHARMM force
field. MM charges are treated as Gaussian distribution of charges
for easier convergence40.

3.2 Silicon dimer and trimer

I use Si2 and Si3 molecules as model systems to study the effect of
the scaling. Fig. 3 shows how the energy and force changes with
the bond length of Si2. The potential energy curves of both mod-
SISPA and DCP are continuous as expected. The potential well
of SISPA is too narrow comparing with those of both the QM and
MM, indicating the missing covalent interaction. The mod-SISPA
of Table 2 compensates this with MM covalent interactions, lead-
ing to a wider potential well which is closer to both the QM and
the MM potential wells. Since the PAP method is compatible with
link atoms35, I show the PAP curves both with and without hydro-
gen link atom for comparison, and the length of the link bond is
scaled according to the length of the actual bond it represents69.
I do not set a cutoff length for the link bond since it would lead
to a discontinuous potential energy curve. PAP without link atom
does not properly represent the covalent interaction, and its po-
tential well has a very similar shape as that of SISPA in Fig. 3. Due
to the inclusion of the QM-MM covalent interaction, PAP with link
atom also leads to a wider potential well.

In Fig. 3, the interaction is overestimated when using link
atoms to represent covalent bonds cut by the QM/MM bound-
ary in PAP. This is due to the difference in the strength of the
Si-Si and Si-H bonds. It should be noted that the length of the
Si-H link bond is determined by (RSi-Si/Req

Si-Si)R
eq
Si-H where Req is

the equilibrium bond length, so the Si-H interaction appears to be
stronger than the Si-Si interaction here. A better chosen partition
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Fig. 3 Potential energies and forces plotted versus bond length of Si2.
One of the atom is the QM center, and the force on the other atom is
plotted. The partition parameters are RQM = 2Å, W prim = 1.0Å, and W sec =

1.0Å. ‘Abrupt’ refers to the calculation without buffer regions 5,6.
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parameter can alleviate this problem, as demonstrated in Fig. 4,
but this may not be always possible in systems with more atoms.
The mod-SISPA potential energy curve performs better in this as-
pect. It allows more freedom in the choice of partition parameters
as it is always an interpolation between the QM and MM curves.
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Fig. 4 Potential energies versus atom distance in Si2 with different value
of RQM. The system is the same as in Fig. 3. W buf = 1.0Å for both
RQM = 2.0Å and RQM = 3.0Å.

DCP appears to yield a even narrower potential well than that
of SISPA, which is somewhat unexpected. Despite secondary-
buffer atoms having vanishing scaling factors, the pre-scaling in
DCP still has a prominent effect on the PES, which creates a bar-
rier at the boundary of the primary and secondary buffer regions.
Taking this barrier into account, the effective DCP potential well
is wider than that of SISPA. Noticing the similarity of the shape
of the DCP and mod-SISPA potential energy curves between 2.8Å
and 3Å, the effective DCP potential well is deeper than that of
mod-SISPA when shifted down so that the curves between 2.8Å
and 3Å are aligned. The difference between DCP and mod-SISPA
signifies the missing part of the QM-MM covalent interaction due
to the unphysical charge density. DCP curve for R > 3Å tends to
the MM curve since the DCP PES is continuous, generating the
artificial barrier at 3Å. This artifact drives atoms away from the
boundary of the buffer regions and would lead to distortions in
the geometry, so DCP should not be used directly in AP-QM/MM
simulations, and should only be used as a tool for analyzing the
effect of charge density in SISPA-like methods.

The contribution of the scaling factors to the forces are unphys-
ical and are responsible for geometry distortions18,70,71. It has
been proposed that such transition forces should be discarded di-
rectly70, or an extra term should be added to the Hamiltonian
to compensate the effect17,18,71. I plot the forces with and with-
out transition forces in Fig. 5 for comparison, and find that the
transition forces have a significant impact in SISPA-like methods
as well. The forces of all AP-QM/MM methods becomes closer to
QM forces with the transition forces removed. Due to the scaling
of the interactions in SISPA-like methods, developing a correction
to the Hamiltonian would be more difficult. In a real application
of SISPA-like methods, it is more practical to discard the transi-
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tion forces and couple the system to a thermostat70.
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Fig. 6 Potential energies of Si3, with one atom at the origin (atom 0) as
the center and the other two atoms on the positive x and y axes respec-
tively (atom 1 and 2). The partition parameters and calculation methods
are the same as in Fig. 3. The curves are shifted so that they align
at y2 = 5Å for easier comparison. The SCC-DFTB QM calculations of
all curves are done with fractionally occupied orbitals corresponding to
a temperature of 300K to avoid numerical instabilities. For PAP with link
atoms, I modified the QM code so that a link atom only interact with the
atom it links to.

