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Abstract 

Understanding the double layer at the electrode-electrolyte interface is of fundamental importance to 

electrochemistry, and also lays the basis for rational design of energy storage and conversion technologies. 

The prevailing Gouy-Chapman-Stern (GCS) model and its many derivatives invariably picture the double 

layer as a serial connection of a compact layer and a diffuse layer. We unravel that these models based on 

the serial connection tacitly prescribe a zero potential gradient at the solution-side boundary. This 

assumption is generally invalid, resulting in an incorrect expression for the double-layer impedance. 

Amendment of this deficiency gives out a revised analytical expression for the double-layer impedance at 

the potential of zero charge with new features. Specifically, the contribution of the compact layer now shows 

frequency dispersion. The deviation between the original and amended models is greater when the double 

layer is confined in narrower space. This work changes our basic understanding of double layer model and 

its impedance response. 

 

Significance Statement 

The double layer at the electrode-electrolyte interface is the cornerstone of the edifice of electrochemistry, 

and also arouses wide interest in various fields of physical sciences. Many theoretical models describe the 

double layer as a serial connection of a compact layer and a diffuse layer, originated from the celebrated 

Gouy-Chapman-Stern model. However, the assumption hidden in such serial connection has not been well 

acknowledged. Herein, we unravel that the serial connection assumes a zero potential gradient at the 

solution-side boundary, which is invalid under dynamic conditions. We amend this fundamental 

inconsistency and the amended model brings out new features that change our understanding of the double 

layer model and its impedance response. 

 



Main Text 

Research on the electrochemical double layer (EDL) has a long history dating back to the age of Helmholtz 
who viewed the EDL as a planar capacitor. Thereafter, a rich body of theoretical models have been 
developed.[1-4] Amongst them, the Gouy-Chapman-Stern (GCS) model is quintessential.[5-7] 
Improvements over the GCS model consider ion size,[8,9] specific adsorption,[10] solvent 
polarization,[11,12] nonlocal short-range correlations[13] and metal electronic effects.[14]  

The GCS model is schematically illustrated in Figure 1 (a). The EDL is composed of a compact layer 
between the metal surface and the Helmholtz plane (HP), and a diffuse layer stretching toward the solution 
bulk. The HP is designated as the closest plane where solution species can approach the electrode surface, 
and the distance between the metal surface and the HP is usually ca. several Å. The diffuse layer is a non-
electroneutral region where electrostatic interactions dominate over thermal motion, resulting in 
accumulation of counterions with charge of the sign opposite to the metal surface charge and depletion of 
coions with charge of the same sign. The diffuse layer has a characteristic thickness, termed the Debye 

length and given by, 𝜆D = √𝜖S𝑅𝑇/(2𝐹2𝑐0) (𝜖S  is the dielectric constant of the bulk solution, 𝑐0 the bulk 

concentration, and other symbols have usual meanings), which is ca. 10 nm for an electrolyte solution with 
a concentration of 1 mM. 

The impedance variant of the GCS model is shown in Figure 1. Within the electric circuit representation, 
the EDL is modeled as a serial connection of a compact capacitor, 𝐶H = 𝜖𝐻/𝛿𝐻  ( 𝜖𝐻  and 𝛿𝐻  are the 

permittivity and thickness of the compact layer), and a diffuse layer part, 𝑍GC. It follows naturally to write the 
double layer impedance as, 

𝑍dl =
1

𝑗𝜔𝐶H
+ 𝑍GC (1) 

with 𝜔 being the angular frequency of the perturbation. Most often, 𝑍GC is simplified as the impedance of a 

pure capacitor, 𝑍GC = 1 𝑗𝜔𝐶GC⁄ ,[15] with, 

𝐶GC =
𝜖𝑠

𝜆𝐷
cosh (

𝑈 − 𝑈𝑝𝑧𝑐

2
) (2) 

Here, 𝑈 = 𝐹𝜙M 𝑅𝑇⁄  is the electrode potential normalized with respect to thermal voltage, and 𝑈𝑝𝑧𝑐 is the 

normalized potential of zero charge. Rigorously speaking, 𝑍GC may not be purely capacitive but show 
frequency dispersion, which will become clear later. 

