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The prediction of crystal structures from first principles requires highly accurate energies for large numbers of putative crystal
structures. The accuracy of solid state density functional theory (DFT) calculations is often required, but hundreds or more structures
can be present in the low energy region of interest, so that the associated computational costs are prohibitive. Here, we apply statistical
machine learning to predict expensive hybrid functional DFT (PBE0) calculations using a multi-fidelity approach to re-evalute the ener-
gies of crystal structures predicted with an inexpensive force field. The method uses an autoregressive Gaussian process, making use of
less expensive GGA DFT (PBE) calculations to bridge the gap between the force field and PBE0 energies. The method is benchmarked
on the crystal structure landscapes of three small, hydrogen bonding organic molecules and shown to produce accurate predictions
of energies and crystal structure ranking using small numbers of the most expensive calculations; the PBE0 energies can be predicted
with errors of less than 1 kJ mol−1 with between 4.2-6.8% of the cost of the full calculations. As the model that we have developed is
probabilistic, we discuss how the uncertainties in predicted energies impact on assessment of the energetic ranking of crystal structures.

1 Introduction
Molecular crystal structure prediction (CSP) aims to predict the
set of likely crystal structures of a molecule through computa-
tional methods alone, starting from no more than the chemical
diagram. The crystal structure adopted by a molecule is impor-
tant because it affects many properties of materials, including
physical and chemical stability1,2, melting points3–5, solubility6,
morphology7, porosity8–10 and electronic/optoelectronic proper-
ties11,12. The relationship between molecular structure and crys-
tal structure is complicated by the phenomenon of polymorphism,
where different crystal structures of the same chemical composi-
tion can be accessed experimentally, either concomitantly or un-
der different crystallization conditions. Thus, a given molecule
can have very different materials properties, depending on poly-
morph, and control of crystal structure can be exploited in matters
as simple as improving the daily experience of eating chocolate13,
or as severe as preventing drug ineffectiveness14–16.

The role of CSP must be to predict all likely crystal structures,
along with a measure of their likelihood. There have been high
profile cases in the pharmaceutical industry where failing to antic-
ipate polymorphism of a drug had serious consequences. In one
case, Rotigotine, a prescription for the treatment of Parkison’s dis-
ease, began crystallizing to an unknown polymorph in transder-
mal patches14,15. This new form was thermodynamically more
stable than the original polymorph, less soluble, and thus less ef-
ficient. In another case, an unknown polymorph of Ritonavir, a
drug for the treatment of HIV, was accidentally produced, which
was considerably less soluble and thus bioavailable16. As well as
imposing substantial costs for the drug companies, the temporary
removal of these drugs from the market also interrupt the pa-
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tients’ treatment. CSP could form part of a strategy to minimize
such risks, by guiding experiments for the preparation of undis-
covered polymorphs or providing additional confidence that no
such undiscovered polymorphs exist. Applications of CSP are also
developing in the area of functional materials discovery by link-
ing molecular structure to likely materials structures and, hence,
to properties of interest; this process can be used to screen and
prioritise potential synthetic targets.17–20

CSP is usually approached as a problem in global optimiza-
tion. Possible crystal structures correspond to local minima on
a high dimensional energy surface determined by the structural
degrees of freedom defining a crystal structure (unit cell dimen-
sions, molecular positions and orientations, and intramolecular
degrees of freedom). The process of CSP can be conceptually
split into exploration for putative crystal structures, followed by
their ranking, usually based on calculated lattice energies. The
global energy minimum is assumed to correspond to the most
likely observable crystal structure.21,22 However, the prevalence
of polymorphism23 demonstrates that other higher energy crystal
structures are also important and the energetic range of observed
polymorphism gives an indication of the region of the crystal en-
ergy landscape that will normally include all observable crystal
structures. A study of over 500 pairs of known polymorphs24 re-
vealed that over half of the pairs had a lattice energy difference
of less than 2 kJ mol−1, and only 5% had an energy difference
higher than 7.2 kJ mol−1. CSP has revealed that small organic
molecules often have dozens, and sometimes over 100 possible
crystal structures within this small energy range.25 A reason be-
hind the plurality of low energy crystal structures is the weak na-
ture of packing forces such as dispersion interactions, hydrogen
bonding, and less specific polar interactions. For most molecules,
there are many ways that these interactions can combine to form
similarly low-energy crystal structures.

The small differences in lattice energies between competing
crystal structures imply that a very good energy resolution is
needed for reliable energy rankings. This requires the compu-
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tation of crystal energies with a high level of theory, for which
solid state, periodic implementations of density functional theory
(DFT) have become a popular approach.22 The cost of solid state
DFT is too high to use for the entire CSP process. This is because a
thorough sampling of the lattice energy surface typically requires
the generation and optimization of tens or hundreds of thousands
of trial crystal structures.26 It is, therefore, more common to take
a hierarchical approach, where crystal structures are initially gen-
erated and ranked using lower cost methods (e.g. force fields),
followed by re-ranking of the lowest energy predicted crystal
structures using DFT. Final energy calculations using generalized
gradient approximation (GGA) exchange-correlation DFT func-
tionals usually suffice for ranking of structures in a organic molec-
ular CSP.27 However, there are sensitive cases that require ener-
gies at a higher level of theory, such as hybrid functional DFT.28,29

In these cases, energy evaluation can become prohibitively expen-
sive, even for CSP of very small molecules. The situation becomes
worse as the size of the molecule increases. A fast, accurate ap-
proach to achieve energies of equivalent quality to hybrid DFT
would be highly desirable.

State-of-the-art statistical machine learning methods provide
promising tools to achieve this goal. They have been actively used
for estimation of the potential energy surface of various classes of
materials30–34. Gaussian Process Regression (GPR) is of particu-
lar interest here. GPR can provide a probabilistic description of
a wide variety of functional behavior, interpolate computed data,
and tends to outperform other prediction methods for small data
problems.35 The latter is a crucial feature when the collection of
large training data sets is computationally unaffordable. Mini-
mizing the required training set size, as well as efficient choice of
such sets, especially at the hybrid level of DFT, is crucially impor-
tant to obtain an effective and cost-effective approach that can
be practically applied to CSP. GPR has previously been applied
to directly learning the DFT relative energies of sets of predicted
crystal structures,36 as well as to learning the differences between
relative energies at force field and quantum mechanical levels of
theory.36,37 These earlier studies have demonstrated promising
results for the application of GPR for acheiving DFT-quality pre-
dicted rankings at substantially lowered computational cost.