In the Si2 example, the center atom is always treated in QM,
and the curves do not show the interaction between two buffer
atoms. I plot the slices of the PES of three Si atoms in Fig. 6
to provide a better comparison. For the x1 = 1.5Å case, both
atom 0 (center) and atom 1 are in the QM region, so correcting
the charge density of atom 2 would change the QM interaction
strengths of atom pair 0-2 and 1-2, leading to the artificial bar-
rier of DCP being about twice the height than that of Fig. 3(b).
When both atom 1 and 2 are in the buffer region, the effect of
correcting the charge density is smaller, since the interaction is
scaled by both atom’s scaling factor. Again, I find that the PESs
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of PAP and SISPA have similar shapes, and mod-SISPA yields a
better interpolation between QM and MM curves.

I only allow a link atom to interact with the corresponding QM
atom of that bond to avoid double counting, but the shapes of the
potential energy curves of PAP with link atoms vary more rapidly
with x1 than curves of other methods. This is due to that some
of the partitions in PAP have two hydrogen link atoms that repre-
sents the same Si atom, so the overestimation of the interaction
in Fig. 3 is doubled here.

3.3 bulk Si
I apply the SISPA-like AP-QM/MM methods on a system of 4×
4×4 crystalline Si supercell with 512 atoms. The lattice constant
is fixed at 5.43Å. Due to the large number of atoms involved,
I am unable to carry out PAP calculations for comparison. For
applications in covalent solids, it is usually impractical to reduce
the computational cost by grouping atoms into fragments due to
the system being highly uniform.
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Fig. 7 Potential energies and scaling factors as an atom in bulk Si moves
away from the QM center. R is the distance of the moved atom to the
center atom. The moved atom is one of the nearest neighbors of the
center. The partition parameters are RQM = 2.5Å, W prim =W buf = 1Å, and
W sec = 3Å. The QM curve is obtained with only the Γ point to be consis-
tent with other calculations. The potential energy curves are shifted and
aligned at R = 2Å for easier comparison.

Fig. 7 shows the potential energy as an atom moves away from
the QM center in bulk Si. The potential energy curve of both QM
and MM have the same general shape. The minima of the QM
and MM potential energy curves are close to each other, indicat-
ing similar equilibrium bond lengths. For distances smaller than
about 6Å, the force on the moved atom points towards the cen-
ter atom, showing the covalent interaction between them. The
force switches to the opposite direction for larger distances as the
interaction between the moved atom and another atom becomes
stronger. Due to the missing covalent interaction between QM

and MM representations, the SISPA potential energy curve is too
low in the buffer region, generating the artificial potential well at
about 3.5Å, but the position of this potential well is determined by
artificially chosen partition parameters and not directly related to
the equilibrium bond lengths of both QM and MM. This would be
problematic in molecular dynamics (MD) simulations since differ-
ent partition parameters may lead to drastically different results.
Correcting the charge density in DCP leads to an overcorrection.
Instead of a potential well, DCP generates an artificial barrier at
the boundary of primary and secondary buffer regions, similar to
the Si2 case in Fig. 3. Larger buffer regions can be helpful for im-
proving the description of covalent bonds and reducing the size of
the artifacts of DCP. The computational cost would increase with
larger buffer regions, but not as rapidly as in AP-QM/MM methods
with multiple QM calculations per time step. mod-SISPA yields a
better potential energy curve as it follows the general shape of
both the QM and the MM curves. Even though the position of the
minimum of the potential well is different from the QM and MM
values, the difference is much smaller than that of SISPA, making
it suitable for applications in bulk solids.

−0.2

−0.1

 0

 0.1

 0.2

 0  1  2  3  4  5  6  7  8  9  10

E
(e

V
)

t(ps)

QM(nonSCC)
MM

SISPA
mod−SISPA

DCP(nonSCC)

 0

 150

 0  10

Abrupt  0

 25

 0  10

SISPA(nonSCC)
mod−SISPA(nonSCC)

Fig. 8 Total energies during MD simulations of bulk Si in the NVE ensem-
ble with different methods. The time step is 0.1 fs. The QM calculation is
run for 3.5 ps, and other calculations are run for 10 ps. The partition pa-
rameters are RQM = 2.5Å, W prim =W buf = 1Å, and W sec = 1Å. The curves
are aligned at t=0 for easier comparison. The QM calculation is carried
out with only the Γ point to be consistent with other calculations.

