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Abstract2

Comparing multiple label-free shotgun proteomics datasets requires various data process-3

ing and formatting steps, including peptide-spectrum matching, protein inference, and quan-4

tification. Finally, the compilation of results files into a format that allows for downstream5

analyses. ProtyQuant performs protein inference and quantification calculations, and com-6

bines the results of individual datasets into plain text tables. These are lightweight, human-7

readable, and easy to import into databases or statistical software. ProtyQuant reads validated8

pepXML from proteomic workflows such as the Trans-Proteomic Pipeline (TPP), which makes9

it compatible with many commercial and free search engines. For protein inference and quan-10

tification, a modified version of the PIPQ program (He et al. 2016) was integrated. In con-11

trast to simple spectral-counting, PIPQ sums up peptide probabilities. For assigning peptides12

to proteins, three algorithms are available: Multiple Counting, Equal Division, and Linear13

Programming. The accumulated peptide probabilities (app) are used for both tasks, protein14
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probability estimation, and quantification. ProtyQuant was tested using a reference dataset for15

label-free shotgun proteomics, obtained from different concentrations of 48 human UPS pro-16

teins spiked into yeast lysate. Compared to ProteinProphet, ProtyQuant detected up to 12617

(15%) more proteins in the mixture, applying an equal false positive rate (FPR). Using the app18

values for label-free quantification showed suitable sensitivity and linearity. Strikingly, the19

app values represent a realistic measure of ‘Protein Presence,’ an integral concept of protein20

probability and quantity. ProtyQuant provides a graphical user interface (GUI) and scripts for21

console-based processing. It is available (GNUGLP v3) forWindows, Linux, and Docker from22

https://bitbucket.org/lababi/protyquant/.23

Keywords24

shotgun proteomics, protein inference, label-free quantification25

Introduction26

Figure 1: General shotgun proteomics flowchart with integration of ProtyQuant. First, MS/MS
spectra are matched against a database of protein sequences. Following, the peptide-spectrum
matches (PSM) are validated. ProtyQuant processes the PSM to calculate the accumulated pep-
tide probabilities (app) of each protein and its probability (Pr). The results are exported into tab-
ulator separated value (TSV) files, facilitating direct inspection or further analysis in downstream
software.
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Shotgun proteomics is a standard research method in biology andmedicine. Several informatics27

platforms, such as crux1,2, OpenMS/KNIME3 and the Trans-Proteomic Pipeline (TPP)4–6, perform28

label-free quantification and export the results in text files. However, the data processing for com-29

parative proteomics is still fiddly for non-experts. Thus, the focus of this study was to simplify30

the data processing for end-users, who are interested in comparing label-free shotgun proteomics31

datasets, either manually or with external software.32

Transforming rawmass spectrometry data into quantitative protein hits is a multistep procedure,33

as shown in Figure 1.34

A critical step after searching peptide-spectrum matches (PSM) is the protein inference, i.e.,35

the assembly of valid proteins from the peptide hits. The cleavage of proteins leads to degenerated36

peptides, leading to ambiguity in finding peptide → protein relationships (see Fig. 2). Numer-37

ous algorithms have been reported to solve the ‘protein inference problem’7,8; however, there is38

no consistently best-performing PSM/protein inference combination found yet9. For testing and39

benchmarking of ProtyQuant, Comet was used as PSM search engine, PeptideProphet10 for pep-40

tide hit validation, and the ProteinProphet11 for protein inference, since those programs are part41

of the well established TPP. The correctness of protein hits was evaluated by using a target-decoy42

approach12, and false-positive rate calculations13.43

Quantification of proteins is usually done after protein inference, and several labeling and label-44

free strategies have been reported[vaudel_chapter_2020]. For label-free quantification, spectral-45

counting is a simple and computationally efficient method, which has been implemented into dif-46

ferent proteomics pipelines14–17.47

A new concept of integrating the protein inference and quantification was introduced by Huang48

et al. 18 and He et al. 19 . It is based on the understanding that the true presence of proteins is a49

special case of protein quantification18,19. For quantification, the authors refined the conventional50

spectral-counting strategy. Instead of counting identified PSM with an equal weight of ‘1’, their51

score or probability values are summed up:52
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Figure 2: Creation of degenerated peptides by tryptic cleavage and protein inference algorithms
implemented in ProtyQuant.
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𝑏𝑗 = ∑
(𝑥𝑖,𝑦𝑗 )∈𝐸1