In this paper, we develop and apply multi-fidelity (multi-level)
statistical machine learning methods to learn differences in lattice
energies of a hierarchy of simulation methods that are commonly
adopted during the structure exploration and final ranking stages
of CSP. A fast, approximate force field that is used at the early
stages of a global structure search is set as the baseline, and the
machine learning models are developed to refine its results, first
to predict GGA DFT lattice energies and then hybrid DFT. In the
following, we start by optimizing data gathering costs, and we
then train the machine learning model on the energy differences
between models in the energy hierarchy. The quality of the con-
structed models is verified by application to CSP for three molec-
ular crystals known to be challenging in terms of energy ranking:
oxalic acid, maleic hydrazide, and urazole.

2 Methods

2.1 Choice of molecules and CSP datasets
The data sets used in this work consist of crystal structure-lattice
energy pairs at three different levels of accuracy and computa-
tional complexity in their energy evaluation. The lowest level was
evaluated using an atomic multipole-based force field (described
below). The intermediate level consists of periodic GGA DFT
energies using the Perdew–Burke-Ernzerhof (PBE) functional.38

While most of the relevant physics is already accounted for in
these GGA calculations, for a better treatment of the effect of
electron exchange and correlation on the ranking of crystal struc-
tures, DFT calculations with PBE0 hybrid exchange-correlation
functional39 were performed as the high level.

Three small molecules were chosen to test the methods devel-
oped here: oxalic acid, maleic hydrazide and urazole (Fig. 1).
All three are small enough so that it is affordable to evaluate the
energies for all predicted crystal structures at the highest level of
theory considered here, so that errors from the GPR models can
be assessed. Two of the molecules (oxalic acid and maleic hy-
drazide) have known polymorphism and all three are known to
be challenging for obtaining accurate energy rankings either be-
tween their known polymorphs40 or in previous CSP studies.41

(a) oxalic acid (b) maleic hydrazide (c) urazole

Fig. 1 The three molecules studied here (CSD reference codes42 for each
experimentally determined form are given in parentheses): (a) oxalic acid
α (OXALAC0543) and β (OXALAC0744) polymorphs; (b) maleic hy-
drazide monoclinic (MALEHY0145), triclinic (MALEHY1046), and MH3
monoclinic (MALEHY1247) polymorphs and (c) urazole (KOXRIY48).

The data sets used here consist of low-energy crystal struc-
tures found in previous CSP studies.37 The crystal structures were
generated using quasi-random sampling followed by local energy
minimization to locate the local minima on each molecule’s lat-
tice energy hypersurface using the Global Lattice Energy Explorer
code.26 Crystal structures were generated in the 11 most fre-
quently occupied space groups (P21/c, P212121, P1, P21, Pbca,
C2/c, Pna21, Cc, Pca21, C2, P1) with one independent molecule
in the crystallographic asymmetric unit (Z′ = 1). The molecular
structure was held rigid throughout, at the DFT optimized geom-
etry of the isolated molecule.

Lattice energy minimization was performed using the
FIT+DMA49 anisotropic atom-atom force field, which consists
of an empirically parameterized exp-6 intermolecular repulsion-
dispersion potential and electrostatics described by atomic mul-
tipoles up to hexadecapole on all atoms. Multipoles were ob-
tained from a distributed multipole analysis of the B3LYP/6-
311G** charge density.50 Charge–charge, charge–dipole and
dipole–dipole interactions were calculated with Ewald summa-
tion. All other interactions were calculated between whole
molecules with a centre-of-mass separation of less than 25 Å. Af-
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ter removal of duplicates, predicted crystal structures within the
lowest 25 kJ mol−1 of the energy landscape for each molecule
were kept. These datasets consist of 526, 388 and 468 crystal
structures of oxalic acid, maleic hydrazide and urazole, respec-
tively.

2.2 Solid state DFT

Periodic DFT single-point energy calculations were performed
on the force field optimized crystal structures with both the
VASP 51–54 code, using plane-wave (PW) basis sets, and CRYS-
TAL17 55 using Gaussian Type Orbital (GTO) basis sets. The justifi-
cation of the choice of basis set is discussed in Section 3.2. Gener-
ally speaking, PWs are intrinsically periodic, fast for both energy
and its gradient calculations, and the quality of a PW basis set is
improvable by a single parameter, namely the electronic kinetic
energy cutoff. PW calculations were used for the intermediate
level (PBE) energy evaluations. However, due to the extremely
high computational costs involved in exact exchange calculations
with PW basis sets, the highest level, hybrid functional (PBE0)
calculations were perfomed using GTO basis sets. Furthermore,
we exploited symmetry in CRYSTAL17, which sped up the PBE0
energy evaluations by a factor of up to the number of equivalent
molecules in the unit cell.

PW calculations in VASP used the projector-augmented wave
(PAW) method and standard pseudopotentials with a plane-
wave energy cutoff of 600 eV and maximum k-point spacing of
0.05 Å−1. GTO calculations in CRYSTAL17 employed different ba-
sis sets and composite methods, details of which are described in
Section 3.2. Electronic k-points were sampled uniformly to a res-
olution of at least 0.02 Å−1. Truncation criteria for bielectronic
integrals, TOLINTEG, of 12 12 12 12 24 was enough for good con-
vergence in most of the structures, however, there were cases that
we had to increase these values to 14 14 14 14 28.

The missing long-range correlation effects in DFT calculations
are accounted for by applying the Grimme D3 dispersion cor-
rection in both PBE and PBE0 calculations.56–58 Hereafter, we
use PBE and PBE0 to refer to dispersion-corrected PBE-D3 and
PBE0-D3 calculations. To correct for the basis set superposition
error (BSSE)59 present in GTO calculations, we used the geo-
metrical counterpoise (gCP) correction with automatic parameter
setup60,61 in all GTO calculations.