I carry out MD tests in the NVE ensemble with the 512 atom Si
supercell, with the initial geometry and velocities obtained from
a MD simulation with the COMB potential in the NVT ensemble
in equilibration at 2000 K. Fig. 8 shows the total energies during
the simulations. For QM and DCP calculations, non-SCC DFTB is
used due to convergence problems of SCC-DFTB.

SISPA, mod-SISPA and DCP conserve the total energy in most
cases. In some circumstances, however, the energy conservation
can be broken by a problem in the QM calculation. For a buffer
atom very close to the buffer/MM boundary, its QM interaction
with other atoms vanish, and some of the QM orbitals are equal
to atomic orbitals of this atom. When the atom move across the
boundary, energy conservation would be broken if these orbitals
happen to be unoccupied. The right inset of Fig. 8 demonstrates
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this problem with non-SCC DFTB as the QM method. The prob-
lem with energy conservation is alleviated by the orbital relax-
ation of SCC-DFTB (SISPA and mod-SISPA curves in the main
panel of Fig. 8), as the magnitudes of the energy variations are
much smaller and the errors do not grow steadily. One may need
to use constrained density-functional theory72 as the QM method
to ensure energy conservation. The DCP algorithm is less affected
by the use of non-SCC DFTB since the direct effect is on the charge
density of the pre-scaling step instead of on the energy.

The temperature variations of QM, MM, SISPA and mod-SISPA
in Fig. 9 all have similar magnitudes. They are larger than that
of PAP simulation with argon atoms17 due to the much stronger
interaction in bulk Si. The simulation with no buffer region
(‘Abrupt’ curve in Fig. 9) shows artificial heating of the system,
which is not present in other curves.
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Fig. 9 Temperature during MD simulations of bulk Si in the NVE ensem-
ble with different methods. The setup of the simulation is the same as
Fig. 8.

Fig. 10 illustrates the radial distribution function (RDF) of the
QM center atom relative to all other atoms. The RDFs obtained
from purely QM and purely MM simulations are similar to each
other, but all the AP-QM/MM results are distorted. The RDF of
SISPA in solutions shows that the first solvation shell is moved to
the buffer boundary21. I find the opposite in bulk Si here, and the
first shell of SISPA is moved towards the QM center. The shape
of the RDFs can be roughly explained with the potential energy
curves in Fig. 7. The first two peaks of the RDF of SISPA corre-
spond to the two minima of the potential energy curve in Fig. 7,
and the peak of the second shell is higher since its corresponding
minima is lower in energy. Comparing with QM and MM RDFs,
the peak of the second shell of SISPA is closer to the QM center.
The interaction between the atoms in the first and second shells
would then push the first shell towards the QM center, leading to
the position of the first shell not exactly located at the first local
minima of the curve in Fig. 7. DCP overestimates the density
of the first shell, which is in accordance with the deep effective
potential well in Fig. 7 due to the artificial barrier.

The RDF of mod-SISPA also overestimates the density of the
first shell, however. It should be noted that Fig. 7 represents a
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Fig. 10 Radial distribution functions of the QM center atom relative to
other atoms from MD simulations of bulk Si in the NVE ensemble. The
setup of the simulation is the same as Fig. 8. The QM RDF is obtained
from configurations sampled from 2 to 3.5 ps, and other RDFs are ob-
tained from configurations sampled from 5 to 10 ps. The vertical dashed
lines represent the boundary of QM, primary buffer and secondary buffer
regions.

highly simplified situation where only one atom moves, and the
PES is a much more complicated object which may contain un-
expected feature like this. I find that this problem might be due
to the transition forces, since it has been reported that transi-
tion forces due to scaling factors may lead to geometry distor-
tions18,70,71. I run MD simulations without transition forces to
confirm this, and the results are shown in Fig. 11. The RDF of
mod-SISPA without transition forces no longer overestimate the
density of the first shell.
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Fig. 11 Radial distribution functions similar to Fig. 10, but the SISPA,
mod-SISPA and DCP simulations are done without including transition
forces due to the derivatives of the scaling factors with respect to atom
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Table 3 Geometrical parameters of n-butanol and its anion