Herein, we will show that the canonical relation given in eqn (1) relies on a tacit assumption that the potential 
gradient at the solution-side boundary is zero, which is generally invalid, for instance, when the double layer 
is confined in narrow space or the double layer is under dynamic conditions. Removing this invalid 
assumption gives rise to a revised expression for the double-layer impedance, where the compact layer 
contribution is not given by (jωCH)−1 as in eqn(1), but a frequency-dependent one. The inaccuracy arose 
from the invalid assumption is more significant for double layers confined in narrower space. 

Consider the simplest case where the electrolyte is symmetrical, charge carriers are monovalent and have 
the identical diffusion coefficient, denoted D. The EDL is described by the Poisson-Nernst-Planck (PNP) 
theory in its standard form, 

𝜕𝐶𝑝

𝜕𝜏
=

𝜕

𝜕𝑋
(

𝜕𝐶𝑝

𝜕𝑋
+ 𝐶𝑝

𝜕𝑈

𝜕𝑋
) (3) 

𝜕𝐶𝑛

𝜕𝜏
=

𝜕

𝜕𝑋
(

𝜕𝐶𝑛

𝜕𝑋
− 𝐶𝑛

𝜕𝑈

𝜕𝑋
) (4) 

0 =
𝜕2𝑈

𝜕𝑋2
+

1

2
(𝐶𝑝 − 𝐶𝑛) (5) 

Here, 𝐶𝑝  and 𝐶𝑛  are the concentration of positive and negative charge carriers referenced to the bulk 

concentration, 𝑋 is the spatial coordinate normalized with respect to 𝜆D, 𝜏 = 𝑡𝐷 𝜆𝐷
2⁄  is the dimensionless 

time. The PNP theory is closed by following boundary conditions. In solution bulk, 𝑋 = 𝐿, 𝐶𝑝 = 𝐶𝑛 = 1 and 



the potential is taken as the reference, namely,  𝑈 = 0 . At the HP, X = 0, no reaction is considered, 
prescribing zero fluxes of positive and negative charge carriers, 

𝜕𝐶𝑝

𝜕𝑋
+ 𝐶𝑝

𝜕𝑈

𝜕𝑋
= 0 (6) 

𝜕𝐶𝑛

𝜕𝑋
− 𝐶𝑛

𝜕𝑈

𝜕𝑋
= 0 (7) 

The potential at the HP is not an independent variable, but an implicit function of the electrode potential, 
𝑈𝑀, an independent variable in experiments, given by, 

𝜕𝑈

𝜕𝑋
+

𝜖𝐻𝜆𝐷

𝜖𝑠𝛿𝐻

(𝑈𝑀 − 𝑈𝑝𝑧𝑐 − 𝑈) = 0 (8) 

which is readily obtained from the notion that potential distribution in the compact layer is linear, and that 

potential gradients at the HP on two sides are correlated as, 𝜖𝑠
𝜕𝑈

𝜕𝑋
(𝑋 → 0+) = 𝜖𝐻

𝜕𝑈

𝜕𝑋
(𝑋 → 0−); both are 

guaranteed by the Gauss law as there is no net charge in the compact layer or at the HP, respectively. 

By Fourier transform, eqn (3)-(5) can be analytically solved when the metal is initially held at 𝑈𝑝𝑧𝑐, namely, 

𝐶𝑝 = 𝐶𝑛 = 1 and 𝑈 = 0. With algebra manipulations detailed in the Supporting Materials, we obtain the 

following analytical solution, 

𝑍𝑑𝑙 =
1

𝑗𝜔𝐶𝐻

1 + Ω

1 − sech(𝐿√1 + Ω)
+

1

𝑗𝜔𝐶𝐺𝐶
0

tanh(𝐿√1 + Ω)

√1 + Ω
+ 𝐿Ω

1 − sech(𝐿√1 + Ω)
 

(9) 

with Ω = 𝑗𝜔𝜆𝐷
2 𝐷⁄  being the dimensionless imaginary frequency, and 𝐶𝐺𝐶

0 = 𝜖𝑠 𝜆𝐷⁄  the Gouy-Chapman 
capacitance at the pzc. 