𝑎𝑖 (1)

where 𝑏𝑗 is the summed peptide probability of peptide 𝑦𝑗 , 𝑎𝑖 the probability of spectrum 𝑥𝑖53

matching 𝑦𝑖, and (𝑥𝑖, 𝑦𝑗) ∈ 𝐸1 the PSM.54

This refined method improves the quantification and discrimination of proteins. The peptides55

are assigned to candidate proteins using the inference algorithms presented in Figure 2. The Mul-56

tiple Counting algorithm adds the peptides to all possible proteins (Equ. 2), the Equal Division57

algorithm splits the peptide quantity proportionally (Equ.3), and the Linear Programming algo-58

rithm20 optimizes the peptide-protein distribution (Equ. 4):59

𝑎𝑝𝑝𝑘 = ∑
(𝑦𝑗 ,𝑧𝑘)∈𝐸2

𝑏𝑗 (2)

𝑎𝑝𝑝𝑘 = ∑
(𝑦𝑗 ,𝑧𝑘)∈𝐸2

𝑏𝑗
𝑞𝑗

(3)

𝑎𝑝𝑝𝑘 = ∑
{𝑗|(𝑦𝑗 ,𝑧𝑘)∈𝐸2}

𝑑𝑗𝑘 (4)

where (𝑦𝑗 , 𝑧𝑘) ∈ 𝐸2 means that peptide 𝑦𝑗 is a part of the sequence of protein 𝑧𝑘, 𝑞𝑗 the number60

of proteins with the same peptide 𝑦𝑗 , and 𝑑𝑗𝑘 is the abundance contribution of each protein 𝑧𝑘 to the61

peptide 𝑦𝑖. Details on the development of the formula can be found in the papers of Huang et al. 1862

and He et al. 19 . In contrast to the other algorithms, the Linear Programming algorithm is capable63

of eliminating low-scoring protein candidates.64

As a result, for each possible protein k, an accumulated peptide probability (𝑎𝑝𝑝𝑘) is obtained.65

These quantitative protein scores can be transformed into protein probabilities (Pr) using a method66

reported by Gao and Tan 2006;21. The algorithms for app-counting and protein inferences were67

implemented in a C++ program, PIPQ, which was published under the terms of GNU GPL v368

(http://code.google.com/p/protein-inference/)18,19. The original programwas modified69
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for quantifying proteins in ProtyQuant, based on their calculated app values.70

The objective of this studywas the development of a software tool that simplifies the comparison71

of multiple shotgun proteomics datasets. The program should provide the following functions:72

• Creation of sample protein reports and a sample comparison table.73

• Use of plain text table format (readable for humans and downstream software) for results.74

• Annotation of results with information for interpretation (protein names and Uniprot link).75

• Compatibility with community file standards such as pepXML and FASTA.76

• Implementation of PIPQ for protein inference and quantification.77

• Computationally efficient and cross-platform compatible.78

• Graphical User Interface (GUI) and usable for non-experts.79

This paper describes the program ProtyQuant and demonstrates its functionality by analyzing80

a reference dataset for label-free shotgun proteomics.81

Methods82

ProtyQuant software architecture83

ProtyQuant is a Python (https://www.python.org/) program with a Graphical User Interface84

(GUI). Figure 3 shows the program flowchart. ProtyQuant processes all pepXML files in a given85

directory and creates a sample comparison table. For each sample, a report with protein probability86

and estimated quantity is created. All result files are formatted as plain text tables. Optionally,87

the protein identifications are labeled with protein information and Uniprot links, using a FASTA88

database.89

Protein inference and quantification are made by the external program PIPQ, which was origi-90

nallywritten byHuang et al. 18 (https://code.google.com/archive/p/protein-inference/)18,19.91

The C++ program was modified to report both, the protein probability (Pr), and its accumulated92

peptide probability (app), which was used as a quantitative measure. The formulas which were used93