Lattice energies were calculated by subtracting the intramolec-
ular energy of the constituent molecules of a crystal in the gas-
phase from the total energy of the crystal, always at the same
level of theory (functional and basis set). Further details are in
the supporting information.

2.3 Structural descriptors

Structural descriptors are required to convert the atomistic struc-
ture of each predicted crystal structure into a suitable input for
the statistical machine learning method. Cartesian coordinates
are not a suitable choice because they are not invariant under
translation, rotation and reflection of the whole system. Among
available atomic descriptors which satisfy these requirements, we
use atom-centered symmetry functions62,63 to describe the local

(radial and angular) environment of each atom. We choose these
descriptors of atomic local environments because of their success
in the development of machine learned force fields63 and previ-
ous machine learning applications to energy model improvement
for molecular crystals.37

We used the recent modification to symmetry function de-
scriptors that separates element pairs (for radial functions) and
triplets (for angular functions) to provide a better resolution of
the atomic environment description.63 32 equispaced Gaussians
were used to describe the radial environment in a cut-off sphere
of radius 9.3 Å around each atom. For the angular environment,
a cut-off radius of 6.27 Å was used, taking 8 equispaced radial
Gaussians and 8 angular ones (64 in total). Thus, for a system
with NE elements, there are NE ×32 radial and NE(NE +1)/2×64
angular symmetry functions for each atom.

2.4 Multi-fidelity Gaussian process modelling

We use Bayesian GPR64 to model the relationship between the
crystal structures and the response: lattice energies evaluated
at multiple levels of accuracy and corresponding computational
complexity. Each structure is uniquely identified by the vector
of the structural descriptor values x ∈ Rs, concatenated symmetry
functions as described in Section 2.3. In a system with SFr ra-
dial and SFa angular symmetry functions, the dimensionality of
structures with NA atoms is s = NA× (SFr +SFa).

GPR is an adaptive non-parametric modelling approach with
prior beliefs about the behaviour of the relationship, or function,
of interest described by a prior Gaussian process. Probabilistic in-
ference and predictions are obtained by updating this prior using
collected data.

For one level of computational complexity, a Gaussian process
prior on y(x), the response for descriptor vector x, is denoted
GP{ f T (x)β , k(x,x′;φ ,σ2,τ2)} and results in the responses from
any collection of n structures, represented by the descriptor vec-
tors xi, i = 1 . . .n, having the prior predictive multivariate normal
distribution

y(x1), . . . ,y(xn)∼ N[( f (x1), . . . , f (xn))
T

β , K(x1, . . .xn;φ ,σ2,τ2)].

The mean is a linear combination of regression functions
stored in f (xi) with coefficient vector β . The (i, j)th element
k(xi,x j;φ ,σ2,τ2) of the covariance matrix K(x1, . . .xn;φ ,σ2,τ2) is
defined through the correlation kernel κ(xi,x j;φ), variance pa-
rameter σ2 > 0 and a regularization parameter, or nugget, τ2 ≥ 0.
For non-deterministic data, the nugget measures random varia-
tion around the mean response. For deterministic systems, addi-
tion of a nugget is still common and beneficial, improving the con-
ditioning of the prior covariance matrix and providing some ro-
bustness of the assumed form of the correlation kernel.65 Hence

k(xi,x j;φ ,σ2,τ2) = σ
2[κ(xi,x j;φ)+ τ

2 1(xi = x j)].

The choice of the correlation kernel should reflect prior beliefs
about the degree of response smoothness and the sensitivity of
the response to the difference between structures. In this work we
use an isotropic squared exponential correlation kernel, with the
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distance between the structures introduced through the Euclidean
distance between the vectors of descriptors:

κ(xi,x j;φ) = exp
(
−1

2
||xi− x j||2/φ

)
.

The hyperparameter φ > 0 quantifies the prior correlation be-
tween y(xi) and y(x j), with larger values resulting in higher cor-
relation. We denote the adjusted correlation matrix by Σ(·,φ), so
that K(·;φ ,σ2) = σ2Σ(·,φ).

When the same response, in this case lattice energy, is mea-
sured at different levels of computational complexity and ac-
curacy, a hierarchical Autoregressive Gaussian Process (ARGP)
model66 can be constructed, which links a higher-level complex-
ity response, yt (e.g. PBE0 lattice energies), to a lower-complexity
response, yt−1 (PBE lattice energies), through a scaling parameter
ρ, with the difference δ modelled as a GPR, independently of the
GPR assumed for yt−1. For our problem:

y0(x) = FF(x),

y1(x) = ρ0y0(x)+δ1(x),

y2(x) = ρ1y1(x)+δ2(x),

(1)

with
δt(x)∼ GP[βt ,kt(x,x′;φt ,σ

2
t ,τ

2
t )]

for t = 1,2 and FF(x) being the force field energy. The force field
provides a useful approximation of the physical contributions to
the interactions between molecules and its negligible computa-
tional cost ensures FF(x) is fixed and known for all possible train-
ing and test molecules.

In addition to the obvious relationships between y1 and y2

through ρ1 and δ1, model (1) also assumes that once y1 has been
observed at point x, no other observation of y1 at any x′ 6= x
furthers our knowledge about the higher level response y2(x).
That is, Cov(y1(x′),y2(x)|y1(x)) = 0, a natural Markov property for
multi-level responses.

The joint prior distribution of the responses at levels 1 (PBE)
and 2 (PBE0) is then

[
y2(x)
y1(x′)

]
∼ N

[
ρ1(ρ0FF(x)+β1)+β2

ρ0FF(x′)+β1
,

(
ρ2

1 σ2
1 [1+ τ2

1 ]+σ2
2 [1+ τ2

2 ] ρ1k1(x,x′;φ1,σ
2
1 ,τ

2
1 )

ρ1k1(x,x′;φ1,σ
2
1 ,τ

2
1 ) σ2

1 [1+ τ2
1 ]

)]
.