In the low frequency limit, 𝜔 → 0, we simply eqn(9) to, 

𝑍𝑑𝑙 =
1

𝑗𝜔𝐶𝐻

1

1 − sech(𝐿)
+

1

𝑗𝜔𝐶𝐺𝐶
0

tanh(𝐿)

1 − sech(𝐿)
 (10) 

which is further reduced back to the classical GCS model, 

𝑍𝑑𝑙 =
1

𝑗𝜔𝐶𝐻
+

1

𝑗𝜔𝐶𝐺𝐶
0  (11) 

when 𝐿 → ∞, namely, when the solution phase is semi-infinitive. 

Compared to eqn(1), eqn(9) indicates that the contribution of the compact layer to 𝑍𝑑𝑙  is not purely 

capacitive, given by (𝑗𝜔𝐶𝐻)−1, but shows frequency dispersion, which can be effectively described by a 
frequency-dependent capacitance, 

𝐶𝐻
𝑒𝑓𝑓

= 𝐶𝐻

1 − sech(𝐿√1 + Ω)

1 + Ω
 (12) 

which is asymptotic to 𝐶𝐻 when 𝜔 → 0 and 𝐿 → ∞. 

It now becomes clear that the oft-used equivalent electric circuit based on the GCS model, depicted in 
Figure 1, is, rigorously speaking, invalid. The underlying cause of this fundamental error lies in the boundary 
condition for the PNP equation that is tacitly assumed in the GCS model. The serial connection of the 
compact layer and the diffuse layer implies that, 

𝜖𝐻

𝛿𝐻

𝜕(𝜙𝑀 − 𝜙𝑝𝑧𝑐 − 𝜙𝐻)

𝜕𝑡
= −

𝜕𝑞𝐺𝐶

𝜕𝑡
 (13) 

where 𝜙𝐻 is the potential at the HP and 𝑞𝐺𝐶 the excess charge density stored in the diffuse layer. Equation 
(12) is transformed to, 



𝑄𝐺𝐶

2
+

𝜖𝐻𝜆𝐷

𝜖𝑠𝛿𝐻

(𝑈𝑀 − 𝑈𝑝𝑧𝑐 − 𝑈) = 0 (14) 

where 𝑄𝐺𝐶 = 2𝑞𝐺𝐶𝐹𝜆𝐷 𝑅𝑇𝜖𝑠⁄  is the normalized excess charge density. The boundary conditions expressed 
in eqn (14) and (8) are equivalent only if, 

𝑄𝐺𝐶 = 2
𝜕𝑈

𝜕𝑋
(𝑋 → 0+) (15) 

which, as readily seen from eqn(5), relies on the assumption that, 

𝜕𝑈

𝜕𝑋
(𝑋 = 𝐿) = 0 (16) 

However, a zero potential gradient at 𝑋 = 𝐿 is not guaranteed, generally. From the PNP equation, the 
Fourier-transformed potential gradient at the 𝑋 = 𝐿 is given by, 

𝜕𝑈

𝜕𝑋
(𝑋 = 𝐿) = −𝑈𝑀

sech(𝐿√1 + Ω) + Ω

𝐶𝐺𝐶
0

𝐶𝐻
√1 + Ω +

tanh(𝐿√1 + Ω)

√1 + Ω
+ 𝐿Ω

 
(17) 

which becomes zero only when 𝜔 → 0 and 𝐿 → ∞. Otherwise, eqn(16) is not satisfied and the boundary 
condition written in eqn(14) is not true. 

The impedance expression with eqn (14) as the boundary condition at the HP is written as, 

𝑍𝑑𝑙
𝐺𝐶𝑆 =

1

𝑗𝜔𝐶𝐻
+

1

𝑗𝜔𝐶𝐺𝐶
0

tanh(𝐿√1 + Ω)

√1 + Ω
+ 𝐿Ω

1 − sech(𝐿√1 + Ω)
 

(18) 

which varies from eqn(9) by a difference of, 

𝛥𝑍 = 𝑍𝑑𝑙 − 𝑍𝑑𝑙
𝐺𝐶𝑆 =

1

𝑗𝜔𝐶𝐻

Ω + sech(𝐿√1 + Ω)

1 − sech(𝐿√1 + Ω)
 (19) 

which becomes zero only when 𝜔 → 0 and 𝐿 → ∞. 