6

https://www.python.org/
https://code.google.com/archive/p/protein-inference/


Figure 3: Data processing flowchart of ProtyQuant. Peptide XML and protein text file processing
are colored in orange, PIPQ protein inference and quantification in yellow, sample comparison in
green, and protein labeling in blue. The main program control is drawn in gray.
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for calculations are reported in the paper of He et al. 19 . For solving the linear equations GNULinear94

Programming Kit library, GLPK (https://www.gnu.org/software/glpk/), was used. PIPQ95

was compiled for 64-bit versions of Microsoft Windows and Linux, with statical linking of libraries96

to prevent compatibility issues. The Microsoft Visual C++ and the GNU C++ compiler were used97

for creating the binaries. The code repository (https://bitbucket.org/lababi/protyquant)98

contains makefiles for both platforms.99

Figure 4: Graphical User Interface of ProtyQuant.

The ProtyQuant GUI and command-line scripts were implemented in Python 3 https://www.100

python.org, using the Tkinter GUI and the Python Data Analysis (Pandas) Library (https://101

pandas.pydata.org/) modules. Figure 4 shows the ProtyQuant GUI running on Linux.102

Running ProtyQuant requires two files only: The Python program protyquant.py and the103

PIPQ binary. The ‘python-gui’ directory of the code repository contains PIPQ for Microsoft Win-104

dows and Linux, PIPQ.exe and PIPQ.x64, respectively. Running ProtyQuant by python3 protyquant.py105

selects the correct program for the operating system.106

The GUI was converted into a 64-bit Microsoft Windows executable (.exe) using the Python107

package cx_Freeze (https://anthony-tuininga.github.io/cx_Freeze/). AMicrosoftWin-108

dows installer, which also installs the PIPQ.exe program, was created with Inno Script Studio109

2.2.2.32 (Kymoto Solutions, https://www.kymoto.org/).110
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Further, a Docker (https://docker.com) version of the ProtyQuant GUIwas created. The im-111

age is based on Ubuntu 20.04 LTS and available from https://hub.docker.com/repository/112

docker/robertmp64/protyquant.113

Source code and binaries for Microsoft Windows (including an installer) and Linux are freely114

available under the terms of theGNUGeneral Public License v3 (https://www.gnu.org/licenses/115

gpl-3.0.en.html), from https://bitbucket.org/lababi/protyquant.116

Raw data and protein database117

For testing ProtyQuant, a reference dataset for label-free quantitative proteomics was used, which118

was published by Ramus et al. 201622,23. The raw Orbitrap Velos data were downloaded from the119

ProteomeXchange repository (http://www.proteomexchange.org)24, identifier PXD001819.120

The samples of this dataset were generated by spiking different concentrations of the Universal121

Proteomics Standard (UPS1, https://www.sigmaaldrich.com/life-science/proteomics/122

mass-spectrometry/ups1-and-ups2-proteomic.html) into baker’s yeast (Saccharomyces cere-123

visiae) lysate. The 48 human proteins included in the UPS1 are listed in Supplemental Table 1.124

The raw data were converted to .mzML profile data and .mgf centroid data using msconvert of the125

ProteoWizard project (http://proteowizard.sourceforge.net)25.126

The target database for peptide matching was composed of the UniProt (https://www.uniprot.127

org) Saccharomyces cerevisiae entries and the SigmaUPS sequences (https://www.sigmaaldrich.128

com/content/dam/sigma-aldrich/life-science/proteomics-and-protein/ups1-ups2-sequences.129

fasta). The final FASTA database contained 6,769 entries.130

Proteomics data processing131

Computer hardware and operating system132

All analyses were performed on a standard Lenovo Y720 laptop with 16 Gb RAM and Intel(R)133

Core(TM) i7-7700HQ CPU (2.80GHz). The operating system was the 64-bit Linux platform Pep-134
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permint 10 (https://peppermintos.com/), which is based on Ubuntu 18.04 LTS. The Docker135

