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ABSTRACT: A synthesis of decaarylanthracene with nine different substituents has 
been accomplished by a coupling/ring-transformation strategy. The oxidation of 
tetraarylthiophenes with four different substituents to the corresponding thiophene 
S-oxides, and a [4+2] cycloaddition with a double benzyne precursor afforded a mul-
tiply arylated naphthalene derivative. Subsequently, the naphthalene derivative was 
converted into a naphthalyne, and then a [4+2] cycloaddition of another thiophene 
S-oxide provided decaarylanthracenes with nine different aryl groups.  

■ INTRODUCTION 

Acenes are linearly fused aromatic rings that are classified as pol-
ycyclic aromatic hydrocarbons (PAHs). These highly conjugated 
structures have excellent optical and organic electronic properties, 
and have been well-studied for two decades1 Particularly, acenes 
with multiple aromatic rings are organic electronic materials for 
everyday societal use (Figure 1). For example, oligoanthracene, 
which have three anthracenes connected to each other, is utilized as 
an organic field-effect transistor (OFET).2 Additionally, dinaph-
thylanthracene, which has two naphthalene groups bonded to an 
anthracene unit, is well-known as an organic light-emitting diode 
(OLED).3 Rubrene, which has four benzene substituents on a cen-
tral tetracene core, is also used in OLEDs, OFETs, and organic 
semiconductors.4 Another OLED material is known: fused anthra-
cene, in which eight of the hydrogens on anthracene are substituted 
with aryl groups.5 Therefore, the development of efficient methods 
to introduce multiple aryl groups onto acenes is necessary, and in 
turn gives us the opportunity to create innovative functional mole-
cules.6 

Specifically, anthracene has been synthesized from dihydroan-
thracene using oxidative methods, and from anthraquinones using 
reductive methods, as well as by retrocyclization.7 However, these 
methods are limited in the number of substituents that can be in-
troduced. Another known method is the synthesis of anthracene 
derivatives by the cycloaddition of benzynes. For example, Pascal 
and co-workers have successfully synthesized decaphenylanthra-
cene (DPA) using a [4+2] cycloaddition of benzynes (Figure 2A).8 
This synthesis involved the cycloaddition of a substituted benzyne, 
which was generated from tetraphenylanthranilic acid, with hexa-
phenylisobenzofuran. This pioneering synthetic strategy can be 
applied to other polyphenylacenes as well.9 However, the substitu-
ents introduced in this manner are limited to only phenyl groups, 
and there are no examples of decaarylanthracenes that have differ-
ent aromatic substituents.  

 
Figure 1. Multiply arylated acenes in organic materials.  

  Meanwhile, in 2015, we developed a coupling/ring transformation 
strategy and applied it to the first synthesis of hexaarylbenzenes 
(HABs) with five and six different aryl groups (Figure 2A).10 Our 
HAB synthesis commenced with cross-coupling reactions (involv-
ing C–H arylations) of 3-methoxythiophene to give tetraarylthio-
phenes with four different aryl groups (Figure 2B). Oxidation of the 
thiophenes, then [4+2] cycloaddition/desulfonation of the result-
ing tetraarylthiophene S-oxides with diarylalkynes, afforded the 
HABs. This demonstrated a net ring transformation from a thio-
phene to a benzene, and this general strategy has been applicable 
for the synthesis of multi-arylated azines, heteroles, and acenes 
(Figure 2C). As such, we have achieved the synthesis of pentaa-
rylpyridine (PAP), 11a hexaarylindole (HAI), 11c hexaarylisoquino  
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Figure 2. (A) A pioneering synthesis of decaphenylanthracene (DPA) by Pascal and co-workers. (B) A synthesis of hexaarylbenzenes through a cou-
pling/ring transformation strategy. (C) Syntheses of multi-arylated heteroarenes, heteroles and acenes by using the coupling/ring transformation 
strategy. (D) Previously synthesized octaarylanthracene (OAA), and synthesis of decaarylanthracene (DAA; this work).