Extensive research has been conducted regarding fitting of
ARGP models and their variations.67–69 We adopt the recursive
Bayesian multi-fidelity approach,70 suitable for nested training
sets. Sequential estimation of GPRs is performed for the two lev-
els; first, a standard GPR for y1(x) is fitted on the n1 structures
composing the lower-level training set D1 = {x1, . . . ,xn1}. Sec-
ondly, the higher-level response y2(x) is modelled with a GPR on
the subset D2 ⊆ D1 of size n2, with the GPR prior for y1(x) in (1)
being replaced by its GPR posterior obtained at the first stage.

To complete the model specification, where possible we choose
conjugate normal and inverse gamma (IG) prior distributions for

the model parameters, conditional on lower-level responses, that
allow for straightforward updated inference and predictive distri-
butions in closed form:

ρ0,β1|σ2
1 ,y0 ∼ N(b10,σ

2
1 R1); σ

2
1 |y0 ∼ IG(α1,γ1),

ρ1,β2|σ2
2 ,y1 ∼ N(b20,σ

2
2 R2); σ

2
2 |y1 ∼ IG(α2,γ2).

Here Rt are appropriately sized (here – 2× 2) prior variance-
covariance matrices, containing the prior variance scaling be-
tween σ2

t and linear coefficients of the model. We chose Rt to be
the identity matrices, prior means for linear terms bt0 = (0.5,0)T ,
and both shape and scale parameters αt and γt were set to 1.
Regularization parameters τ2

t = 10−5 were chosen to resolve any
computational singularity issues when inverting Σt . After the data
yt is available at level t = 1,2, the posterior joint distributions of
the parameters are also normal-inverse-gamma:

(ρt−1,βt |yt ,yt−1,σ
2
t )∼ N(Σ̃t µt , Σ̃t), (2)

Σ̃t = σ
2
t [F

T
t Σ
−1
t Ft +R−1

t ],−1
µt =

1
σ2

t
[FT

t Σ
−1
t yt +R−1

t bt0],

(σ2
t |yt)∼ IG

(nt

2
+αt , Qt(yt ,γt ,b0t ,Σt ,Ft)

)
. (3)

Here Σt is the nt ×nt correlation matrix at level t and matrix Ft =

[yt−1(Dt),1nt ]; the detailed expression for Qt can be found in the
literature.70

Uniform prior distributions were assumed for correlation hy-
perparameters φ1,φ2, and an empirical Bayes approach employed.
For posterior inference, these parameters were set equal to their
posterior mode.

Conditional on parameters ρt−1, βt and σ2
t , the posterior pre-

dictive distribution for the highest level response (PBE0) is Gaus-
sian. However, the marginal posterior predictive distribution,
with these parameters integrated out with respect to their pos-
terior distributions (2) and (3), is not available in closed-form.
However, its mean and variance are available, and take the fol-
lowing form:

E[y2(x∗)|y1,y2] = f̂2(x∗)Σ̃2µ2+

kT
2 (x∗)Σ

−1
2 (y2−F2Σ̃2µ2), (4)

Var[y2(x∗)|y1,y2] = (ρ̂2
1 + Σ̃2,1,1)Var[y1(x∗)|y1]+

Q2

n2 +2(α2−1)
(1− kT

2 (x∗)Σ
−1
2 k2(x∗))+

( f̂2(x∗)− kT
2 (x∗)Σ

−1
2 F2)Σ̃2( f̂2(x∗)− kT

2 (x∗)Σ
−1
2 F2),

T

(5)

where ρ̂ is the posterior mean of ρ, Σ̃2,1,1 is the first diago-
nal element of Σ̃2, k2(x∗) = [κ2(x∗,x21;φ2), . . . ,κ2(x∗,x2n2 ;φ2)]

T is
the vector of correlations between the unobserved structure x∗
and the training set for the highest level response and f̂h(x∗) =
{E[yl(x∗)|yl ],1}. Sampling from the posterior predictive distri-
bution can proceed via Monte Carlo methods or by using a t-
distribution with 2α2+n2 degrees of freedom, mean (4) and vari-
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ance (5). After checking the adequacy of this approximation for
our examples, we adopt this latter approach for computational
convenience.

2.5 Training

For each of the three molecules, training sets for the lower fi-
delity response (PBE) were chosen that included between 10% to
70% of all structures (in increments of 5%). These training sets
were chosen to be nested, that is, the 65% set is a subset of the
70% set and so on. For each of these training sets, nested sub-
sets were chosen again containing between 10% to 70% of struc-
tures (in increments of 5%) for which the higher fidelity response
(PBE0) was made available. The size of these high level training
sets are given as percentages of the lower level training set from
which they are drawn. Each subset was chosen as a maximin
space-filling design71, maximizing the minimum Euclidean dis-
tance in descriptor space between structures. Hence a collection
of 169 nested training sets were constructed, containing between
1% and 49% of the whole data set. We use the nomenclature
“L%/H%” training set to refer to a set containing evaluations of
PBE for L% of the original structures and evaluations of PBE0 for
H% of the PBE training set. The 30% of structures that were not
included in any training set were reserved as a test set.

3 Results

3.1 Data Collection

Given the predicted crystal structures taken from previous work
with structures optimized at the force field level, the first stage in
this work was the re-evaluation of their lattice energies at higher
levels of theory. Our final target in this work is the evaluation
of lattice energies using the hybrid PBE0 functional with the D3
dispersion correction.

Because of the availability of fast Fourier transforms when us-
ing PWs, their use as basis sets is efficient for GGA DFT calcula-
tions. Although the exploitation of symmetry in CRYSTAL17 using
GTO basis sets would be helpful for larger unit cells with more
molecules involved, we decided on PBE within VASP as a fast and
accurate lower level of energy re-evaluation.

