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Abstract:  

The recent outbreak of COVID-19 caused by SARS-CoV-2 led to a race in finding a cure. 

Different drug targets were recognized, but in most cases the main target has been identified in 

the virus spike protein because it is crucial for the virus to gain entry into human cells. The 

virus spike protein undergoes large dynamic changes in order to bind to the entry point in 

human cells, which is a surface protein known as Angiotensin-Converting Enzyme 2 (ACE2). 

The spike – ACE2 interaction represents the major target for vaccines and antiviral drugs. 

Incidentally, all intermediate structures in the folding pathways could become potential drug 

targets. This study reports the simulation of the transition pathway of the spike protein and 

includes its animation that can help also non-experts to visually understand how the infection 

starts. 

 

Introduction 

The ongoing outbreak of COVID-19 caused by a novel coronavirus, Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2), led to, as of 27 May 2020, up to 5 million confirmed 

cases and about 350,000 deaths according to the World Health Organization (WHO). As 

reported in detail by Wadman et al.(1)⁠ this coronavirus can attack almost anything in the body 

with devastating consequences, which explain the high mortality. This is because the virus is 

able to enter cells through the cell-surface receptor called Angiotensin-Converting Enzyme 2 

(ACE2) (2, 3)⁠⁠ which is present in almost all cells and has an important role in blood pressure 

regulation.  

One of the possible methods to stop the spread of infection into the body is to reduce the 

possibility of the virus to bind to the ACE2 receptors.  

After the first reported genome sequence of SARS-CoV-2,(4)⁠ the main challenge was to obtain 

the 3D structures of all the key proteins involved in the infection, which could help to 

understand the infection mechanism and design new drugs. SARS-CoV-2 makes use of a 

homotrimeric spike glycoprotein (S) to gain entry into human cells by binding to the ACE2 

receptors. For this reason, the main challenge has been the discovery of its 3D structure. 

Different approaches were used to obtain its 3D structure: either through experimental 

techniques (after the synthesis of a copy of the spike protein) or through computer simulations. 

The cryo-EM structure of the SARS-CoV-2 spike trimer has just been reported in two 

independent studies. (5, 6)⁠ Like SARS-CoV-1, this protein exists in two states, referred as “up” 

and “down”. The up state is the one involved in the interaction with ACE2, as in SARS-COV-

1. (7)⁠⁠ 



The first studies devoted to rapidly finding a treatment were performed as target-based virtual 

ligand screening by using computational docking of a library of FDA approved drugs and a 

database of commercially available compounds to the receptor-binding domain (RBD) of the 

S protein. (8)⁠  

While most of these screens were done by using the spike protein in its up conformation as a 

target, it is important to note that there is a large conformational change between the two states. 

Intermediate structures between both conformations could potentially be targets for 

computational virtual ligand screening. For this reason, obtaining the intermediate structures 

by passing from the down to the up state is of great importance.  

 

Results and Discussion 

There are a lot of different computational techniques able to reproduce the large-scale 

conformational changes that occur in proteins. (9–11)⁠ The most used methods able to reproduce 

transition pathways between two different states make use of Molecular Dynamics (MD), 

Coarse Grained (CG) Modeling, Normal Mode Analysis (NMA), Elastic Network Model 

(ENM), and linear interpolation in Cartesian coordinates. In this list, sorted in ascending order 

of complexity and accuracy, it is important to remember that the first method is too 

computationally expensive for large structures, while the last one produces pathways that do 

not correspond at all to realistic transitions. The other methods, sometimes used in 

combination, are able to give accurate results at a reasonable simulation time. Several software 

packages using these techniques are readily accessible over web servers. In this study, 

intermediate states between the up and down conformations of SARS-CoV-2 spike protein 

were generated by targeted simulations with the NMSim approach. (12, 13)⁠ NMSim makes use 

of a three-step protocol including CG, NMA, and ENM methods, providing realistic 

intermediates at a reasonable simulation time. (14, 15)⁠  

First of all, an appreciable 3D structure is needed for both the up and down states. The only 

experimental structure of the entire spike protein, unfortunately, does not represent the up 

conformation well, as reported also by Lan et al. (16)⁠ The reason could be ascribed to the cryo-

EM technique, which usually captures snapshots of the conformational intermediates that lie 

in the transition path from up to down states. Other structures of the spike protein were obtained 

by homology modelling. Some of these structures (the up state, in particular) were compared 

with the recently reported crystallographic structure (6M0J) containing the synthetic RBD of 

S interacting with the ACE2 receptor. (16)⁠ The best result was obtained with the structure 

predicted with the C-I-TASSER server by the Zhang group, which perfectly reproduces the 

interaction between S and ACE2 while superimposing the two structures. (17–19)⁠ It it 

important to note that the perfect superposition could be ascribed to the fact that homology 

modelling takes as reference structures with similar amino acidic sequence deposited in PDB 

databases as reference. Since 6M0J is the only structure available at this moment, it was 

probably used to reproduce the RBD interaction with ACE2.  

To reduce the computational cost for the pathway simulation, two of the three chains forming 

the trimeric spike protein were removed from both up and down full S structures, leaving the 

only chain that undergoes conformational changes. This simplification does not affect the 

results because the other chains do not change conformations as demonstrated by the cryo-EM 

structures. To simplify the simulation we also remove the tails from the spike proteins starting 

from Glycine 1124 since this region is not functional and only serve to link with the viral 

envelope. The simulation with the NMSim web server was run with almost all the default 

parameters (full details in supporting materials), modifying only the number of intermediate 



structures between the two states. After different attempts, it was found that despite the large 

displacement between the two structures 120 is the best number of intermediates necessary to 

capture all the different changes in conformation.  

For a better visualization of the transition pathway movies have been created by using all the 

computed intermediate structures (Movie S1). The same was done to visualize the motion of 

the full S protein binding to ACE2, in this case the other two chains of the homotrimeric 

structure and the interacting chain of ACE2 were added and repacked without design. (Movie 

S2)  

In both cases it is possible to visualize how the RBD, which in the down state is angled closer 

to the central cavity of the trimer, undergoes not only an “up” movement away from the cavity 

but also a torsion of about 45 degrees, exposing the amino acids interacting with ACE2. (Figure 

1) The pathway can be observed also by overlaying the intermediate conformations as shown 

in Figure 2, indicating that the transition does not only displace the bulk RBD, but is also affects 

the amino acids binding to ACE2.  

It is possible that some of these transition structures have higher binding energies with some 

known drugs. If so, a treatment that prevents the interaction between S and ACE2 could be 

designed. This treatment could be readily available, with its dosage and side effects being 

known as well.  

In conclusion, using virtual screening as the methods reported, but using these intermediate 

structures as targets, it is possible to screen drugs that are able to block the first step of infection, 

and thus stop the spread of SARS-CoV-2.  

In addition, the generated movies are useful to illustrate to a broad audience how the virus 

enters human cells to begin infection. 

Fig. 1. Superimposed up (yellow) and down (blue) conformations of a single chain of the 

homotrimeric spike protein (top view). The ACE2-interacting RBD was depicted in red in both 

conformations, showing a torsion of about 45°. 



 

Fig. 2. Overlay of computed intermediates in the transition pathway. For clarity, only one in 

every ten of the 120 intermediate models were used. Light blue: down conformation; deep 

blue: up conformation. Left: side view; right: top view. 
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