Engine was version 19.03.8 of the Community Edition.136

Trans-Proteomic Pipeline (TPP) with Docker137

The Docker image of the Trans-Proteomic Pipeline (TPP) version 5.2.0 (‘Flammagenitus’) was138

used, with the following sequence:139

1. Start the TPP docker image and mount the mgf data directory:140

docker run -it --privileged=true -v /home/rob/dataspace/nextcloud/DATA/141

UPS48_yeast_centroided/mgf:/data spctools/tpp bash142

2. Create and edit a comet parameters file:143

comet -p144

The filewas saved as comet.params andmodified for high-resolutionMS (peptide_mass_tolerance145

= 20.00, in ppm) and low-resolutionMS/MS (fragment_bin_tol = 1.0005) data. decoy_search146

= 1 (decoy_prefix = DECOY_) was set for a concatenated target-decoy search12. Iodoacetamide147

alkylation of cysteine residues was defined as a fixed modification, and methionine oxidation, and148

deamidation of asparagine and glutamine as variable modifications.149

3. Run the comet search:150

time comet *.mgf151

4. Run PeptideProphet with the standard mixture model:152

for i in *.pep.xml; do PeptideProphetParser $i; done153

5. Run ProteinProphet:154

for i in *.pep.xml; do ProteinProphet $i $i.prot.xml NOGROUPS; done155
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6. Leave TPP Docker session:156

exit157

The prot.xml result files were converted to plain text tables by an own script:158

1. Download script:159

wget https://bitbucket.org/lababi/protyquant/raw/160

06deaeb70a09b8121ce0adc1d7d6da389afe7175/python-scripts/protxml_to_tsv.py161

2. Convert all prot.xml files to tsv:162

bash-script: for i in *.prot.xml; do python3 protxml_to_tsv.py $i; done163

ProtyQuant with Docker164

The Docker GUI version of ProtyQuant was used, with all Pr and app threshold values set to 0.165

docker run -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix:rw166

-v /home/rob/dataspace:/data robertmp64/protyquant167

Opening the graphical display with the root user was enabled by xhost +.168

Calculation of False Positive Rates169

The false positive rate (FPR) was taken as evaluation criteria for the algorithms to prevent possible170

drawbacks in estimating the false discovery rate (FDR)13. The FPR was calculated by dividing the171

number of decoy hits by the number of total hits above the defined threshold12:172

𝐹 𝑃 𝑅 = 𝐹 𝑃
𝑇 𝑃 + 𝐹 𝑃 =

𝑁𝑑𝑒𝑐𝑜𝑦
𝑁𝑡𝑎𝑟𝑔𝑒𝑡𝑠 + 𝑁𝑑𝑒𝑐𝑜𝑦

=
𝑁𝑑𝑒𝑐𝑜𝑦

𝑁ℎ𝑖𝑡𝑠≥𝑐𝑢𝑡−𝑜𝑓𝑓
(5)

with FP = false positives = decoy hits and TP = true positives = target hits.173
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Data analysis and plotting174

For analyzing result files of ProtyQuant, standard GNU (<https://www.gnu.org>) command-175

line programs (grep, wc), the text editors Geany (https://www.geany.org/) and Vim (<https:176

//www.vim.org>) and LibreOffice (https://www.libreoffice.org/) were used.177

Graphs were plotted with Gnuplot (http://www.gnuplot.info/).178

Receiver Operating Characteristics (ROC) and the Area Under the Curve (AUC) were calcu-179

lated using the Python scikit-learn library (https://scikit-learn.org). The used scripts are180

available from the python-scripts directory of the code repository (https://bitbucket.org/181

lababi/protyquant).182

Flowcharts were drawnwith yEd (<https://www.yworks.com/products/yed>), vector graph-183

ics were created with Inkscape (<https://inkscape.org>), and the GNU Image Manipulation184

Program (GIMP, <https://www.gimp.org>) was used for editing pixel graphics.185

Results and discussion186

ProtyQuant187

Installation on different operating systems188

ProtyQuant was successfully installed and tested on standard computers with Microsoft Windows189

10 and Linux (Fedora 29-31 and Ubuntu 18.04 LTS) operating systems. Installation instructions190

are given on the project code repository (https://bitbucket.org/lababi/protyquant). The191

results presented below were generated using the Docker version with GUI, running on a Ubuntu192

18.04 LTS Linux.193

Input and output file formats194

ProtyQuant expects pepXML files containing PeptideProphet10 probabilities. Such files are gen-195

erated validating peptide-spectrum matches (PSM) in the Trans-Proteomic Pipeline (TPP)4–6. The196
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Figure 5: ProtyQuant results are written into tab-separated values files (TSV) which facilitates
their direct inspection and further processing with other programs, such as statistics and plotting
software, databases, and spreadsheets. The files in A) and B) were opened with LibreOffice Calc.
A) Protein report with short protein description and links to the UniProt database. B) Sample
comparison table (The sample names have been shortened manually).