The choice of the calculation method for collecting the high
level PBE0 data points is more significant. This is because of
the extremely high cost of exact exchange calculations when em-
ploying delocalized basis sets such as PWs, which has limited the
use of such sets in hybrid functional calculations. GTOs, on the
other hand, require much less (up to 2 orders of magnitude) re-
sources to achieve equivalent accuracy of a PW method.72 The
cost of GTO calculations depends on the size of basis set and ba-
sis sets of at least triple-zeta quality including one set of polariza-
tion functions have been shown to provide good agreement with
converged PW results.72

Thus, we have performed a comparison of GTO basis sets to PW
calculations on the lattice energies of one of our sets of CSP struc-
tures, oxalic acid. We first compared the results of well-converged
VASP PBE lattice energies on the full set of 526 oxalic acid crystal
structures to those from CRYSTAL17 using the Ahlrich’s-type split
valence double-zeta (def2-SVP) and triple-zeta (def2-TZVP)73 ba-

sis sets (Fig 2). Enlarging the basis set from def2-SVP (Fig. 2a) to
def2-TZVP (Fig. 2b) reduces the mean absolute error (MAE) and
maximum absolute error (MAX) in relative lattice energies (al-
ways measured relative to the global energy minimum structure,
which is the same in PBE and PBE0), and improves the correlation
to PW results considerably. Absolute lattice energies are also im-
proved significantly, from an MAE of 43 kJ mol−1 with def2-SVP
to less than 1 kJ mol−1 with def2-TZVP (Fig. S1). The PBE/def2-
TZVP results show an excellent linear relationship to those from
PW calculations, as well as small differences in the absolute lat-
tice energies.

To assess whether this convergence is also observed for PBE0,
calculations were performed on a subset of the oxalic acid pre-
dicted crystal structures (Fig. 2c and d). We started from 20 crys-
tal structures in 7 space groups. However, three of the PBE0/PW
single point calculation did not converge in 48 hours on 192 com-
puting cores and were abandoned. For the remaining 17 struc-
tures, errors in relative lattice energies with the smaller def2-SVP
basis set are too large (MAE = 4.45 and MAX = 9.83 kJ mol−1),
considering the close energetic spacing of predicted structures,
with an R2 of 0.490 to the PBE0/PW relatice lattice energies. The
results using the larger def2-TZVP basis set have much better cor-
relation to PW (R2 = 0.926) while MAE and MAX errors are 1.37
and 3.41 kJ mol−1, respectively. Given the much lower computa-
tional cost of PBE0/def2-TZVP than PW basis sets, we used this
GTO basis set for PBE0 calculations of the energies for the full
CSP structure sets for all three molecular systems (oxalic acid,
urazole and maleic hydrazide).

We also tested two simplified DFT schemes, HSE-3c and B97-
3c,74 as possible intermediate energy models. Both methods use
modified, smaller basis sets combined with semi-empirical cor-
rections. B97-3c and HSE-3c lattice energies are both strongly
correlated to the PW results (R2 = 0.984 and 0.869, respectively,
Fig. S2). However, when the cost of calculations is taken into
account, neither method offered an advantage over PBE/PW for
the small molecules studied here.

3.2 CSP landscapes

The energy-density distribution of predicted crystal structures of
oxalic acid is presented in Fig. 3, showing all structures that lie
within 25 kJ mol−1 of the global minimum from the force field
calculations. While the two known polymorphs, α and β , have
very different packing motifs, their experimentally determined
lattice energies are very close, with α lying slightly lower than
β .75 The force field lattice energies predict the β polymorph to
be the lowest energy structure (Fig. 3a), but incorrectly pro-
duce over 70 other crystal structures below α, which is more than
7 kJ mol−1 above the global minimum.

The known crystal structures of urazole and maleic hydrazide
are also predicted poorly by the force field calculations; their
landscapes are provided in the SI (Figs. S3 and S5). The three
known polymorphs of maleic hydrazide lie between 5.74 and
7.83 kJ mol−1 above the global minimum, and the only known
crystal structure of urazole lies 3.39 kJ mol−1 above than the
global minimum. While the FIT+DMA force field has been suc-
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Fig. 2 Calculated relative lattice energies of the oxalic acid data set from GTO basis set calculations vs PW calculations for (a) PBE/def2-SVP, (b)
PBE/def2-TZVP, (c) PBE0/def2-SVP, and (d) PBE0/def2-TZVP. The mean absolute error (MAE), maximum absolute error (MAX) and correlation
to the PW values are reported in the inset of each plot. All 526 crystal structures are included in the PBE calculations, while PBE0 comparisons were
preformed for 17 crystal structures.

cessful for CSP of many small molecules, these three molecules
were chosen as known failures, where it is clear that a higher
level of theory is necessary for successfully ranking the crystal
structures.

All higher level energy evaluations in this work are performed
at the force field optimized structures, with no further optimiza-
tion. For all three molecules, re-evaluation of the energies at the
PBE and PBE0 levels of theory improve the position of the ex-
perimentally known crystal structures on their CSP landscapes
(Figure 3b,c and SI). PBE retains the low energy of β -oxalic acid
and brings the α polymorph to the global minimum, while PBE0
further increases the relative stability of α to around around 5
kJ mol−1 below that of β . These energy differences compare
well with the lattice energy difference of around 3 kJ mol−1 be-
tween α and β when fully re-optimized at PBE0.76 Similarly, the
known structure of urazole is re-ranked to the global energy min-
imum with PBE and 2nd lowest energy structure with PBE0, 1.04
kJ mol−1 above the global minimum. and the three polymorphs
of maleic hydrazide are all brought closer to the global minimum
with PBE and PBE0 (see Figs S3, S5).

Thus, we conclude that single point energy re-evaluations using
solid state DFT map the force field results for all three molecules
to more realistic energy rankings in which the known experimen-
tal crystal forms are either the global minimum or very close to
the global minimum on their respective landscapes. Empirically,
we find that PBE provides slightly better rankings of the known
crystal structures for all three molecules. However, for the pur-
poses of developing the method, we treat PBE0 as the target for
learning a high level energy. The performance of PBE0 might be
limited by the single point nature of the energetic re-evaluation
and, so, optimization on the GPR modelled energy surface is a
clear next step of development, but is reserved for future work.