C4H9OH
Method ∑α

∣∣∣~Rα −~RQM
α

∣∣∣(Å) C1-O1(Å) C1-C2(Å) C2-C3(Å) C1-O1-H10 C2-C1-O1 C3-C2-C1 H3-C2-C1-H1 C2-C1-O1-H10

QM 0 1.414 1.552 1.546 110.2◦ 112.3◦ 113.4◦ 178.6◦ 58.28◦

MM 0.580 1.421 1.531 1.537 107.0◦ 109.3◦ 113.1◦ 179.4◦ 64.15◦

mod-SISPA 1.522 1.422 1.502 1.556 109.9◦ 97.82◦ 114.8◦ 175.8◦ 67.79◦

mod-SISPA

w/o trans. force
0.466 1.427 1.510 1.562 110.1◦ 108.0◦ 112.9◦ 178.7◦ 60.29◦

SISPA

w/o trans. force
1.247 1.432 1.506 1.652 113.4◦ 108.6◦ 107.7◦ 177.1◦ 85.11◦

DCP 2.473 1.517 1.491 1.744 107.93◦ 99.8◦ 120.9◦ 171.1◦ 97.84◦

DCP

w/o trans. force
1.319 1.446 1.449 1.685 114.5◦ 108.5◦ 110.1◦ 177.9◦ 85.92◦

C4H9O−

QM 0 1.286 1.742 1.540 N/A 114.8◦ 114.5◦ 174.9◦ N/A

MM 1.236 1.327 1.539 1.535 N/A 115.5◦ 113.4◦ 176.2◦ N/A

mod-SISPA 1.424 1.352 1.547 1.557 N/A 100.2◦ 116.1◦ 177.0◦ N/A

mod-SISPA

w/o trans. force
0.884 1.349 1.565 1.558 N/A 107.3◦ 114.9◦ 179.5◦ N/A

DCP 3.015 1.554 1.496 1.807
N/A

95.7◦ 124.1◦ 171.8◦
N/A

DCP

w/o trans. force
1.558 1.369 1.462 1.858 N/A 85.8◦ 103.7◦ 167.8◦ N/A

3.4 Small organic molecules

I apply SISPA, mod-SISPA and DCP on the calculation of pro-
tonation/deprotonation energies of n-butylamine, n-butanol and
n-butanethiol to test the treatment of covalent bonds in organic
molecules. We use SCC-DFTB with UFF dispersion correction73

at 0K as the QM method for the following calculations. The force
field parameters are taken from the CHARMM General Force Field
(CGenFF)74,75. The QM centers are placed on the N, O and S
atoms respectively.

The partition parameters are chosen so that for the QM, pri-
mary buffer and secondary buffer regions, the MM charges of
atoms in each region sum to 0 or an integer. The overall QM
charge is set to the sum of MM charges of all QM, primary and
secondary buffer atoms. Since the energies need to be consis-
tent for calculating the protonation/deprotonation energies, I use
the same set of partition parameters for the neutral molecule and
its protonated/deprotonated ion. Fig. 12 shows the partition of
n-butanol and its anion.

Geometry optimizations are carried out with the steepest-
descent algorithm. Convergence is achieved when the max force
on all atoms is smaller than 1 eV/Å. The geometrical parameters
of n-butanol and its anion are listed in Table 3. The SISPA al-
gorithm fails to converge for all molecules we tested due to its
inability in treating covalent interactions. Mod-SISPA and DCP
are able to achieve convergence, but the geometries show various
degrees of distortion comparing with the QM geometries.

The geometry distortions are largely due to the transition
forces, as geometry optimizations without such forces yield bet-
ter geometries in all cases. One example is provided in Table
3. Mod-SISPA without transition forces yields geometries clos-
est to the QM geometry. Although geometry optimizations with
SISPA do not converge, SISPA without transition forces is able to
achieve convergence in all cases except for n-butoxide anion. By

(a)

(b)

Fig. 12 Illustration of the partition and atom labels of (a) C4H9OH, (b)
C4H9O−. The red, blue and green dashed lines indicate the QM/buffer
(or QM/primary buffer in DCP), buffer/MM (or primary buffer/secondary
buffer), and secondary buffer/MM boundaries.
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comparing the intermediate geometries of SISPA with and with-
out transition forces, I find the main effect of the transition force
is to push atoms away from the buffer region. This agrees with
the RDFs of bulk Si in Sec. 3.3, and is also consistent with the
observation in the SISPA simulation of liquid water21 where the
buffer region is found to be almost empty.

The protonation/deprotonation energies are listed in Table 4.
Calculations without transition forces in general yield worse en-
ergies despite better geometries. Geometry optimizations without
transition forces do not have consistent energies and forces since
the transition forces are simply discarded. They do not arrive
at the global minima of the PES, leading to the worse energet-
ics. Hamiltonian corrections17,18,71 for transition forces can be
expected to achieve better energetics and geometry at the same
time, since it is able to change the shape of the PES so that the
local minima corresponding to geometry optimizations without
transition forces become the new global minima. As mentioned
before, however, it might be difficult to develop such corrections
for SISPA-like methods.