TPP supports many popular free and commercial search engines26, such as Comet27? , Mascot28,197

MS-GF+29, MyriMatch30, and X!Tandem31. Therefore, PSM results of different search engines198

can be processed with ProtyQuant after TPP validation. The data processing workflow in this study199

was using Comet, which is a default TPP search engine. All 27 PeptideProphet pepXML files of200

the test datasets were processed successfully by ProtyQuant.201

ProtyQuant saves its results to tab-separated values (TSV) files. The plain text files with the202

tabular structure are lightweight and human-readable. TSV files can be directly imported into most203

statistics programs and databases. Therefore, ProtyQuant integrates smoothly into existing software204

environments32. The information of the FASTA protein database file was correctly processed and205

added to the protein hits (see Fig. 5A). Quantification results of the 27 individual analyses were206

adequately combined in a sample comparison table (see Fig. 5B).207

Computational performance208
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Table 1: File formats and approximate average size during the processing of the UPS1-yeast lysate
shotgun proteomics reference data.

File Format Size

MS/MS raw profile data binary 1.6 Gb

MS/MS mzML profile data XML 7.4 Gb

MS/MS mgf centroided data plain text 664 Mb

TPP pepXML files XML 80 Mb

tsv reports plain text <500 kb

The speed of a program depends hugely on the computer system performance and chosen param-209

eters. However, the following measurements give a general idea about the computational perfor-210

mance of the ProtyQuant workflow on a standard laptop. The average time for the comet peptide211

searches was 1.2 min. The first step of ProtyQuant, parsing and stripping the pepXML files to pipq,212

took 45 s in average. Protein inference with the multiple counting or equal distribution algorithm213

took about 1 s, and 4 s with the linear programming algorithm. Less than one minute was nec-214

essary for the complete processing of TPP pepXML data with ProtyQuant, which is sufficient for215

productive proteomics environments.216

Another critical aspect of proteomics workflows is the size of files. Large files occupy lots of217

hard drive space and negatively impact the downstream data processing. Table 1 summarizes the218

file format and size for each processing step. Converting the MS/MS raw data from the proprietary219

binary format to the community XML format mzML33 increased the file size to almost five times,220

from ~1.6 to ~7.4 Gb for each sample. Such massive data files are difficult to handle, especially for221

projects with a high number of samples. In the future, binary community formats such as mzMLb34222

are expected to reduce such bloating of data. Converting the mzML profile data to the Mascot223

Generic Format (MGF) centroid format35 reduced the file size to less than 10%. The validated224

TPP pepXML files which are used for ProtyQuant were about 80 Mb in size. The protein reports225

generated by ProtyQuant in TSV format were less than 500 kb in size, which means a significant226

14



decrease in file sizes during the proteomics data processing.227

Altogether, ProtyQuant demonstrated its functionality for processing shotgun proteomics data228

on different platforms, using TPP pepXML files and a UniProt-derived FASTA database.229

Protein inference algorithms230

Figure 6: A) Average number of identified proteins with the different protein inference algorithms,
using a using a probability (Pr) threshold Pr ≥ 0.95. B) Median of identified proteins with a defined
false positive rate (FPR).
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Table 2: Identified target and decoy hits of the different algorithms using a probability (Pr) threshold
of Pr ≥ 0.95.