Ideally, one would prefer to evaluate the predicted crystal struc-
tures by the highest accuracy possible, however, even after the
speed-up gained from using GTOs and exploiting the symmetry
of crystals, the cost of hybrid functional calculations is still pro-
hibitively high. In the specific case of 526 single point energy
evaluation of the oxalic acid data set, calculations at force field,
PBE and PBE0 levels of theory using 40 2.0 GHz Intel Skylake
processors, took under a minute, 11 hours, and 101 days, respec-
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(c) PBE0

Fig. 3 Lattice energy vs density distributions of the predicted oxalic acid crystal structures calculated using (a) the FIT+DMA force field, (b) PBE,
and (c) PBE0, all at the force field geometries. Each point corresponds to a distinct predicted crystal structures. The two known forms of oxalic acid,
α and β , are marked with black circles.

tively. The corresponding cost ratio is roughly 1:1,000:220,000,
and is expected to be more extreme for larger molecules. This
large ratio of computational costs highlights the motivation for
an efficient, reliable estimation of PBE0 lattice energies. Average
timings for each molecule at each level of theory are provided in
the SI (Table S1).

A multi-level approach seems promising rather than directly
learning the most expensive model from the structural descrip-
tors. This is because the force field energies are already in-hand
for every structure as a result of the global structure search, and
are based on FIT+DMA, a physically motivated force field that
provides a good baseline. This is clear from the correlation to
PBE lattice energies (Fig. 4a). In particular, FIT+DMA provides
accurate electrostatic energies, whose long range might be im-
possible to model accurately based on descriptors of local atomic
environments. Furthermore, since most physics of the problem is
captured at the PBE level, the PBE/PBE0 linear correlation (Fig.
4b) is very high (R2 ≈ 0.98) and so much of the relationship be-
tween the expensive PBE0 energies and the structural descriptor
can be learned from PBE calculations, at a much reduced compu-
tational cost. From these features, we anticipate model (1) being
successful with parameter ρ capturing the strong linear relation-
ship between PBE and PBE0. Inadequacies in a simple linear cor-
relation will be described with the GPR prior on the difference δ ,
and learning δ allows efficient prediction of PBE0 energies using
less expensive evaluations of PBE.

3.3 Prediction

We assess the quality of energy modelling by evaluating the pre-
diction MAE and Continuous Ranked Probability Score (CRPS) of
the posterior predictive distributions77. CRPS is a proper scoring
rule regularly used to assess probabilistic prediction skill, which
accounts for both accuracy and precision. For the probabilistic
predictions from the GPR, CRPS provides a meaningful way of
evaluating the distance between the posterior predictive distribu-
tion and the test observations. For a deterministic point predic-
tion, e.g. simply using values of force field energies, CPRS cor-
responds with MAE. As we obtain a separate posterior predictive

distribution for each structure, we will be using the mean of the
scores calculated for Nt structures:

CRPS({Gi,yE
i }

Nt
i=1) =

1
Nt

Nt

∑
i=1

∫ +∞

−∞

(Gi(y)−1(y≥ yE
i ))

2dy.

CRPS is available in closed form for the t-distribution we use to
approximate the posterior predictive distribution, implemented in
R package scoringRules.78

3.3.1 Single fidelity GPR modelling

We first look at the predictions obtained from the first step of
the recursive modelling: fitting a GPR model to PBE with force
field measurements as a fixed predictor. As per Section 2.5, we
use nested maximin designs as training sets. For comparison, we
also present results for 30 randomly selected training sets of each
size (boxplots in Figure 5a). The MAE of the mean of the pre-
dicted distribution in reproducing the test set PBE lattice ener-
gies decreases from just above 2 kJ mol−1 at a 10% training frac-
tion (53 structures for oxalic acid) to 0.5 kJ mol−1 using 70% of
structures for training (Figure 5a), with the error improvements
slowing down after the training fraction reaches 40%, which is
210 structures from the oxalic acid data considered. On average,
random and maximin training set selection yield similar errors at
small (< 30%) training fractions, but for training fractions larger
than 30%, the maximin training set selection leads to noticeably
smaller errors. This finding agrees with earlier observations for
single fidelity GP prediction of lattice energies.36

The observed relationship between the error and the training
fraction holds true for the crystal structure landscapes of all three
molecules. The MAE and CRPS both decrease as the training pro-
portion increases (Fig. 5b), but at a slower rate for maleic hy-
drazide and urazole than for oxalic acid. The different rates of
decrease in the errors probably reflect more complex structural
landscapes, particularly of urazole, and more difficult relation-
ships between structural descriptors and lattice energies to model.
The MAE and CRPS show similar trends and we shall hereafter
evaluate the prediction quality in terms of CRPS. All correspond-
ing MAE values can be found in SI.
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Fig. 4 Correlations between lattice energies calculated using the three energy models for the predicted crystal structures of oxalic acid. (a) Force field
vs. PBE lattice energies, (b) PBE vs. PBE0, and (c) force field vs. PBE0. Mean absolute error (MAE), maximum error (MAX), and correlation (R2)
are reported in the inset of each panel.
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Fig. 5 Single fidelity (PBE) modelling. (a) MAE in reproducing OA
lattice energies using randomly chosen and maximin training sets. The
boxplots represent results from 30 randomly selected training sets for each
training fraction. (b) CRPS (open symbols) and MAE (filled symbols) in
reproducing lattice energies of oxalic acid (OA, blue), urazole (U, orange)
and maleic hydrazide (MH, green). The force field (FF) based CRPS is
3.4 kJ/mol for OA and shown as a horizoltal grey line. FF-based CRPS
of 6.4 kJ/mol for urazole and 14.1 kJ/mol for MH are not displayed.

3.3.2 Multi-fidelity ARGP modelling

Predictions and true values of the PBE0 lattice energies for the
oxalic acid test set (30% of original structures) are presented in
Figure 6 for three modelling strategies. Model A (Fig. 6a) is the
ARGP model, trained on PBE evaluations for 30% of all structures
(training set I) and PBE0 evaluations on 30% of this set (9% of
all structures, training set II). These are compared to predictions
from two single-level PBE0 GPR models: model B (Fig. 6b) is
trained on PBE0 energies obtained for training set I; and model C
is trained on the PBE0 energies for training set II (Fig. 6c). Hence,
model B had available a greater number of expensive training
points than was the case for model A, and model C had the same
number of expensive training points as model A but did not make
use of the larger number of cheaper points.