line (HAiQ),11d and pentaarylcarbazole (PAC),11e as well as octaa-
rylnaphthalene (OAN) and octaarylanthracene (OAA).11b In the 
synthesis of OAA,11b the target molecule was divided into three 
units: two tetraarylthiophene S-oxides and a double benzyne pre-
cursor A (Figure 2D).5,12 First, the tetraarylthiophene S-oxide was 
reacted with a benzyne (which was generated from a double ben-
zyne precursor A with an appropriate base) via [4+2] cycloaddition 
to afford the desired adduct. Thereafter, generation of a 
tetraarylnaphthalyne in the presence of another tetraarylthiophene 
S-oxide produced OAA through another [4+2] cycloaddition. Alt-
hough we accomplished OAA by using a coupling/ring transfor-
mation strategy, the synthesis of decaarylanthracene (DAA), which 
would be a highly crowded assembly of 10 aryl groups onto the 
anthracene core, was not achievable with the same route. To realize 
the synthesis of DAA, a double benzyne precursor B, with two addi-
tional aryl groups on the benzene core, was designed. Precursor B 
has an imide group and an o-trimethylsilylaryl triflate, which ena-
bles the sequential generation of benzyne intermediates under dif-
ferent conditions. Herein, we report the first synthesis of DAA us-

ing double benzyne precursor B and hexaarylnaphthalyne as key 
units.  

■ RESULTS AND DISCUSSION  

  Synthesis of a Double Benzyne Precursor.  
To synthesize precursor B, which is in itself a highly substituted 
benzene core, C–H arylation and [4+2] cycloaddition of 3-
methoxythiophene (1) were envisaged to be effective tools. The 
synthesis of precursor B commenced with C–H arylations of 3-
methoxythiophene with 4-iodoethylbenzene in the presence of 
catalytic PdCl2/bipy and Ag2CO3 to provide 2,5-diaryl-3-
methoxythiophene 2 in 66% yield (Scheme 1).13 After C4-
bromination of thiophene 2, the resulting product was oxidized to 
the corresponding thiophene S-oxide 3 to enhance the reactivity of 
thiophene as a diene. A subsequent [4+2] cycloaddition with dime-
thyl acetylenedicarboxylate provided the corresponding benzene 4 
in moderate yield. In the presence of aqueous HBr, demethylation 
of the methoxy group and hydrolysis of the ester proceeded 
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smoothly. After acid anhydride formation, phthalimide 5 was 
formed in 90% yield (over three steps). Finally, the bromophenol 
moiety of 5 was readily converted to o-trimethylsilylaryl triflate by a 
three-step sequence (silylation, lithiation, retro-Brook rearrange-

ment followed by triflation) to afford double benzyne precursor 6 
(as the equivalent unit of double benzyne precursor B in Figure 
2D). 

 

Scheme 1. Synthesis of a double benzyne precursor. 

[4+2] Cycloaddition Between the Double Benzyne Precursor 
and Tetraarylthiophene S-Oxide. 

With precursor 6 in hand, the synthesis of DAA was attempted 
by a [4+2] cycloaddition with tetraarylthiophene S-oxide 7a 
(Scheme 2A). 7a was readily prepared from 3-methoxythiophene 
(1) using our previously reported method in seven steps.11b Initially, 
the [4+2] cycloaddition of 6 with 7a under fluoride conditions to 
generate benzyne was examined.14 When tetrabutylammonium 
fluoride (TBAF), which is used for generating benzyne from o-
trimethylsilylaryl triflate, was applied, [4+2] cycloadduct 8 was not 
detected. Instead of the desired product 8, unprecedented 8-
membered ring 9 and 5,5-fused ring system 10 were formed as pri-
mary products of the reaction (Scheme 2B). Treatment with CsF 
using a CH3CN/DCE solvent mixture only caused side reactions as 
well. However, when the reaction was run in DCE and toluene, 8 
was detected. Tetrabutylammonium difluorotriphenylsilicate 
(TBAT), which is a soluble fluoride source in toluene, showed no 
positive effect on the yield of 8. Other inorganic fluoride sources 
such as KF and NH4F gave no reaction. Finally, when the reaction 
was scaled up using CsF in toluene, in addition to the desired 6-
membered ring 8 (6% yield), the undesired 8-membered products 
9 and 5,5-membered ring systems 10 were also isolated in 22% 
yield and 9% yield, respectively. Although a rigorous screening of 
reaction conditions (solvent, temperature, concentration and stoi-
chiometry) was conducted, the yield of 8 unfortunately could not 
be improved. 

   Next, to determine the structure of [4+2] product 8, the imide 
moiety was derivatized. Treatment of 8 with methyl iodide in the 
presence of K2CO3 provided N-methylated imide Me-8 in 73% 
yield. Me-8 was crystallized from CHCl3/pentane solution and 
characterized by X-ray crystallographic analysis. The X-ray crystal 
structure of Me-8 showed that the naphthalene skeleton is largely 

distorted, and that the steric repulsion forces the surrounding aryl 
groups to avoid each other by being out of plane with respect to the 
naphthalene core. Additionally, from the mixture of 9, isomer 9a 
was isolated and N-methylated to give Me-9a; from the mixture of 
10, isomer 10b was isolated and derivatized by demethylation, TBS 
protection and N-methylation to give TBSMe-10b. Me-9a and 
TBSMe-10b were crystallized from CHCl3/pentane or 1,2-
dichloroethane/hexane solution and characterized by X-ray crystal-
lographic analysis to reveal their unexpected structures. 