In the high frequency limit, 𝜔 → ∞, Δ𝑍 is asymptotic to, ΔZ(𝜔 → ∞) = 𝜆𝐷
2 𝐷𝐶𝐻⁄ . Normalizing ΔZ(𝜔 → ∞) 

with respect to the high-frequency asymptotic value of 𝑍dl, 𝑍𝑑𝑙(𝜔 → ∞) = 𝜆𝐷
2 𝐷𝐶𝐻⁄ + 𝐿𝜆𝐷

2 𝐷𝐶𝐺𝐶
0⁄  leads to, 

𝛥𝑍𝑛𝑑(𝜔 → ∞) = (1 + 𝐿𝜉)−1 (20) 

with 𝜉 = 𝐶𝐻 𝐶𝐺𝐶
0⁄ . ΔZnd(𝜔 → ∞) approaches zero when 𝐿 → ∞, and grows when 𝐿 decreases. 

In the low frequency limit, 𝜔 → 0 , 𝛥𝑍  is asymptotic to, 𝛥𝑍(𝜔 → 0) = (𝑗𝜔𝐶𝐻(cosh(𝐿) − 1))
−1

, and the 

dimensionless counterpart normalized with respect to the high-frequency asymptotic value of 𝑍dl expressed 
in eqn(10), reads, 

𝛥𝑍𝑛𝑑(𝜔 → 0) =
sech(𝐿)

1 + 𝜉 ∙ tanh(𝐿)
 (21) 

which approaches zero when 𝐿 → ∞, and grows when 𝐿 decreases, namely, when the double layer is 
confined in narrower space. 

As the magnitudes of 𝑍𝑑𝑙
𝐺𝐶𝑆 , 𝑍𝑑𝑙 , and their difference, 𝛥𝑍 , are infinitive when 𝜔 → 0 , we define a 

dimensionless complex capacitance as, 𝐶(𝜔) = (𝑗𝜔𝐶𝐻 (𝑍(𝜔) − 𝑍(𝜔 →∞)))
−1

. Figure 2 shows the Nyquist 

plots of 𝐶(𝜔), consisting of an arc in low frequency range and an inclined line in high frequency range. As 

regards 𝑍𝑑𝑙
𝐺𝐶𝑆, 𝐶𝑑𝑙

𝐺𝐶𝑆(ω → 0) = (1 + 𝜉tanh(L) (1 − sech(L))⁄ )
−1

, and 𝐶𝑑𝑙
𝐺𝐶𝑆(ω →∞) = 1. As regards for 𝑍𝑑𝑙, 

𝐶𝑑𝑙(ω → 0) = (1 − sech(L)) (1 + 𝜉 tanh(𝐿))⁄ , and 𝐶(ω →∞) = 1.  These two C(ω)  complex functions 

converge in high frequency range but differ in low frequency range, as shown in Figure 2. 



In conclusion, we have revealed that the serial connection involved in vast majority of double layer models 
requires that the potential gradient at the solution-side boundary is zero, which is generally invalid. This 
fundamental inconsistency has been amended, herein, resulting in a new expression of double-layer 
impedance with new features that change our understanding of the impedance response of the double 
layer. 
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Figures 

 

 

Figure 1. Schematic illustration of the double layer and its equivalent electric circuit according to the 

Gouy-Chapman-Stern model. 



 

Figure 2. The dimensionless complex capacitance obtained from eqn(9) and eqn(18). Model parameters 

are: 𝑐0 = 0.1 mol ∙ L−1, 𝛿𝐻 = 0.5 nm, 𝐿 = 5𝜆𝐷, 𝐷 = 1 × 10−10 m2 ∙ s−1, 𝜖𝐻 = 10𝜖0, 𝜖𝑠 = 80𝜖0, 𝜖0 = 8.85 ×

10−12 F ∙ m−1, 𝐹 = 96485 C ∙ m−1, 𝑁𝐴 = 6.02 × 1023 mol−1, 𝑇 = 298 K, 𝑓 =  10−4 Hz~1014 Hz.   

 