The CRPS from the ARGP model A is 1.114 kJ mol−1, compared
with 1.112 kJ mol−1 for the predictions obtained from the expen-
sive single GP model B. To obtain this very minor improvement
requires an increase in computational cost of more than a factor
of 3: just 9% of the expensive PBE0 data used for training model
A compared to 30% for model B. The PBE calculations needed for
the ARGP model have only a small influence on the total compu-
tational cost. Model C, on the other hand, has a comparable cost
to the ARGP model; the difference in computational costs occurs
only from using the PBE data for 30% of the structures in model
A. The CRPS for this single GPR model is considerably higher, at
3.96 kJ mol−1.

The comparisons in Figure 6 show the clear benefits of the
ARGP model, whose cost and accuracy are determined by the
training set sizes at the lower and higher levels. Figure 7 (and Ta-
bles S3-S5 in SI) compares the prediction errors from, and relative
computation costs of, ARGP models for oxalic acid with differing
sized training sets for PBE and PBE0. Analagous plots and tables
are provided for maleic hydrazide and urazole in the SI. Costs are
defined relative to the expense of obtaining the lattice energies of
1% of structures using PBE0. Thus, from the average timings (see
Table S1), the cost of obtaining PBE evaluations for 1% of oxalic
acid structures is 4.56 ∗ 10−3. The computational costs of force
field calculations and statistical modelling are negligible. As an
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Fig. 6 Prediction of oxalic acid PBE0 lattice energies (±2 SD): (a) using the recursive approach (Model A) on 30%/30% training sets; single GP
regression models: (b) on the larger, 30%, training set (Model B) and (c) on the smaller, 9%, training set (model C).

(a)

(b)

Fig. 7 Landscapes of PBE0 prediction errors and recursive modelling
costs for the range of training sets for the oxalic acid data set: (a) CRPS
prediction errors (kJ mol−1); (b) Relative computational cost (where 1
corresponds to the cost of PBE0 calculations on 1% of structures). The
horizontal axis gives percentage of structures for which PBE evaluations
are available, and the vertical axis gives the relative percentage of the
structures for which PBE0 was also available (so each cell represents the
performance/cost of a single L%/H% training set). The orange contour
in (a) separates the models which give errors above and below 2 kJ mol−1;
red and black contours delineate models that give better than 1 kJ mol−1

and 0.5 kJ mol−1 errors, respectively.

example, fitting the ARGP model using a 30%/60% training set
incurs a cost of (4.56 ∗ 10−3 ∗ 30)+ (1 ∗ 30 ∗ 60/100) = 18.14. This
training set is almost as expensive as a 60%/30% set (18.27), since
the number of PBE0 calculations is the same, but the mean pre-
diction CRPS decreases from 1.04 kJ mol−1 to 0.52 kJ mol−1, due
to the increase in PBE training points in the latter set. With the
high-fidelity-only (single-level) GPR modelling approach, obtain-
ing a similar prediction error (0.53 kJ mol−1) requires running
PBE0 computations on 55% of the structures, which is 3 times
more costly. Similar tables are presented in the Supplementary
information for maleic hydrazide and urazole.

The typical energy differences seen between predicted crystal
structures, and between observed polymorphs, set target criteria
for acceptable errors, which can inform the choice the training
fractions. Over 50% of observed polymorphs of organic molecules
are separated in lattice energy by less than 2 kJ mol−1,24 making
this an upper bound for acceptable errors. The orange contour in
Figure 7 separates models that provide errors above and below
2 kJ mol−1 (CRPS), with red and black contours showing stricter
1 and 0.5 kJ mol−1 thresholds, respectively. These contours are
nearly vertical, showing that the target errors can be met by in-
creasing the lower-level, PBE, training fraction without the ex-
pense of increasing the fraction of PBE0 calculations. Due to the
large cost ratio between PBE0 and PBE, the lowest cost model
meeting the target error involves the smallest PBE0 training frac-
tion: only 10% of the lower level training set. To meet a smaller
target error of 0.5 kJ/mol requires 20% PBE0 for oxalic acid and
is not achieved at all for maleic hydrazide and urazole. Although
small numbers of PBE0 calculations are required, these are neces-
sary for achieving the required accuracy; pure PBE-based models
yield significantly larger errors (see Table S2).

The errors and costs of the lowest cost ARGP models that give
errors below 2 and 1 kJ mol−1 are listed for all three molecules
in Table 1, along with the most expensive 70%/70% models. For
oxalic acid, the 40%/10% model yields errors below 1 kJ mol−1

with a cost corresponding to only 4.2% of the cost of PBE0 calcu-
lations on all crystal structures. Similar savings are possible for
maleic hydrazide and urazole, yielding errors below 1 kJ mol−1
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Molecule PBE/PBE0 Number of Time CRPS MAE
(%/%) structures (CPU.hr) (kJ/mol)

Oxalic
Acid

20/10 105/10 1,946 1.67 1.93

40/10 210/21 4,079 0.84 1.00

70/70 368/257 48,052 0.37 0.50

Urazole
25/10 117/11 2,971 1.80 2.00

65/10 304/30 8,086 0.94 1.22

70/70 327/228 59,092 0.84 1.10

Maleic
Hydrazide

15/10 58/5 1,886 1.88 1.96

50/10 193/19 7,105 0.94 1.22

70/70 270/189 66,978 0.60 0.83

Table 1 Recursive modelling PBE0 energy prediction CRPS and MAE
values and computational cost comparison for the molecular systems.
The presented models are the least computationally expensive to provide
CRPS values below 2 kJ mol,−1 1 kJ mol−1 and the ones providing the
best achieved score values. Training proportions are displayed together
with the corresponding numbers of structures. Costs in CPU hours are
calculated based on the average timings per structure (see Table S1),
calculated on 2.0 GHz Intel Skylake processors.

at costs of 5.2% and 6.8% of the full PBE0 cost, respectively.