Algorithm Target hits (min-max, avg.) Decoy hits (min-max, avg.) Average FPR [%]

ProteinProphet 694-878, 765 26-50, 36 4.7

Multiple Counting 403-535, 493 0-4, 2 0.4

Equal Division 286-500, 390 0-4, 2 0.5

Linear Programming 315-441, 399 0-4, 2 0.5

For evaluating the PIPQ protein inference algorithms of ProtyQuant, they were benchmarked231

against the ProteinProphet. Using a probability (Pr) threshold of Pr ≥ 0.95. As shown in Table232

2 and Figure 6A, the ProteinProphet found the highest number of proteins (765), followed by the233

Multiple Counting (493), the Linear Programming (399) and the Equal Division (390) algorithm.234

However, the proportion of false positive hits was about 10 times lower in the ProtyQuant results.235

Whereas the ProteinProphet results in average had a false positive rate (FDR) of 4.7%, the PIPQ236

algorithms had a FPR 0.4-0.5%. In average, only two decoy hits passed the Pr filter of ProtyQuant,237

compared to 36 for ProteinProphet.238

For a better comparison of the precision of the algorithms, the number of true positive (TP)239

hits at different FPR was determined. Figure 6B shows the median target identifications at 1%240

and 5% FPR. The Multiple Counting algorithm performed best at both FPR cut-offs, identifying 59241

(9.7%) and 126 (15.3%), respectively, proteins more than the ProteinProphet. The Equal Division242

and Linear Programming algorithms performed slightly below the ProteinProphet for the 1% FPR243

limit and somewhat better for the 5% FPR limit.244

Besides, the Area Under the Curve (AUC) was used to assess the classifier performance36. The245

ProteinProphet showed AUC values between 0.74 and 0.79, the Multiple Counting algorithm 0.76246

- 0.82, the Equal Division algorithm 0.73 - 0.80 and the Linear Programming algorithm 0.71 -247

0.78, respectively. Figure 7 shows the Receiver Operating Characteristic (ROC) curves for sample248

2500/R2, with typical results. Overall, the Multiple Counting algorithm was found to be the best249

16



Figure 7: Receiver Operating Characteristics (ROC) of the different protein inference algorithms
for sample 2500/R2. without probability cut-off. A) ProteinProphet, B) Multiple Counting, C)
Equal Division, D) Linear Programming.

17



classifier in this comparison, since it demonstrated the highest AUC measures and consistency.250

Figure 8: False positive rate (FPR), protein probability (Pr), and proportion of identified proteins as
function of the accumulated peptide probability (app). A) Multiple Counting, B) Equal Division,
C) Linear Programming.

In Figure 8, FPR, Pr, and identified proteins were plotted as a function of the accumulated251

peptide probability (app). TheMultiple Counting algorithm summed more proteins for a given app,252

followed by the Linear Programming and Equal Division algorithms. The Pr curves were shifted253

towards higher app in the opposite direction. These curves indicate that the multiple counting of254

peptides improved the sensitivity; however, the possible rise of false-positive identifications in this255

strategy was compensated by more strict acceptance criteria.256

A comparison with the ProteinProphet demonstrated the suitability of the PIPQ algorithms257

for protein inference. Although the performance of the algorithms could vary, depending on the258

analyzed datasets18,19 and the upstream data processing, similar identification results, and in some259

cases, even better ones, than the ones obtained with established programs can be expected with260
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ProtyQuant.261

Quantification262

Figure 9: Spiked UPS proteins identified (median) with different algorithms and criteria. A) Prob-
ability (Pr) ≥ 0.95, B) false discovery rate (FPR) ≤ 1%.

For evaluating the performance of ProtyQuant for quantification, the identification and linearity263

of 48 spiked human USP proteins in the yeast lysate background were investigated. Figure 9 shows264

the number of detected UPS proteins, using different threshold criteria. Using the probability (Pr) ≥265
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0.95 cut-off, the ProteinProphet showed by far the highest sensitivity of the four algorithms, which266

is congruent with the global protein analysis (see Fig. 9A). Again, using the false discovery rate267

(FPR) as criteria, improved the true positive rate (TPR) of the PIPQ algorithms. At an FPR ≤ 1%,268

the four algorithms delivered similar results.269

Figure 10: Linearity of the PIPQ algorithms. On the left side, the accumulated peptide probabilities
(app) of all UPS proteins are plotted for each spiked protein concentration. On the right side, the
determined fold-change of the individual UPS proteins is shown for the two highest spiked protein
concentrations. A) Multiple Counting, B) Equal Division, C) Linear Programming.