Based on the structures of Me-9a and TBSMe-10b, two plausible 
reaction mechanisms are shown in Scheme 2C. These unexpected 
reactions could be initiated by nucleophilic addition of 7a to the 
sterically hindered aryne formed from 6. When the resulting car-
banion attacks the C2 position of thiophene, a 5,5-fused ring system 
10 would be formed (red arrow). On the other hand, addition of 
the carbanion to the sulfur atom would provide 8-membered ring 9 
via carbon–sulfur bond cleavage (blue arrow). Regarding the for-
mation of the 8-membered ring, the reaction with cyclic sul-
filimines/sulfoxides and arynes afforded thiazocine/oxathiocine 
derivatives in a similar fashion by Hosoya, Yoshida and coworkers.15 
Since these unexpected products were not observed in the reaction 
with thiophene S-oxide 3 and double benzyne precursor A in our 
previous report,11b the steric hindrance on the periphery of the ar-
yne appears to cause the preference for nucleophilic addition over 
[4+2] cycloaddition. The solvent effect (the difference between 
toluene and other solvents) in this reaction might be explained as 
follows. When using polar solvents, nucleophilic addition would be 
preferred due to stabilization of the ionic intermediate, and there-
fore the 5,5-fused ring system 10 and the 8-membered ring 9 would 
predominate. On the other hand, when a nonpolar solvent is used, 
6-membered ring 8 formation proceeds in a slightly preferential 
manner. 
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Scheme 2. (A) [4+2] cycloaddition of a double benzyne precursor and tetraarylthiophene S-oxide. (B) Structural determination of the side products 
9 and 10. (C) Plausible reaction mechanisms for the formation of the 5,5-fused ring system and the 8-membered ring. In the ORTEP drawing of Me-
8, Me-9a and TBSMe-10a, hydrogen atoms are omitted for clarity and thermal ellipsoids are drawn at 50% probabilities. 

Synthesis of Decaarylanthracene (DAA). To complete the synthesis of DAA, Hofmann rearrangement of 8, 
followed by hydrolysis, was conducted to provide hexaarylnaphtha-
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lyne precursor 11 as a mixture of regioisomers (11a/11b = 1:1) in 
78% combined yield (Scheme 3). Finally, treatment of this mixture 
with tert-butyl nitrite to give hexaarylnaphthalyne 12, followed by 
reaction with thiophene S-oxide 7b, produced decaarylanthracene 
(DAA: 13) as a mixture of regioisomers (13a/13b = 1:1) in 4% 
combined yield. These regioisomers were separable by preparative 
thin-layer chromatography.   

Next, the absorption and fluorescence of the two isomers of DAA 
13 were measured.16 The absorption and fluorescence of the parent 
decaphenylanthracene (DPA) was already reported by Pascal and 
coworkers, in which DPA has an absorption maximum at 429 nm 
and emission maxima at 486 and 512 nm (in cyclohexane).8 Com-
pared with the synthesized DAAs 13, there are no large differences 
in photophysical properties between symmetrical DPA and highly 
unsymmetrical DAAs 13. 

 
Scheme 3. Synthesis of decaarylanthracene (DAA). 

■CONCLUSIONS  
In summary, a general synthetic method toward decaarylanthra-

cene (DAA) has been developed by employing a [4+2] cycloaddi-
tion of tetraarylthiophene S-oxides with a series of multiply arylated 
arynes. The present study also shows the versatility of tetraarylthio-
phene S-oxides in [4+2] cycloaddition. Conveniently, all synthetic 
units (6, 7a and 7b) are accessible from 3-methoxythiophene (1) as 
the starting material. Therefore, DAAs 12 can be synthesized by a 
combination of coupling and [4+2] cycloaddition of 3-
methoxythiophene (1). Moreover, different aryl groups could be 
installed onto the C2 and C5 positions of 3-methoxythiophene by 
C–H arylation developed in our group,17 which would lead to the 
synthesis of double benzyne precursor B with two different aryl 
groups. Although the yield and regioselectivity in the [4+2] cy-
cloaddition steps require improvement, this methodology, in prin-
ciple, allows access to decaarylanthracenes with substituents that 
are all different. With the development of a new method that can 
synthesize previously unattainable molecular structures, the discov-
ery of new functional materials can be expected.  
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