3.3.3 Ranking

Another aspect of the modelling approach quality that is of a
particular interest in CSP is the accuracy of the energy ranking
predictions. Inference regarding the rank predictions is derived
by sampling from the posterior predictive distributions for test
structure lattice energies and examining the resulting rank distri-
butions. Figure 8a displays the ranks generated from 105 samples
drawn from the posterior predictive distribution from training the
ARGP model on the 40%/10% training sets. Figures 8b-e present
a closer look at the sampled rank distributions for the first four
predicted structures. We find that the known crystal structures α

and β are recognised with high certainty as those with the low-
est energies. In general, structures in the lower energy region,
which is usually of the main interest, are quite well identifiable,
unlike those in the middle range, which have larger uncertainties
in ranking. This is likely due to the high number of structures
with very close PBE0 energy values in the energy region > 8 kJ
mol−1 above α (Fig. 6).

To assess the quality of rank predictions, we measure the
Kendall rank correlation coefficient between the PBE0-based
(“true”) rankings and the sampled ones. This coefficient assesses
the difference in the proportions of correctly and incorrectly or-
dered pairs among all possible pairs in two sequences of obser-
vations, thus providing a general measure of the degree of sim-
ilarity between the orderings. First we consider the correlations
between the sampled (as above) and the “true” ranks for the top
ranked series of structures: from the first 10 to the first 100 (Fig.
9a). We find that, while among the first 10 lower energy struc-
tures, on average, more than half of the pairs are ordered con-
cordantly, this proportion decreases as the energy range increases
(i.e. in the first 20−30 ranked structures). However, the correct
ranking improves again for the test structures with higher ener-

gies. For all 158 test structures, across all 105 posterior samples,
the (average) prediction ordering agrees with the PBE0-based one
for 86% of pairs, and does not agree for 14%, leading to a median
correlation coefficient of 0.72.

Another relationship of interest is the trade-off between the
amount of data used for model training (and the associated
costs) and the goodness of the posterior rank predictions, which
is displayed in Figure 9b, and ordered by the total number of
structures used for training. We observe the expected general
tendency of the quality of posterior rank predictions to increase
with the training set size, and that the improvement becomes
less steep as more structures are used for model training. The
results clearly demonstrate that the distribution of the training
structures across the two levels is important in producing higher
rank correlations at low computational cost. As an example, the
distribution of sampled posterior rank correlations produced by
the least expensive model providing the CRPS value below 1
kJ mol−1 (trained on 40%/10% fractions, as listed in Table 1)
performs considerably better than the model trained on 30%/30%
fractions, at less than half of the cost.

4 Conclusions
We present a statistical machine learning approach to predict
high quality, hybrid functional (PBE0) DFT energies for crystal
structure prediction by relating crystal structure to lattice energy,
trained on a subset of predicted crystal structures through de-
scriptors of local atomic environments. The main development
that we present is a multi-fidelity model for energetic predic-
tions. The recursive GPR modelling approach takes advantage
of correlations between lattice energies calculated using different
methods to increase predictive accuracy using low numbers of
the highest level, most computationally demanding calculation.
Thus, accurate predictions of the high-level calculated energies
can be obtained at a fraction of the cost of the full calculations
by making use of less computationally demanding, lower-fidelity
data. The method is applied to the crystal structure landscapes
of three small molecules that have proven challenging for force
field-based prediction: oxalic acid, maleic hydrazide and urazole.

Crystal structure prediction is a well-suited application for a
statistical modelling approach because of the large numbers of
crystal structures, all with identical chemical composition and dif-
fering only in the arrangement of their constituent molecules. For
the three molecules studied here, each crystal structure landscape
contains between 388 and 526 distinct crystal structures in the
energy range studied and we show that PBE0 lattice energies can
be predicted to an accuracy of 1 kJ mol−1 with between 4.2 and
6.8% of the computational cost of the full PBE0 calculations. This
cost reduction is achieved by using a larger set of training struc-
tures calculated at a lower level of theory, here the GGA func-
tional PBE, after which a very small number of PBE0 calculations
are required for the second level of the model. As the cost of
GGA and hybrid calculations scale roughly as O(n3

e) and O(n4
e),

respectively,79 this feature is of particular importance for larger
molecules and could bring substantial cost savings.

It is also encouraging that the method has been effective de-
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Fig. 8 (a) Posterior rank distributions for the oxalic acid test structures. 105 PBE0 energy samples from the predictive posterior distribution, based on
the recursive model trained on 40%/10% of the data. The test structures are ordered along the horizonal axis according to the PBE0-based ranking and
edges of the boxplots outline the inter-quantile range of the sampled data. (b - e) Posterior rank probabilities for the first four oxalic acid structures.

spite differences in the types of basis set used for the GGA (plane
wave basis sets) and hybrid functional (Gaussian type basis sets)
calculations. That these differences have apparently not harmed
the performance of the models allows us to take advantage of
different solid state DFT implementations to gain maximum effi-
ciency in the calculations. More generally, the savings that we see
in high level calculations open up the use of even more accurate
and demanding calculations as the highest level of the model,
because of the small number of structures on which these calcu-
lations are necessary. An option here is the implementation of the
multi-fidelity GP modelling approach with fragment-based lattice
energy models,37,80,81 enabling the use of wavefunction-based
higher levels.

In the context of structure prediction, where the lowest en-
ergy structures are usually considered most important, identifying
the energetic ordering of the structures is particularly relevant.
We examined the performance of the model-based predictions in
terms of the rankings and observed good rank correlations with
the full PBE0 results, particularly for the lower spectrum of the
energy values, corresponding to the most important structures.

As a statistical model, the predicted output for each structure
is a distribution of energies, which enables an assessment of the
associated uncertainty for each of the test structures. The un-
certainty in final energetic predictions, as well as ranking, is an
important consideration in applying a statistical machine learning
model in applications of CSP. The acceptable level of uncertainty
for a particular application can be used in selecting training set
sizes and the prediction uncertainties are important in the inter-
pretation of results, for example the probability that a predicted,
as-yet unobserved polymorph of a pharmaceutical molecule is
lower in energy than known crystal structures. The uncertain-
ties in relative energies can also be incorporated in probabilistic
interpretations of structure-energy-property maps that have been
developed for materials discovery using CSP.18–20
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