Table 4 Protonation/deprotonation energies of small organic molecules

Protonation energy (kcal/mol)
Mol. QM mod- mod- SISPA DCP DCP

SISPA SISPA w/o F tr w/o F tr

w/o F tr

C4H9NH2 -51.92 -54.36 -54.88 -61.69 -77.95 -85.02
Deprotonation energy (kcal/mol)

C4H9OH 227.4 212.7 182.1 N/A 138.5 10.28
C4H9SH 198.5 190.9 176.7 177.3 117.4 75.80

mod-SISPA yields protonation/deprotonation energies with the
smallest relative errors in these tests. Comparing the result of
n-butanol with literature40, the relative error of mod-SISPA is
slightly larger than that of regular QM/MM with link atoms. The
larger error is likely due to the missing part of covalent interac-
tion of mod-SISPA. The DCP method is developed to correct the
missing covalent interaction of mod-SISPA due to wrong charge
density, but it yields a much larger relative error in these ener-
gies. Similarly in bulk Si, the DCP PES has features that do not
exist on QM and MM PESs. More sophisticated methods need to
be developed to fully incorporate QM/MM covalent interactions
in SISPA-like methods.

4 Conclusions
In this paper, I study methods extending the SISPA AP-QM/MM
method to covalently bonded systems. While common energy-
based AP-QM/MM methods are physically sound and would yield
good results, their requirement of multiple QM calculations per
time step can be overwhelming. Although grouping atoms into
fragments reduces the number of partitions and the computa-
tional cost, it requires knowledge of the studied system before-
hand, and there are also systems where a reasonable grouping
scheme may not exist, such as the bulk Si examples in this pa-
per. The SISPA method achieves one QM calculation per time
step with the cost of being less rigorous, since the meaning of the
scaled QM calculation is vague. Despite this flaw, being able to

do an AP-QM/MM calculation with a much smaller cost is quite
attractive, since it opens up many possibilities for large systems
that was inaccessible to common AP-QM/MM methods. Besides,
AP-QM/MM methods with multiple QM calculations may con-
tain partitions that lead to ill-defined QM calculations, especially
when treating covalently bonded systems. It is therefore worth-
while to continue developing SISPA-like methods, even though
there have been significant advancements in reducing the num-
ber of QM calculations in AP-QM/MM for specific systems12,13.

Various methods for treating covalent bonds cut by the
QM/MM boundary have been developed for regular QM/MM.
These methods can be applied to AP-QM/MM methods with mul-
tiple QM calculations per time step, since the calculation of each
partition can be seem as a regular QM/MM calculation. Since
these methods are incompatible with SISPA due to scaled interac-
tions, I propose a new set of scaling factors (mod-SISPA) which
compensates for the missing covalent interactions between QM
and MM representations in the MM part of the SISPA method.
I also develop the DCP algorithm that corrects the unphysical
charge density of SISPA while keeping the PES continuous and
smooth for studying the effect of the QM charge density in SISPA-
like methods.

Tests in small model systems show that mod-SISPA yields a
wider potential well than that of SISPA, indicating stronger inter-
action. The mod-SISPA potential energy can be better than that
of PAP with link atoms in some aspects, since the latter may be
negatively affected by the differences in the interaction strengths
of the actual bond and the link bond, while the former is always
close to the potential energies of QM or MM in different regions. I
find that SISPA may yield a PES with an artificial minimum in bulk
solids depending on the partition parameters, while mod-SISPA
do not have this problem. The charge density and wavefunction
tend to those of isolated atoms/fragments near the buffer/MM
boundary in SISPA, and interactions between these atoms and
other QM or buffer atoms are clearly underestimated. Correcting
the charge density in DCP does lead to a deeper effective potential
well in Si2, which seems to verify the underestimation of interac-
tions in SISPA. The simple correction in DCP leads to significant
artifacts in the PES, however, making it unsuitable for real appli-
cations. Similar to other AP-QM/MM methods, I also find that the
transition forces due to scaling factors lead to geometry distor-
tions in SISPA-like methods as well. The effect of the transition
forces on the geometry is more evident for organic molecules. A
Hamiltonian correction to transition forces can be expected to im-
prove both the energetics and the geometry for SISPA-like meth-
ods.
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