Figure 10 shows the linearity of the accumulated peptide probabilities (app) of all spiked UPS270

proteins on the left side, and the calculated fold-change of the two highest concentrations, 50,000271
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vs. 25,000 amol/μg yeast lysate, on the right side. For all three PIPQ algorithms, satisfactory lin-272

earity was found for higher spiked protein concentrations. The average fold-change, which was273

determined using the Multiple Counting algorithm, based on the app of the two highest spiked274

protein concentrations, was 2.072, and therefore close to the theoretical factor of 2.0. For 35 of275

48 (73%) proteins, a fold-change between 1.2 and 3.0 was found, 8 (17%) proteins were underesti-276

mated (< 1.2 fold change), 5 (10%) proteins were overestimated (> 3 fold change). Using the Equal277

Division, 33 of 48 (69%) proteins were found in the 1.2-3.0 fold range, 9 (19%) underestimated,278

and 6 (13%) overestimated, with an average of 2.075. With Linear Programming, 35 of 48 (73%)279

proteins felt into the 1.2-3.0 fold range, 7 (15%) proteins were underestimated, and 6 (13%) proteins280

overestimated, with an average calculated fold-change of 2.084. Thus, all three PIPQ algorithms281

demonstrated good quantification capability.282

Interestingly, for all 48 proteins, an app was calculated for the two highest concentrations and283

with all three PIPQ algorithms, although they did not reach the Pr or FPR limit necessary for being284

considered as confidently identified proteins. The main limitation of the app protein inference285

strategy is the lack of sensitivity for low-abundance proteins. For studies including such proteins,286

the combination of multiple search engines37, or the combination with complementary protein287

inference algorithms provide possible solutions.288

Assessing ‘Protein Presence’289

As Huang et al. 2012;18 and He et al. 2016;19 already stressed out, protein inference and quan-290

tification are closely linked. Reporting the presence or, even more complicated, the absence of291

a protein in a given sample without a quantitative measure is not meaningful. The conventional292

approach, to first identify proteins, and then to quantify the proteins in a second step, leaves aside293

the real contribution of a protein to the composition of a mixture. Since validated peptides passing294

a pre-defined threshold are considered as ‘true,’ the underlying non-binary probability information295

is lost in the protein inference and spectral-counting based quantification.296

In contrast, the algorithms used in this study take into account the probability of individual pep-297
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tides for both protein inference and quantification. Therefore, the accumulated peptide probability298

(app) presents a measure for an integrated assessment of ’Protein Presence.’ Since the app values299

are quantitative and continuous, uncertain peptide hits have less impact on the final results. Using300

the app also facilitates the rational fine-tuning of score thresholds, because detection and quantifi-301

cation limits, as well as background levels, can be experimentally determined by sample loading,302

spiking, and carry-over experiments.303

Conclusions304

ProtyQuant performs the quantitative comparison of label-free proteomics datasets from validated305

pepXML files. The software has a human-friendly interface and integrates well with upstream306

proteomics workflows and downstream data analyses.307

The PIPQ program, which performs protein inference and quantifications, sums up the pep-308

tide probabilities for each candidate protein. This strategy preserves information about peptide-309

spectrum match (PSM) hit qualities. For assembling possible proteins and estimating their proba-310

bility (Pr), the three different PIPQ protein inference algorithms were tested. The probability (Pr)311

estimation of the PIPQ program is based on the accumulated peptide probabilities (app) and was312

found to be more conservative than the ProteinProphet algorithm. For equal false-positive rates313

(FPR), the Multiple Counting approach showed the highest sensitivity and identified the highest314

number of true-positive proteins.315

Calculating the app represents a more precise spectral-counting method than summing up pep-316

tides with equal weight. The app values are continuous and were shown in this study to be propor-317

tional to the spiked protein concentration, which makes them suitable for label-free protein quan-318

tification. The risk of overestimating the protein quantity because of low-significance peptides is319

reduced when using app values instead of discrete spectral-counting.320

This study contributes to the understanding that protein probability and quantity are intimately321

connected and should be seen as an entity. The app is easy to calculate and could serve as an integral322
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measure of ‘Protein Presence.’323
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